rf_parityloggingdags.c revision 1.6 1 /* $NetBSD: rf_parityloggingdags.c,v 1.6 2001/10/04 15:58:55 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include "rf_archs.h"
30
31 #if RF_INCLUDE_PARITYLOGGING > 0
32
33 /*
34 DAGs specific to parity logging are created here
35 */
36
37 #include <dev/raidframe/raidframevar.h>
38
39 #include "rf_raid.h"
40 #include "rf_dag.h"
41 #include "rf_dagutils.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_debugMem.h"
44 #include "rf_paritylog.h"
45 #include "rf_memchunk.h"
46 #include "rf_general.h"
47
48 #include "rf_parityloggingdags.h"
49
50 /******************************************************************************
51 *
52 * creates a DAG to perform a large-write operation:
53 *
54 * / Rod \ / Wnd \
55 * H -- NIL- Rod - NIL - Wnd ------ NIL - T
56 * \ Rod / \ Xor - Lpo /
57 *
58 * The writes are not done until the reads complete because if they were done in
59 * parallel, a failure on one of the reads could leave the parity in an inconsistent
60 * state, so that the retry with a new DAG would produce erroneous parity.
61 *
62 * Note: this DAG has the nasty property that none of the buffers allocated for reading
63 * old data can be freed until the XOR node fires. Need to fix this.
64 *
65 * The last two arguments are the number of faults tolerated, and function for the
66 * redundancy calculation. The undo for the redundancy calc is assumed to be null
67 *
68 *****************************************************************************/
69
70 void
71 rf_CommonCreateParityLoggingLargeWriteDAG(
72 RF_Raid_t * raidPtr,
73 RF_AccessStripeMap_t * asmap,
74 RF_DagHeader_t * dag_h,
75 void *bp,
76 RF_RaidAccessFlags_t flags,
77 RF_AllocListElem_t * allocList,
78 int nfaults,
79 int (*redFunc) (RF_DagNode_t *))
80 {
81 RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
82 *lpoNode, *blockNode, *unblockNode, *termNode;
83 int nWndNodes, nRodNodes, i;
84 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
85 RF_AccessStripeMapHeader_t *new_asm_h[2];
86 int nodeNum, asmNum;
87 RF_ReconUnitNum_t which_ru;
88 char *sosBuffer, *eosBuffer;
89 RF_PhysDiskAddr_t *pda;
90 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
91
92 if (rf_dagDebug)
93 printf("[Creating parity-logging large-write DAG]\n");
94 RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
95 dag_h->creator = "ParityLoggingLargeWriteDAG";
96
97 /* alloc the Wnd nodes, the xor node, and the Lpo node */
98 nWndNodes = asmap->numStripeUnitsAccessed;
99 RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
100 i = 0;
101 wndNodes = &nodes[i];
102 i += nWndNodes;
103 xorNode = &nodes[i];
104 i += 1;
105 lpoNode = &nodes[i];
106 i += 1;
107 blockNode = &nodes[i];
108 i += 1;
109 syncNode = &nodes[i];
110 i += 1;
111 unblockNode = &nodes[i];
112 i += 1;
113 termNode = &nodes[i];
114 i += 1;
115
116 dag_h->numCommitNodes = nWndNodes + 1;
117 dag_h->numCommits = 0;
118 dag_h->numSuccedents = 1;
119
120 rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
121 if (nRodNodes > 0)
122 RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
123
124 /* begin node initialization */
125 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
126 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
127 rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
128 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
129
130 /* initialize the Rod nodes */
131 for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
132 if (new_asm_h[asmNum]) {
133 pda = new_asm_h[asmNum]->stripeMap->physInfo;
134 while (pda) {
135 rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
136 rodNodes[nodeNum].params[0].p = pda;
137 rodNodes[nodeNum].params[1].p = pda->bufPtr;
138 rodNodes[nodeNum].params[2].v = parityStripeID;
139 rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
140 nodeNum++;
141 pda = pda->next;
142 }
143 }
144 }
145 RF_ASSERT(nodeNum == nRodNodes);
146
147 /* initialize the wnd nodes */
148 pda = asmap->physInfo;
149 for (i = 0; i < nWndNodes; i++) {
150 rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
151 RF_ASSERT(pda != NULL);
152 wndNodes[i].params[0].p = pda;
153 wndNodes[i].params[1].p = pda->bufPtr;
154 wndNodes[i].params[2].v = parityStripeID;
155 wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
156 pda = pda->next;
157 }
158
159 /* initialize the redundancy node */
160 rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
161 xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
162 for (i = 0; i < nWndNodes; i++) {
163 xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
164 xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
165 }
166 for (i = 0; i < nRodNodes; i++) {
167 xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
168 xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
169 }
170 xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
171 * at RAID information */
172
173 /* look for an Rod node that reads a complete SU. If none, alloc a
174 * buffer to receive the parity info. Note that we can't use a new
175 * data buffer because it will not have gotten written when the xor
176 * occurs. */
177 for (i = 0; i < nRodNodes; i++)
178 if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
179 break;
180 if (i == nRodNodes) {
181 RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
182 } else {
183 xorNode->results[0] = rodNodes[i].params[1].p;
184 }
185
186 /* initialize the Lpo node */
187 rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
188
189 lpoNode->params[0].p = asmap->parityInfo;
190 lpoNode->params[1].p = xorNode->results[0];
191 RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
192 * describe entire
193 * parity unit */
194
195 /* connect nodes to form graph */
196
197 /* connect dag header to block node */
198 RF_ASSERT(dag_h->numSuccedents == 1);
199 RF_ASSERT(blockNode->numAntecedents == 0);
200 dag_h->succedents[0] = blockNode;
201
202 /* connect the block node to the Rod nodes */
203 RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
204 for (i = 0; i < nRodNodes; i++) {
205 RF_ASSERT(rodNodes[i].numAntecedents == 1);
206 blockNode->succedents[i] = &rodNodes[i];
207 rodNodes[i].antecedents[0] = blockNode;
208 rodNodes[i].antType[0] = rf_control;
209 }
210
211 /* connect the block node to the sync node */
212 /* necessary if nRodNodes == 0 */
213 RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
214 blockNode->succedents[nRodNodes] = syncNode;
215 syncNode->antecedents[0] = blockNode;
216 syncNode->antType[0] = rf_control;
217
218 /* connect the Rod nodes to the syncNode */
219 for (i = 0; i < nRodNodes; i++) {
220 rodNodes[i].succedents[0] = syncNode;
221 syncNode->antecedents[1 + i] = &rodNodes[i];
222 syncNode->antType[1 + i] = rf_control;
223 }
224
225 /* connect the sync node to the xor node */
226 RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
227 RF_ASSERT(xorNode->numAntecedents == 1);
228 syncNode->succedents[0] = xorNode;
229 xorNode->antecedents[0] = syncNode;
230 xorNode->antType[0] = rf_trueData; /* carry forward from sync */
231
232 /* connect the sync node to the Wnd nodes */
233 for (i = 0; i < nWndNodes; i++) {
234 RF_ASSERT(wndNodes->numAntecedents == 1);
235 syncNode->succedents[1 + i] = &wndNodes[i];
236 wndNodes[i].antecedents[0] = syncNode;
237 wndNodes[i].antType[0] = rf_control;
238 }
239
240 /* connect the xor node to the Lpo node */
241 RF_ASSERT(xorNode->numSuccedents == 1);
242 RF_ASSERT(lpoNode->numAntecedents == 1);
243 xorNode->succedents[0] = lpoNode;
244 lpoNode->antecedents[0] = xorNode;
245 lpoNode->antType[0] = rf_trueData;
246
247 /* connect the Wnd nodes to the unblock node */
248 RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
249 for (i = 0; i < nWndNodes; i++) {
250 RF_ASSERT(wndNodes->numSuccedents == 1);
251 wndNodes[i].succedents[0] = unblockNode;
252 unblockNode->antecedents[i] = &wndNodes[i];
253 unblockNode->antType[i] = rf_control;
254 }
255
256 /* connect the Lpo node to the unblock node */
257 RF_ASSERT(lpoNode->numSuccedents == 1);
258 lpoNode->succedents[0] = unblockNode;
259 unblockNode->antecedents[nWndNodes] = lpoNode;
260 unblockNode->antType[nWndNodes] = rf_control;
261
262 /* connect unblock node to terminator */
263 RF_ASSERT(unblockNode->numSuccedents == 1);
264 RF_ASSERT(termNode->numAntecedents == 1);
265 RF_ASSERT(termNode->numSuccedents == 0);
266 unblockNode->succedents[0] = termNode;
267 termNode->antecedents[0] = unblockNode;
268 termNode->antType[0] = rf_control;
269 }
270
271
272
273
274 /******************************************************************************
275 *
276 * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
277 *
278 * Header
279 * |
280 * Block
281 * / | ... \ \
282 * / | \ \
283 * Rod Rod Rod Rop
284 * | \ /| \ / | \/ |
285 * | | | /\ |
286 * Wnd Wnd Wnd X
287 * | \ / |
288 * | \ / |
289 * \ \ / Lpo
290 * \ \ / /
291 * +-> Unblock <-+
292 * |
293 * T
294 *
295 *
296 * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
297 * When the access spans a stripe unit boundary and is less than one SU in size, there will
298 * be two Rop -- X -- Wnp branches. I call this the "double-XOR" case.
299 * The second output from each Rod node goes to the X node. In the double-XOR
300 * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
301 * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
302 *
303 * The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG.
304 *
305 * Note: this DAG ignores all the optimizations related to making the RMWs atomic.
306 * it also has the nasty property that none of the buffers allocated for reading
307 * old data & parity can be freed until the XOR node fires. Need to fix this.
308 *
309 * A null qfuncs indicates single fault tolerant
310 *****************************************************************************/
311
312 void
313 rf_CommonCreateParityLoggingSmallWriteDAG(
314 RF_Raid_t * raidPtr,
315 RF_AccessStripeMap_t * asmap,
316 RF_DagHeader_t * dag_h,
317 void *bp,
318 RF_RaidAccessFlags_t flags,
319 RF_AllocListElem_t * allocList,
320 RF_RedFuncs_t * pfuncs,
321 RF_RedFuncs_t * qfuncs)
322 {
323 RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
324 RF_DagNode_t *readDataNodes, *readParityNodes;
325 RF_DagNode_t *writeDataNodes, *lpuNodes;
326 RF_DagNode_t *unlockDataNodes = NULL, *termNode;
327 RF_PhysDiskAddr_t *pda = asmap->physInfo;
328 int numDataNodes = asmap->numStripeUnitsAccessed;
329 int numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
330 int i, j, nNodes, totalNumNodes;
331 RF_ReconUnitNum_t which_ru;
332 int (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
333 int (*qfunc) (RF_DagNode_t * node);
334 char *name, *qname;
335 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
336 #ifdef RAID_DIAGNOSTIC
337 long nfaults = qfuncs ? 2 : 1;
338 #endif /* RAID_DIAGNOSTIC */
339 int lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
340
341 if (rf_dagDebug)
342 printf("[Creating parity-logging small-write DAG]\n");
343 RF_ASSERT(numDataNodes > 0);
344 RF_ASSERT(nfaults == 1);
345 dag_h->creator = "ParityLoggingSmallWriteDAG";
346
347 /* DAG creation occurs in three steps: 1. count the number of nodes in
348 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
349 * nodes */
350
351 /* Step 1. compute number of nodes in the graph */
352
353 /* number of nodes: a read and write for each data unit a redundancy
354 * computation node for each parity node a read and Lpu for each
355 * parity unit a block and unblock node (2) a terminator node if
356 * atomic RMW an unlock node for each data unit, redundancy unit */
357 totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
358 if (lu_flag)
359 totalNumNodes += numDataNodes;
360
361 nNodes = numDataNodes + numParityNodes;
362
363 dag_h->numCommitNodes = numDataNodes + numParityNodes;
364 dag_h->numCommits = 0;
365 dag_h->numSuccedents = 1;
366
367 /* Step 2. create the nodes */
368 RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
369 i = 0;
370 blockNode = &nodes[i];
371 i += 1;
372 unblockNode = &nodes[i];
373 i += 1;
374 readDataNodes = &nodes[i];
375 i += numDataNodes;
376 readParityNodes = &nodes[i];
377 i += numParityNodes;
378 writeDataNodes = &nodes[i];
379 i += numDataNodes;
380 lpuNodes = &nodes[i];
381 i += numParityNodes;
382 xorNodes = &nodes[i];
383 i += numParityNodes;
384 termNode = &nodes[i];
385 i += 1;
386 if (lu_flag) {
387 unlockDataNodes = &nodes[i];
388 i += numDataNodes;
389 }
390 RF_ASSERT(i == totalNumNodes);
391
392 /* Step 3. initialize the nodes */
393 /* initialize block node (Nil) */
394 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
395
396 /* initialize unblock node (Nil) */
397 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
398
399 /* initialize terminatory node (Trm) */
400 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
401
402 /* initialize nodes which read old data (Rod) */
403 for (i = 0; i < numDataNodes; i++) {
404 rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
405 RF_ASSERT(pda != NULL);
406 readDataNodes[i].params[0].p = pda; /* physical disk addr
407 * desc */
408 readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
409 * data */
410 readDataNodes[i].params[2].v = parityStripeID;
411 readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
412 pda = pda->next;
413 readDataNodes[i].propList[0] = NULL;
414 readDataNodes[i].propList[1] = NULL;
415 }
416
417 /* initialize nodes which read old parity (Rop) */
418 pda = asmap->parityInfo;
419 i = 0;
420 for (i = 0; i < numParityNodes; i++) {
421 RF_ASSERT(pda != NULL);
422 rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
423 readParityNodes[i].params[0].p = pda;
424 readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
425 * parity */
426 readParityNodes[i].params[2].v = parityStripeID;
427 readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
428 readParityNodes[i].propList[0] = NULL;
429 pda = pda->next;
430 }
431
432 /* initialize nodes which write new data (Wnd) */
433 pda = asmap->physInfo;
434 for (i = 0; i < numDataNodes; i++) {
435 RF_ASSERT(pda != NULL);
436 rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
437 writeDataNodes[i].params[0].p = pda; /* physical disk addr
438 * desc */
439 writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
440 * data to be written */
441 writeDataNodes[i].params[2].v = parityStripeID;
442 writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
443
444 if (lu_flag) {
445 /* initialize node to unlock the disk queue */
446 rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
447 unlockDataNodes[i].params[0].p = pda; /* physical disk addr
448 * desc */
449 unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
450 }
451 pda = pda->next;
452 }
453
454
455 /* initialize nodes which compute new parity */
456 /* we use the simple XOR func in the double-XOR case, and when we're
457 * accessing only a portion of one stripe unit. the distinction
458 * between the two is that the regular XOR func assumes that the
459 * targbuf is a full SU in size, and examines the pda associated with
460 * the buffer to decide where within the buffer to XOR the data,
461 * whereas the simple XOR func just XORs the data into the start of
462 * the buffer. */
463 if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
464 func = pfuncs->simple;
465 undoFunc = rf_NullNodeUndoFunc;
466 name = pfuncs->SimpleName;
467 if (qfuncs) {
468 qfunc = qfuncs->simple;
469 qname = qfuncs->SimpleName;
470 }
471 } else {
472 func = pfuncs->regular;
473 undoFunc = rf_NullNodeUndoFunc;
474 name = pfuncs->RegularName;
475 if (qfuncs) {
476 qfunc = qfuncs->regular;
477 qname = qfuncs->RegularName;
478 }
479 }
480 /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
481 * nodes, and raidPtr */
482 if (numParityNodes == 2) { /* double-xor case */
483 for (i = 0; i < numParityNodes; i++) {
484 rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
485 * xor */
486 xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
487 xorNodes[i].params[0] = readDataNodes[i].params[0];
488 xorNodes[i].params[1] = readDataNodes[i].params[1];
489 xorNodes[i].params[2] = readParityNodes[i].params[0];
490 xorNodes[i].params[3] = readParityNodes[i].params[1];
491 xorNodes[i].params[4] = writeDataNodes[i].params[0];
492 xorNodes[i].params[5] = writeDataNodes[i].params[1];
493 xorNodes[i].params[6].p = raidPtr;
494 xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
495 * target buf */
496 }
497 } else {
498 /* there is only one xor node in this case */
499 rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
500 xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
501 for (i = 0; i < numDataNodes + 1; i++) {
502 /* set up params related to Rod and Rop nodes */
503 xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
504 xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
505 }
506 for (i = 0; i < numDataNodes; i++) {
507 /* set up params related to Wnd and Wnp nodes */
508 xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
509 xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
510 }
511 xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
512 * at RAID information */
513 xorNodes[0].results[0] = readParityNodes[0].params[1].p;
514 }
515
516 /* initialize the log node(s) */
517 pda = asmap->parityInfo;
518 for (i = 0; i < numParityNodes; i++) {
519 RF_ASSERT(pda);
520 rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
521 lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */
522 lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to
523 * parity */
524 pda = pda->next;
525 }
526
527
528 /* Step 4. connect the nodes */
529
530 /* connect header to block node */
531 RF_ASSERT(dag_h->numSuccedents == 1);
532 RF_ASSERT(blockNode->numAntecedents == 0);
533 dag_h->succedents[0] = blockNode;
534
535 /* connect block node to read old data nodes */
536 RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
537 for (i = 0; i < numDataNodes; i++) {
538 blockNode->succedents[i] = &readDataNodes[i];
539 RF_ASSERT(readDataNodes[i].numAntecedents == 1);
540 readDataNodes[i].antecedents[0] = blockNode;
541 readDataNodes[i].antType[0] = rf_control;
542 }
543
544 /* connect block node to read old parity nodes */
545 for (i = 0; i < numParityNodes; i++) {
546 blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
547 RF_ASSERT(readParityNodes[i].numAntecedents == 1);
548 readParityNodes[i].antecedents[0] = blockNode;
549 readParityNodes[i].antType[0] = rf_control;
550 }
551
552 /* connect read old data nodes to write new data nodes */
553 for (i = 0; i < numDataNodes; i++) {
554 RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
555 for (j = 0; j < numDataNodes; j++) {
556 RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
557 readDataNodes[i].succedents[j] = &writeDataNodes[j];
558 writeDataNodes[j].antecedents[i] = &readDataNodes[i];
559 if (i == j)
560 writeDataNodes[j].antType[i] = rf_antiData;
561 else
562 writeDataNodes[j].antType[i] = rf_control;
563 }
564 }
565
566 /* connect read old data nodes to xor nodes */
567 for (i = 0; i < numDataNodes; i++)
568 for (j = 0; j < numParityNodes; j++) {
569 RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
570 readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
571 xorNodes[j].antecedents[i] = &readDataNodes[i];
572 xorNodes[j].antType[i] = rf_trueData;
573 }
574
575 /* connect read old parity nodes to write new data nodes */
576 for (i = 0; i < numParityNodes; i++) {
577 RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
578 for (j = 0; j < numDataNodes; j++) {
579 readParityNodes[i].succedents[j] = &writeDataNodes[j];
580 writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
581 writeDataNodes[j].antType[numDataNodes + i] = rf_control;
582 }
583 }
584
585 /* connect read old parity nodes to xor nodes */
586 for (i = 0; i < numParityNodes; i++)
587 for (j = 0; j < numParityNodes; j++) {
588 readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
589 xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
590 xorNodes[j].antType[numDataNodes + i] = rf_trueData;
591 }
592
593 /* connect xor nodes to write new parity nodes */
594 for (i = 0; i < numParityNodes; i++) {
595 RF_ASSERT(xorNodes[i].numSuccedents == 1);
596 RF_ASSERT(lpuNodes[i].numAntecedents == 1);
597 xorNodes[i].succedents[0] = &lpuNodes[i];
598 lpuNodes[i].antecedents[0] = &xorNodes[i];
599 lpuNodes[i].antType[0] = rf_trueData;
600 }
601
602 for (i = 0; i < numDataNodes; i++) {
603 if (lu_flag) {
604 /* connect write new data nodes to unlock nodes */
605 RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
606 RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
607 writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
608 unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
609 unlockDataNodes[i].antType[0] = rf_control;
610
611 /* connect unlock nodes to unblock node */
612 RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
613 RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
614 unlockDataNodes[i].succedents[0] = unblockNode;
615 unblockNode->antecedents[i] = &unlockDataNodes[i];
616 unblockNode->antType[i] = rf_control;
617 } else {
618 /* connect write new data nodes to unblock node */
619 RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
620 RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
621 writeDataNodes[i].succedents[0] = unblockNode;
622 unblockNode->antecedents[i] = &writeDataNodes[i];
623 unblockNode->antType[i] = rf_control;
624 }
625 }
626
627 /* connect write new parity nodes to unblock node */
628 for (i = 0; i < numParityNodes; i++) {
629 RF_ASSERT(lpuNodes[i].numSuccedents == 1);
630 lpuNodes[i].succedents[0] = unblockNode;
631 unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
632 unblockNode->antType[numDataNodes + i] = rf_control;
633 }
634
635 /* connect unblock node to terminator */
636 RF_ASSERT(unblockNode->numSuccedents == 1);
637 RF_ASSERT(termNode->numAntecedents == 1);
638 RF_ASSERT(termNode->numSuccedents == 0);
639 unblockNode->succedents[0] = termNode;
640 termNode->antecedents[0] = unblockNode;
641 termNode->antType[0] = rf_control;
642 }
643
644
645 void
646 rf_CreateParityLoggingSmallWriteDAG(
647 RF_Raid_t * raidPtr,
648 RF_AccessStripeMap_t * asmap,
649 RF_DagHeader_t * dag_h,
650 void *bp,
651 RF_RaidAccessFlags_t flags,
652 RF_AllocListElem_t * allocList,
653 RF_RedFuncs_t * pfuncs,
654 RF_RedFuncs_t * qfuncs)
655 {
656 dag_h->creator = "ParityLoggingSmallWriteDAG";
657 rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
658 }
659
660
661 void
662 rf_CreateParityLoggingLargeWriteDAG(
663 RF_Raid_t * raidPtr,
664 RF_AccessStripeMap_t * asmap,
665 RF_DagHeader_t * dag_h,
666 void *bp,
667 RF_RaidAccessFlags_t flags,
668 RF_AllocListElem_t * allocList,
669 int nfaults,
670 int (*redFunc) (RF_DagNode_t *))
671 {
672 dag_h->creator = "ParityLoggingSmallWriteDAG";
673 rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
674 }
675 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
676