Home | History | Annotate | Line # | Download | only in raidframe
rf_parityloggingdags.c revision 1.9
      1 /*	$NetBSD: rf_parityloggingdags.c,v 1.9 2003/06/23 11:02:01 martin Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30   DAGs specific to parity logging are created here
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.9 2003/06/23 11:02:01 martin Exp $");
     35 
     36 #include "rf_archs.h"
     37 #include "opt_raid_diagnostic.h"
     38 
     39 #if RF_INCLUDE_PARITYLOGGING > 0
     40 
     41 #include <dev/raidframe/raidframevar.h>
     42 
     43 #include "rf_raid.h"
     44 #include "rf_dag.h"
     45 #include "rf_dagutils.h"
     46 #include "rf_dagfuncs.h"
     47 #include "rf_debugMem.h"
     48 #include "rf_paritylog.h"
     49 #include "rf_general.h"
     50 
     51 #include "rf_parityloggingdags.h"
     52 
     53 /******************************************************************************
     54  *
     55  * creates a DAG to perform a large-write operation:
     56  *
     57  *         / Rod \     / Wnd \
     58  * H -- NIL- Rod - NIL - Wnd ------ NIL - T
     59  *         \ Rod /     \ Xor - Lpo /
     60  *
     61  * The writes are not done until the reads complete because if they were done in
     62  * parallel, a failure on one of the reads could leave the parity in an inconsistent
     63  * state, so that the retry with a new DAG would produce erroneous parity.
     64  *
     65  * Note:  this DAG has the nasty property that none of the buffers allocated for reading
     66  *        old data can be freed until the XOR node fires.  Need to fix this.
     67  *
     68  * The last two arguments are the number of faults tolerated, and function for the
     69  * redundancy calculation. The undo for the redundancy calc is assumed to be null
     70  *
     71  *****************************************************************************/
     72 
     73 void
     74 rf_CommonCreateParityLoggingLargeWriteDAG(
     75     RF_Raid_t * raidPtr,
     76     RF_AccessStripeMap_t * asmap,
     77     RF_DagHeader_t * dag_h,
     78     void *bp,
     79     RF_RaidAccessFlags_t flags,
     80     RF_AllocListElem_t * allocList,
     81     int nfaults,
     82     int (*redFunc) (RF_DagNode_t *))
     83 {
     84 	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
     85 	       *lpoNode, *blockNode, *unblockNode, *termNode;
     86 	int     nWndNodes, nRodNodes, i;
     87 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     88 	RF_AccessStripeMapHeader_t *new_asm_h[2];
     89 	int     nodeNum, asmNum;
     90 	RF_ReconUnitNum_t which_ru;
     91 	char   *sosBuffer, *eosBuffer;
     92 	RF_PhysDiskAddr_t *pda;
     93 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
     94 
     95 	if (rf_dagDebug)
     96 		printf("[Creating parity-logging large-write DAG]\n");
     97 	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
     98 	dag_h->creator = "ParityLoggingLargeWriteDAG";
     99 
    100 	/* alloc the Wnd nodes, the xor node, and the Lpo node */
    101 	nWndNodes = asmap->numStripeUnitsAccessed;
    102 	RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    103 	i = 0;
    104 	wndNodes = &nodes[i];
    105 	i += nWndNodes;
    106 	xorNode = &nodes[i];
    107 	i += 1;
    108 	lpoNode = &nodes[i];
    109 	i += 1;
    110 	blockNode = &nodes[i];
    111 	i += 1;
    112 	syncNode = &nodes[i];
    113 	i += 1;
    114 	unblockNode = &nodes[i];
    115 	i += 1;
    116 	termNode = &nodes[i];
    117 	i += 1;
    118 
    119 	dag_h->numCommitNodes = nWndNodes + 1;
    120 	dag_h->numCommits = 0;
    121 	dag_h->numSuccedents = 1;
    122 
    123 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    124 	if (nRodNodes > 0)
    125 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    126 
    127 	/* begin node initialization */
    128 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
    129 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
    130 	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
    131 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    132 
    133 	/* initialize the Rod nodes */
    134 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    135 		if (new_asm_h[asmNum]) {
    136 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    137 			while (pda) {
    138 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
    139 				rodNodes[nodeNum].params[0].p = pda;
    140 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    141 				rodNodes[nodeNum].params[2].v = parityStripeID;
    142 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    143 				nodeNum++;
    144 				pda = pda->next;
    145 			}
    146 		}
    147 	}
    148 	RF_ASSERT(nodeNum == nRodNodes);
    149 
    150 	/* initialize the wnd nodes */
    151 	pda = asmap->physInfo;
    152 	for (i = 0; i < nWndNodes; i++) {
    153 		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    154 		RF_ASSERT(pda != NULL);
    155 		wndNodes[i].params[0].p = pda;
    156 		wndNodes[i].params[1].p = pda->bufPtr;
    157 		wndNodes[i].params[2].v = parityStripeID;
    158 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    159 		pda = pda->next;
    160 	}
    161 
    162 	/* initialize the redundancy node */
    163 	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
    164 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    165 	for (i = 0; i < nWndNodes; i++) {
    166 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    167 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    168 	}
    169 	for (i = 0; i < nRodNodes; i++) {
    170 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    171 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    172 	}
    173 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
    174 									 * at RAID information */
    175 
    176 	/* look for an Rod node that reads a complete SU.  If none, alloc a
    177 	 * buffer to receive the parity info. Note that we can't use a new
    178 	 * data buffer because it will not have gotten written when the xor
    179 	 * occurs. */
    180 	for (i = 0; i < nRodNodes; i++)
    181 		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    182 			break;
    183 	if (i == nRodNodes) {
    184 		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
    185 	} else {
    186 		xorNode->results[0] = rodNodes[i].params[1].p;
    187 	}
    188 
    189 	/* initialize the Lpo node */
    190 	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
    191 
    192 	lpoNode->params[0].p = asmap->parityInfo;
    193 	lpoNode->params[1].p = xorNode->results[0];
    194 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
    195 							 * describe entire
    196 							 * parity unit */
    197 
    198 	/* connect nodes to form graph */
    199 
    200 	/* connect dag header to block node */
    201 	RF_ASSERT(dag_h->numSuccedents == 1);
    202 	RF_ASSERT(blockNode->numAntecedents == 0);
    203 	dag_h->succedents[0] = blockNode;
    204 
    205 	/* connect the block node to the Rod nodes */
    206 	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
    207 	for (i = 0; i < nRodNodes; i++) {
    208 		RF_ASSERT(rodNodes[i].numAntecedents == 1);
    209 		blockNode->succedents[i] = &rodNodes[i];
    210 		rodNodes[i].antecedents[0] = blockNode;
    211 		rodNodes[i].antType[0] = rf_control;
    212 	}
    213 
    214 	/* connect the block node to the sync node */
    215 	/* necessary if nRodNodes == 0 */
    216 	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
    217 	blockNode->succedents[nRodNodes] = syncNode;
    218 	syncNode->antecedents[0] = blockNode;
    219 	syncNode->antType[0] = rf_control;
    220 
    221 	/* connect the Rod nodes to the syncNode */
    222 	for (i = 0; i < nRodNodes; i++) {
    223 		rodNodes[i].succedents[0] = syncNode;
    224 		syncNode->antecedents[1 + i] = &rodNodes[i];
    225 		syncNode->antType[1 + i] = rf_control;
    226 	}
    227 
    228 	/* connect the sync node to the xor node */
    229 	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
    230 	RF_ASSERT(xorNode->numAntecedents == 1);
    231 	syncNode->succedents[0] = xorNode;
    232 	xorNode->antecedents[0] = syncNode;
    233 	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
    234 
    235 	/* connect the sync node to the Wnd nodes */
    236 	for (i = 0; i < nWndNodes; i++) {
    237 		RF_ASSERT(wndNodes->numAntecedents == 1);
    238 		syncNode->succedents[1 + i] = &wndNodes[i];
    239 		wndNodes[i].antecedents[0] = syncNode;
    240 		wndNodes[i].antType[0] = rf_control;
    241 	}
    242 
    243 	/* connect the xor node to the Lpo node */
    244 	RF_ASSERT(xorNode->numSuccedents == 1);
    245 	RF_ASSERT(lpoNode->numAntecedents == 1);
    246 	xorNode->succedents[0] = lpoNode;
    247 	lpoNode->antecedents[0] = xorNode;
    248 	lpoNode->antType[0] = rf_trueData;
    249 
    250 	/* connect the Wnd nodes to the unblock node */
    251 	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
    252 	for (i = 0; i < nWndNodes; i++) {
    253 		RF_ASSERT(wndNodes->numSuccedents == 1);
    254 		wndNodes[i].succedents[0] = unblockNode;
    255 		unblockNode->antecedents[i] = &wndNodes[i];
    256 		unblockNode->antType[i] = rf_control;
    257 	}
    258 
    259 	/* connect the Lpo node to the unblock node */
    260 	RF_ASSERT(lpoNode->numSuccedents == 1);
    261 	lpoNode->succedents[0] = unblockNode;
    262 	unblockNode->antecedents[nWndNodes] = lpoNode;
    263 	unblockNode->antType[nWndNodes] = rf_control;
    264 
    265 	/* connect unblock node to terminator */
    266 	RF_ASSERT(unblockNode->numSuccedents == 1);
    267 	RF_ASSERT(termNode->numAntecedents == 1);
    268 	RF_ASSERT(termNode->numSuccedents == 0);
    269 	unblockNode->succedents[0] = termNode;
    270 	termNode->antecedents[0] = unblockNode;
    271 	termNode->antType[0] = rf_control;
    272 }
    273 
    274 
    275 
    276 
    277 /******************************************************************************
    278  *
    279  * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
    280  *
    281  *                                     Header
    282  *                                       |
    283  *                                     Block
    284  *                                 / |  ... \   \
    285  *                                /  |       \   \
    286  *                             Rod  Rod      Rod  Rop
    287  *                             | \ /| \    / |  \/ |
    288  *                             |    |        |  /\ |
    289  *                             Wnd  Wnd      Wnd   X
    290  *                              |    \       /     |
    291  *                              |     \     /      |
    292  *                               \     \   /      Lpo
    293  *                                \     \ /       /
    294  *                                 +-> Unblock <-+
    295  *                                       |
    296  *                                       T
    297  *
    298  *
    299  * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
    300  * When the access spans a stripe unit boundary and is less than one SU in size, there will
    301  * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
    302  * The second output from each Rod node goes to the X node.  In the double-XOR
    303  * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
    304  * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
    305  *
    306  * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
    307  *
    308  * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
    309  *        it also has the nasty property that none of the buffers allocated for reading
    310  *        old data & parity can be freed until the XOR node fires.  Need to fix this.
    311  *
    312  * A null qfuncs indicates single fault tolerant
    313  *****************************************************************************/
    314 
    315 void
    316 rf_CommonCreateParityLoggingSmallWriteDAG(
    317     RF_Raid_t * raidPtr,
    318     RF_AccessStripeMap_t * asmap,
    319     RF_DagHeader_t * dag_h,
    320     void *bp,
    321     RF_RaidAccessFlags_t flags,
    322     RF_AllocListElem_t * allocList,
    323     RF_RedFuncs_t * pfuncs,
    324     RF_RedFuncs_t * qfuncs)
    325 {
    326 	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
    327 	RF_DagNode_t *readDataNodes, *readParityNodes;
    328 	RF_DagNode_t *writeDataNodes, *lpuNodes;
    329 	RF_DagNode_t *unlockDataNodes = NULL, *termNode;
    330 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
    331 	int     numDataNodes = asmap->numStripeUnitsAccessed;
    332 	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    333 	int     i, j, nNodes, totalNumNodes;
    334 	RF_ReconUnitNum_t which_ru;
    335 	int     (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
    336 	int     (*qfunc) (RF_DagNode_t * node);
    337 	char   *name, *qname;
    338 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
    339 #ifdef RAID_DIAGNOSTIC
    340 	long    nfaults = qfuncs ? 2 : 1;
    341 #endif /* RAID_DIAGNOSTIC */
    342 	int     lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
    343 
    344 	if (rf_dagDebug)
    345 		printf("[Creating parity-logging small-write DAG]\n");
    346 	RF_ASSERT(numDataNodes > 0);
    347 	RF_ASSERT(nfaults == 1);
    348 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    349 
    350 	/* DAG creation occurs in three steps: 1. count the number of nodes in
    351 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
    352 	 * nodes */
    353 
    354 	/* Step 1. compute number of nodes in the graph */
    355 
    356 	/* number of nodes: a read and write for each data unit a redundancy
    357 	 * computation node for each parity node a read and Lpu for each
    358 	 * parity unit a block and unblock node (2) a terminator node if
    359 	 * atomic RMW an unlock node for each data unit, redundancy unit */
    360 	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
    361 	if (lu_flag)
    362 		totalNumNodes += numDataNodes;
    363 
    364 	nNodes = numDataNodes + numParityNodes;
    365 
    366 	dag_h->numCommitNodes = numDataNodes + numParityNodes;
    367 	dag_h->numCommits = 0;
    368 	dag_h->numSuccedents = 1;
    369 
    370 	/* Step 2. create the nodes */
    371 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    372 	i = 0;
    373 	blockNode = &nodes[i];
    374 	i += 1;
    375 	unblockNode = &nodes[i];
    376 	i += 1;
    377 	readDataNodes = &nodes[i];
    378 	i += numDataNodes;
    379 	readParityNodes = &nodes[i];
    380 	i += numParityNodes;
    381 	writeDataNodes = &nodes[i];
    382 	i += numDataNodes;
    383 	lpuNodes = &nodes[i];
    384 	i += numParityNodes;
    385 	xorNodes = &nodes[i];
    386 	i += numParityNodes;
    387 	termNode = &nodes[i];
    388 	i += 1;
    389 	if (lu_flag) {
    390 		unlockDataNodes = &nodes[i];
    391 		i += numDataNodes;
    392 	}
    393 	RF_ASSERT(i == totalNumNodes);
    394 
    395 	/* Step 3. initialize the nodes */
    396 	/* initialize block node (Nil) */
    397 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    398 
    399 	/* initialize unblock node (Nil) */
    400 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
    401 
    402 	/* initialize terminatory node (Trm) */
    403 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    404 
    405 	/* initialize nodes which read old data (Rod) */
    406 	for (i = 0; i < numDataNodes; i++) {
    407 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
    408 		RF_ASSERT(pda != NULL);
    409 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
    410 							 * desc */
    411 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
    412 												 * data */
    413 		readDataNodes[i].params[2].v = parityStripeID;
    414 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
    415 		pda = pda->next;
    416 		readDataNodes[i].propList[0] = NULL;
    417 		readDataNodes[i].propList[1] = NULL;
    418 	}
    419 
    420 	/* initialize nodes which read old parity (Rop) */
    421 	pda = asmap->parityInfo;
    422 	i = 0;
    423 	for (i = 0; i < numParityNodes; i++) {
    424 		RF_ASSERT(pda != NULL);
    425 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
    426 		readParityNodes[i].params[0].p = pda;
    427 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
    428 													 * parity */
    429 		readParityNodes[i].params[2].v = parityStripeID;
    430 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    431 		readParityNodes[i].propList[0] = NULL;
    432 		pda = pda->next;
    433 	}
    434 
    435 	/* initialize nodes which write new data (Wnd) */
    436 	pda = asmap->physInfo;
    437 	for (i = 0; i < numDataNodes; i++) {
    438 		RF_ASSERT(pda != NULL);
    439 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
    440 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
    441 							 * desc */
    442 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
    443 								 * data to be written */
    444 		writeDataNodes[i].params[2].v = parityStripeID;
    445 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    446 
    447 		if (lu_flag) {
    448 			/* initialize node to unlock the disk queue */
    449 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
    450 			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
    451 								 * desc */
    452 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
    453 		}
    454 		pda = pda->next;
    455 	}
    456 
    457 
    458 	/* initialize nodes which compute new parity */
    459 	/* we use the simple XOR func in the double-XOR case, and when we're
    460 	 * accessing only a portion of one stripe unit. the distinction
    461 	 * between the two is that the regular XOR func assumes that the
    462 	 * targbuf is a full SU in size, and examines the pda associated with
    463 	 * the buffer to decide where within the buffer to XOR the data,
    464 	 * whereas the simple XOR func just XORs the data into the start of
    465 	 * the buffer. */
    466 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    467 		func = pfuncs->simple;
    468 		undoFunc = rf_NullNodeUndoFunc;
    469 		name = pfuncs->SimpleName;
    470 		if (qfuncs) {
    471 			qfunc = qfuncs->simple;
    472 			qname = qfuncs->SimpleName;
    473 		}
    474 	} else {
    475 		func = pfuncs->regular;
    476 		undoFunc = rf_NullNodeUndoFunc;
    477 		name = pfuncs->RegularName;
    478 		if (qfuncs) {
    479 			qfunc = qfuncs->regular;
    480 			qname = qfuncs->RegularName;
    481 		}
    482 	}
    483 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
    484 	 * nodes, and raidPtr  */
    485 	if (numParityNodes == 2) {	/* double-xor case */
    486 		for (i = 0; i < numParityNodes; i++) {
    487 			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
    488 																	 * xor */
    489 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    490 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    491 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    492 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    493 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    494 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    495 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    496 			xorNodes[i].params[6].p = raidPtr;
    497 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
    498 											 * target buf */
    499 		}
    500 	} else {
    501 		/* there is only one xor node in this case */
    502 		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    503 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    504 		for (i = 0; i < numDataNodes + 1; i++) {
    505 			/* set up params related to Rod and Rop nodes */
    506 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    507 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
    508 		}
    509 		for (i = 0; i < numDataNodes; i++) {
    510 			/* set up params related to Wnd and Wnp nodes */
    511 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
    512 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
    513 		}
    514 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
    515 											 * at RAID information */
    516 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    517 	}
    518 
    519 	/* initialize the log node(s) */
    520 	pda = asmap->parityInfo;
    521 	for (i = 0; i < numParityNodes; i++) {
    522 		RF_ASSERT(pda);
    523 		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
    524 		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
    525 		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
    526 									 * parity */
    527 		pda = pda->next;
    528 	}
    529 
    530 
    531 	/* Step 4. connect the nodes */
    532 
    533 	/* connect header to block node */
    534 	RF_ASSERT(dag_h->numSuccedents == 1);
    535 	RF_ASSERT(blockNode->numAntecedents == 0);
    536 	dag_h->succedents[0] = blockNode;
    537 
    538 	/* connect block node to read old data nodes */
    539 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
    540 	for (i = 0; i < numDataNodes; i++) {
    541 		blockNode->succedents[i] = &readDataNodes[i];
    542 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    543 		readDataNodes[i].antecedents[0] = blockNode;
    544 		readDataNodes[i].antType[0] = rf_control;
    545 	}
    546 
    547 	/* connect block node to read old parity nodes */
    548 	for (i = 0; i < numParityNodes; i++) {
    549 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    550 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    551 		readParityNodes[i].antecedents[0] = blockNode;
    552 		readParityNodes[i].antType[0] = rf_control;
    553 	}
    554 
    555 	/* connect read old data nodes to write new data nodes */
    556 	for (i = 0; i < numDataNodes; i++) {
    557 		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
    558 		for (j = 0; j < numDataNodes; j++) {
    559 			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
    560 			readDataNodes[i].succedents[j] = &writeDataNodes[j];
    561 			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
    562 			if (i == j)
    563 				writeDataNodes[j].antType[i] = rf_antiData;
    564 			else
    565 				writeDataNodes[j].antType[i] = rf_control;
    566 		}
    567 	}
    568 
    569 	/* connect read old data nodes to xor nodes */
    570 	for (i = 0; i < numDataNodes; i++)
    571 		for (j = 0; j < numParityNodes; j++) {
    572 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    573 			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
    574 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    575 			xorNodes[j].antType[i] = rf_trueData;
    576 		}
    577 
    578 	/* connect read old parity nodes to write new data nodes */
    579 	for (i = 0; i < numParityNodes; i++) {
    580 		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
    581 		for (j = 0; j < numDataNodes; j++) {
    582 			readParityNodes[i].succedents[j] = &writeDataNodes[j];
    583 			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    584 			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
    585 		}
    586 	}
    587 
    588 	/* connect read old parity nodes to xor nodes */
    589 	for (i = 0; i < numParityNodes; i++)
    590 		for (j = 0; j < numParityNodes; j++) {
    591 			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
    592 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    593 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    594 		}
    595 
    596 	/* connect xor nodes to write new parity nodes */
    597 	for (i = 0; i < numParityNodes; i++) {
    598 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    599 		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
    600 		xorNodes[i].succedents[0] = &lpuNodes[i];
    601 		lpuNodes[i].antecedents[0] = &xorNodes[i];
    602 		lpuNodes[i].antType[0] = rf_trueData;
    603 	}
    604 
    605 	for (i = 0; i < numDataNodes; i++) {
    606 		if (lu_flag) {
    607 			/* connect write new data nodes to unlock nodes */
    608 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    609 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
    610 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
    611 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
    612 			unlockDataNodes[i].antType[0] = rf_control;
    613 
    614 			/* connect unlock nodes to unblock node */
    615 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
    616 			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    617 			unlockDataNodes[i].succedents[0] = unblockNode;
    618 			unblockNode->antecedents[i] = &unlockDataNodes[i];
    619 			unblockNode->antType[i] = rf_control;
    620 		} else {
    621 			/* connect write new data nodes to unblock node */
    622 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    623 			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    624 			writeDataNodes[i].succedents[0] = unblockNode;
    625 			unblockNode->antecedents[i] = &writeDataNodes[i];
    626 			unblockNode->antType[i] = rf_control;
    627 		}
    628 	}
    629 
    630 	/* connect write new parity nodes to unblock node */
    631 	for (i = 0; i < numParityNodes; i++) {
    632 		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
    633 		lpuNodes[i].succedents[0] = unblockNode;
    634 		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
    635 		unblockNode->antType[numDataNodes + i] = rf_control;
    636 	}
    637 
    638 	/* connect unblock node to terminator */
    639 	RF_ASSERT(unblockNode->numSuccedents == 1);
    640 	RF_ASSERT(termNode->numAntecedents == 1);
    641 	RF_ASSERT(termNode->numSuccedents == 0);
    642 	unblockNode->succedents[0] = termNode;
    643 	termNode->antecedents[0] = unblockNode;
    644 	termNode->antType[0] = rf_control;
    645 }
    646 
    647 
    648 void
    649 rf_CreateParityLoggingSmallWriteDAG(
    650     RF_Raid_t * raidPtr,
    651     RF_AccessStripeMap_t * asmap,
    652     RF_DagHeader_t * dag_h,
    653     void *bp,
    654     RF_RaidAccessFlags_t flags,
    655     RF_AllocListElem_t * allocList,
    656     RF_RedFuncs_t * pfuncs,
    657     RF_RedFuncs_t * qfuncs)
    658 {
    659 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    660 	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
    661 }
    662 
    663 
    664 void
    665 rf_CreateParityLoggingLargeWriteDAG(
    666     RF_Raid_t * raidPtr,
    667     RF_AccessStripeMap_t * asmap,
    668     RF_DagHeader_t * dag_h,
    669     void *bp,
    670     RF_RaidAccessFlags_t flags,
    671     RF_AllocListElem_t * allocList,
    672     int nfaults,
    673     int (*redFunc) (RF_DagNode_t *))
    674 {
    675 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    676 	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
    677 }
    678 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    679