rf_paritymap.c revision 1.4.2.3 1 1.4.2.3 yamt /* $NetBSD: rf_paritymap.c,v 1.4.2.3 2010/08/11 22:54:08 yamt Exp $ */
2 1.4.2.2 yamt
3 1.4.2.2 yamt /*-
4 1.4.2.2 yamt * Copyright (c) 2009 Jed Davis.
5 1.4.2.2 yamt * All rights reserved.
6 1.4.2.2 yamt *
7 1.4.2.2 yamt * Redistribution and use in source and binary forms, with or without
8 1.4.2.2 yamt * modification, are permitted provided that the following conditions
9 1.4.2.2 yamt * are met:
10 1.4.2.2 yamt * 1. Redistributions of source code must retain the above copyright
11 1.4.2.2 yamt * notice, this list of conditions and the following disclaimer.
12 1.4.2.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.4.2.2 yamt * notice, this list of conditions and the following disclaimer in the
14 1.4.2.2 yamt * documentation and/or other materials provided with the distribution.
15 1.4.2.2 yamt *
16 1.4.2.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.4.2.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.4.2.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.4.2.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.4.2.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.4.2.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.4.2.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.4.2.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.4.2.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.4.2.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.4.2.2 yamt * POSSIBILITY OF SUCH DAMAGE.
27 1.4.2.2 yamt */
28 1.4.2.2 yamt
29 1.4.2.2 yamt #include <sys/cdefs.h>
30 1.4.2.3 yamt __KERNEL_RCSID(0, "$NetBSD: rf_paritymap.c,v 1.4.2.3 2010/08/11 22:54:08 yamt Exp $");
31 1.4.2.2 yamt
32 1.4.2.2 yamt #include <sys/param.h>
33 1.4.2.2 yamt #include <sys/callout.h>
34 1.4.2.2 yamt #include <sys/kmem.h>
35 1.4.2.2 yamt #include <sys/mutex.h>
36 1.4.2.2 yamt #include <sys/rwlock.h>
37 1.4.2.2 yamt #include <sys/systm.h>
38 1.4.2.2 yamt #include <sys/types.h>
39 1.4.2.2 yamt
40 1.4.2.2 yamt #include <dev/raidframe/rf_paritymap.h>
41 1.4.2.2 yamt #include <dev/raidframe/rf_stripelocks.h>
42 1.4.2.2 yamt #include <dev/raidframe/rf_layout.h>
43 1.4.2.2 yamt #include <dev/raidframe/rf_raid.h>
44 1.4.2.2 yamt #include <dev/raidframe/rf_parityscan.h>
45 1.4.2.2 yamt #include <dev/raidframe/rf_kintf.h>
46 1.4.2.2 yamt
47 1.4.2.2 yamt /* Important parameters: */
48 1.4.2.2 yamt #define REGION_MINSIZE (25ULL << 20)
49 1.4.2.2 yamt #define DFL_TICKMS 40000
50 1.4.2.2 yamt #define DFL_COOLDOWN 8 /* 7-8 intervals of 40s = 5min +/- 20s */
51 1.4.2.2 yamt
52 1.4.2.2 yamt /* Internal-use flag bits. */
53 1.4.2.2 yamt #define TICKING 1
54 1.4.2.2 yamt #define TICKED 2
55 1.4.2.2 yamt
56 1.4.2.2 yamt /* Prototypes! */
57 1.4.2.2 yamt static void rf_paritymap_write_locked(struct rf_paritymap *);
58 1.4.2.2 yamt static void rf_paritymap_tick(void *);
59 1.4.2.2 yamt static u_int rf_paritymap_nreg(RF_Raid_t *);
60 1.4.2.2 yamt
61 1.4.2.2 yamt /* Extract the current status of the parity map. */
62 1.4.2.2 yamt void
63 1.4.2.2 yamt rf_paritymap_status(struct rf_paritymap *pm, struct rf_pmstat *ps)
64 1.4.2.2 yamt {
65 1.4.2.2 yamt memset(ps, 0, sizeof(*ps));
66 1.4.2.2 yamt if (pm == NULL)
67 1.4.2.2 yamt ps->enabled = 0;
68 1.4.2.2 yamt else {
69 1.4.2.2 yamt ps->enabled = 1;
70 1.4.2.2 yamt ps->region_size = pm->region_size;
71 1.4.2.2 yamt mutex_enter(&pm->lock);
72 1.4.2.2 yamt memcpy(&ps->params, &pm->params, sizeof(ps->params));
73 1.4.2.2 yamt memcpy(ps->dirty, pm->disk_now, sizeof(ps->dirty));
74 1.4.2.2 yamt memcpy(&ps->ctrs, &pm->ctrs, sizeof(ps->ctrs));
75 1.4.2.2 yamt mutex_exit(&pm->lock);
76 1.4.2.2 yamt }
77 1.4.2.2 yamt }
78 1.4.2.2 yamt
79 1.4.2.2 yamt /*
80 1.4.2.2 yamt * Test whether parity in a given sector is suspected of being inconsistent
81 1.4.2.2 yamt * on disk (assuming that any pending I/O to it is allowed to complete).
82 1.4.2.2 yamt * This may be of interest to future work on parity scrubbing.
83 1.4.2.2 yamt */
84 1.4.2.2 yamt int
85 1.4.2.2 yamt rf_paritymap_test(struct rf_paritymap *pm, daddr_t sector)
86 1.4.2.2 yamt {
87 1.4.2.2 yamt unsigned region = sector / pm->region_size;
88 1.4.2.2 yamt int retval;
89 1.4.2.2 yamt
90 1.4.2.2 yamt mutex_enter(&pm->lock);
91 1.4.2.2 yamt retval = isset(pm->disk_boot->bits, region) ? 1 : 0;
92 1.4.2.2 yamt mutex_exit(&pm->lock);
93 1.4.2.2 yamt return retval;
94 1.4.2.2 yamt }
95 1.4.2.2 yamt
96 1.4.2.2 yamt /* To be called before a write to the RAID is submitted. */
97 1.4.2.2 yamt void
98 1.4.2.2 yamt rf_paritymap_begin(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
99 1.4.2.2 yamt {
100 1.4.2.2 yamt unsigned i, b, e;
101 1.4.2.2 yamt
102 1.4.2.2 yamt b = offset / pm->region_size;
103 1.4.2.2 yamt e = (offset + size - 1) / pm->region_size;
104 1.4.2.2 yamt
105 1.4.2.2 yamt for (i = b; i <= e; i++)
106 1.4.2.2 yamt rf_paritymap_begin_region(pm, i);
107 1.4.2.2 yamt }
108 1.4.2.2 yamt
109 1.4.2.2 yamt /* To be called after a write to the RAID completes. */
110 1.4.2.2 yamt void
111 1.4.2.2 yamt rf_paritymap_end(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
112 1.4.2.2 yamt {
113 1.4.2.2 yamt unsigned i, b, e;
114 1.4.2.2 yamt
115 1.4.2.2 yamt b = offset / pm->region_size;
116 1.4.2.2 yamt e = (offset + size - 1) / pm->region_size;
117 1.4.2.2 yamt
118 1.4.2.2 yamt for (i = b; i <= e; i++)
119 1.4.2.2 yamt rf_paritymap_end_region(pm, i);
120 1.4.2.2 yamt }
121 1.4.2.2 yamt
122 1.4.2.2 yamt void
123 1.4.2.2 yamt rf_paritymap_begin_region(struct rf_paritymap *pm, unsigned region)
124 1.4.2.2 yamt {
125 1.4.2.2 yamt int needs_write;
126 1.4.2.2 yamt
127 1.4.2.2 yamt KASSERT(region < RF_PARITYMAP_NREG);
128 1.4.2.2 yamt pm->ctrs.nwrite++;
129 1.4.2.2 yamt
130 1.4.2.2 yamt /* If it was being kept warm, deal with that. */
131 1.4.2.2 yamt mutex_enter(&pm->lock);
132 1.4.2.2 yamt if (pm->current->state[region] < 0)
133 1.4.2.2 yamt pm->current->state[region] = 0;
134 1.4.2.2 yamt
135 1.4.2.2 yamt /* This shouldn't happen unless RAIDOUTSTANDING is set too high. */
136 1.4.2.2 yamt KASSERT(pm->current->state[region] < 127);
137 1.4.2.2 yamt pm->current->state[region]++;
138 1.4.2.2 yamt
139 1.4.2.2 yamt needs_write = isclr(pm->disk_now->bits, region);
140 1.4.2.2 yamt
141 1.4.2.2 yamt if (needs_write) {
142 1.4.2.2 yamt KASSERT(pm->current->state[region] == 1);
143 1.4.2.2 yamt rf_paritymap_write_locked(pm);
144 1.4.2.2 yamt }
145 1.4.2.2 yamt
146 1.4.2.2 yamt mutex_exit(&pm->lock);
147 1.4.2.2 yamt }
148 1.4.2.2 yamt
149 1.4.2.2 yamt void
150 1.4.2.2 yamt rf_paritymap_end_region(struct rf_paritymap *pm, unsigned region)
151 1.4.2.2 yamt {
152 1.4.2.2 yamt KASSERT(region < RF_PARITYMAP_NREG);
153 1.4.2.2 yamt
154 1.4.2.2 yamt mutex_enter(&pm->lock);
155 1.4.2.2 yamt KASSERT(pm->current->state[region] > 0);
156 1.4.2.2 yamt --pm->current->state[region];
157 1.4.2.2 yamt
158 1.4.2.2 yamt if (pm->current->state[region] <= 0) {
159 1.4.2.2 yamt pm->current->state[region] = -pm->params.cooldown;
160 1.4.2.2 yamt KASSERT(pm->current->state[region] <= 0);
161 1.4.2.2 yamt mutex_enter(&pm->lk_flags);
162 1.4.2.2 yamt if (!(pm->flags & TICKING)) {
163 1.4.2.2 yamt pm->flags |= TICKING;
164 1.4.2.2 yamt mutex_exit(&pm->lk_flags);
165 1.4.2.2 yamt callout_schedule(&pm->ticker,
166 1.4.2.2 yamt mstohz(pm->params.tickms));
167 1.4.2.2 yamt } else
168 1.4.2.2 yamt mutex_exit(&pm->lk_flags);
169 1.4.2.2 yamt }
170 1.4.2.2 yamt mutex_exit(&pm->lock);
171 1.4.2.2 yamt }
172 1.4.2.2 yamt
173 1.4.2.2 yamt /*
174 1.4.2.2 yamt * Updates the parity map to account for any changes in current activity
175 1.4.2.2 yamt * and/or an ongoing parity scan, then writes it to disk with appropriate
176 1.4.2.2 yamt * synchronization.
177 1.4.2.2 yamt */
178 1.4.2.2 yamt void
179 1.4.2.2 yamt rf_paritymap_write(struct rf_paritymap *pm)
180 1.4.2.2 yamt {
181 1.4.2.2 yamt mutex_enter(&pm->lock);
182 1.4.2.2 yamt rf_paritymap_write_locked(pm);
183 1.4.2.2 yamt mutex_exit(&pm->lock);
184 1.4.2.2 yamt }
185 1.4.2.2 yamt
186 1.4.2.2 yamt /* As above, but to be used when pm->lock is already held. */
187 1.4.2.2 yamt static void
188 1.4.2.2 yamt rf_paritymap_write_locked(struct rf_paritymap *pm)
189 1.4.2.2 yamt {
190 1.4.2.2 yamt char w, w0;
191 1.4.2.2 yamt int i, j, setting, clearing;
192 1.4.2.2 yamt
193 1.4.2.2 yamt setting = clearing = 0;
194 1.4.2.2 yamt for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
195 1.4.2.2 yamt w0 = pm->disk_now->bits[i];
196 1.4.2.2 yamt w = pm->disk_boot->bits[i];
197 1.4.2.2 yamt
198 1.4.2.2 yamt for (j = 0; j < NBBY; j++)
199 1.4.2.2 yamt if (pm->current->state[i * NBBY + j] != 0)
200 1.4.2.2 yamt w |= 1 << j;
201 1.4.2.2 yamt
202 1.4.2.2 yamt if (w & ~w0)
203 1.4.2.2 yamt setting = 1;
204 1.4.2.2 yamt if (w0 & ~w)
205 1.4.2.2 yamt clearing = 1;
206 1.4.2.2 yamt
207 1.4.2.2 yamt pm->disk_now->bits[i] = w;
208 1.4.2.2 yamt }
209 1.4.2.2 yamt pm->ctrs.ncachesync += setting + clearing;
210 1.4.2.2 yamt pm->ctrs.nclearing += clearing;
211 1.4.2.2 yamt
212 1.4.2.2 yamt /*
213 1.4.2.2 yamt * If bits are being set in the parity map, then a sync is
214 1.4.2.2 yamt * required afterwards, so that the regions are marked dirty
215 1.4.2.2 yamt * on disk before any writes to them take place. If bits are
216 1.4.2.2 yamt * being cleared, then a sync is required before the write, so
217 1.4.2.2 yamt * that any writes to those regions are processed before the
218 1.4.2.2 yamt * region is marked clean. (Synchronization is somewhat
219 1.4.2.2 yamt * overkill; a write ordering barrier would suffice, but we
220 1.4.2.2 yamt * currently have no way to express that directly.)
221 1.4.2.2 yamt */
222 1.4.2.2 yamt if (clearing)
223 1.4.2.2 yamt rf_sync_component_caches(pm->raid);
224 1.4.2.2 yamt rf_paritymap_kern_write(pm->raid, pm->disk_now);
225 1.4.2.2 yamt if (setting)
226 1.4.2.2 yamt rf_sync_component_caches(pm->raid);
227 1.4.2.2 yamt }
228 1.4.2.2 yamt
229 1.4.2.2 yamt /* Mark all parity as being in need of rewrite. */
230 1.4.2.2 yamt void
231 1.4.2.2 yamt rf_paritymap_invalidate(struct rf_paritymap *pm)
232 1.4.2.2 yamt {
233 1.4.2.2 yamt mutex_enter(&pm->lock);
234 1.4.2.2 yamt memset(pm->disk_boot, ~(unsigned char)0,
235 1.4.2.2 yamt sizeof(struct rf_paritymap_ondisk));
236 1.4.2.2 yamt mutex_exit(&pm->lock);
237 1.4.2.2 yamt }
238 1.4.2.2 yamt
239 1.4.2.2 yamt /* Mark all parity as being correct. */
240 1.4.2.2 yamt void
241 1.4.2.2 yamt rf_paritymap_forceclean(struct rf_paritymap *pm)
242 1.4.2.2 yamt {
243 1.4.2.2 yamt mutex_enter(&pm->lock);
244 1.4.2.2 yamt memset(pm->disk_boot, (unsigned char)0,
245 1.4.2.2 yamt sizeof(struct rf_paritymap_ondisk));
246 1.4.2.2 yamt mutex_exit(&pm->lock);
247 1.4.2.2 yamt }
248 1.4.2.2 yamt
249 1.4.2.2 yamt /*
250 1.4.2.2 yamt * The cooldown callout routine just defers its work to a thread; it can't do
251 1.4.2.2 yamt * the parity map write itself as it would block, and although mutex-induced
252 1.4.2.2 yamt * blocking is permitted it seems wise to avoid tying up the softint.
253 1.4.2.2 yamt */
254 1.4.2.2 yamt static void
255 1.4.2.2 yamt rf_paritymap_tick(void *arg)
256 1.4.2.2 yamt {
257 1.4.2.2 yamt struct rf_paritymap *pm = arg;
258 1.4.2.2 yamt
259 1.4.2.2 yamt mutex_enter(&pm->lk_flags);
260 1.4.2.2 yamt pm->flags |= TICKED;
261 1.4.2.2 yamt mutex_exit(&pm->lk_flags);
262 1.4.2.2 yamt wakeup(&(pm->raid->iodone)); /* XXX */
263 1.4.2.2 yamt }
264 1.4.2.2 yamt
265 1.4.2.2 yamt /*
266 1.4.2.2 yamt * This is where the parity cooling work (and rearming the callout if needed)
267 1.4.2.2 yamt * is done; the raidio thread calls it when woken up, as by the above.
268 1.4.2.2 yamt */
269 1.4.2.2 yamt void
270 1.4.2.2 yamt rf_paritymap_checkwork(struct rf_paritymap *pm)
271 1.4.2.2 yamt {
272 1.4.2.2 yamt int i, zerop, progressp;
273 1.4.2.2 yamt
274 1.4.2.2 yamt mutex_enter(&pm->lk_flags);
275 1.4.2.2 yamt if (pm->flags & TICKED) {
276 1.4.2.2 yamt zerop = progressp = 0;
277 1.4.2.2 yamt
278 1.4.2.2 yamt pm->flags &= ~TICKED;
279 1.4.2.2 yamt mutex_exit(&pm->lk_flags);
280 1.4.2.2 yamt
281 1.4.2.2 yamt mutex_enter(&pm->lock);
282 1.4.2.2 yamt for (i = 0; i < RF_PARITYMAP_NREG; i++) {
283 1.4.2.2 yamt if (pm->current->state[i] < 0) {
284 1.4.2.2 yamt progressp = 1;
285 1.4.2.2 yamt pm->current->state[i]++;
286 1.4.2.2 yamt if (pm->current->state[i] == 0)
287 1.4.2.2 yamt zerop = 1;
288 1.4.2.2 yamt }
289 1.4.2.2 yamt }
290 1.4.2.2 yamt
291 1.4.2.2 yamt if (progressp)
292 1.4.2.2 yamt callout_schedule(&pm->ticker,
293 1.4.2.2 yamt mstohz(pm->params.tickms));
294 1.4.2.2 yamt else {
295 1.4.2.2 yamt mutex_enter(&pm->lk_flags);
296 1.4.2.2 yamt pm->flags &= ~TICKING;
297 1.4.2.2 yamt mutex_exit(&pm->lk_flags);
298 1.4.2.2 yamt }
299 1.4.2.2 yamt
300 1.4.2.2 yamt if (zerop)
301 1.4.2.2 yamt rf_paritymap_write_locked(pm);
302 1.4.2.2 yamt mutex_exit(&pm->lock);
303 1.4.2.2 yamt } else
304 1.4.2.2 yamt mutex_exit(&pm->lk_flags);
305 1.4.2.2 yamt }
306 1.4.2.2 yamt
307 1.4.2.2 yamt /*
308 1.4.2.2 yamt * Set parity map parameters; used both to alter parameters on the fly and to
309 1.4.2.2 yamt * establish their initial values. Note that setting a parameter to 0 means
310 1.4.2.2 yamt * to leave the previous setting unchanged, and that if this is done for the
311 1.4.2.2 yamt * initial setting of "regions", then a default value will be computed based
312 1.4.2.2 yamt * on the RAID component size.
313 1.4.2.2 yamt */
314 1.4.2.2 yamt int
315 1.4.2.2 yamt rf_paritymap_set_params(struct rf_paritymap *pm,
316 1.4.2.2 yamt const struct rf_pmparams *params, int todisk)
317 1.4.2.2 yamt {
318 1.4.2.2 yamt int cooldown, tickms;
319 1.4.2.2 yamt u_int regions;
320 1.4.2.2 yamt RF_RowCol_t col;
321 1.4.2.2 yamt RF_ComponentLabel_t *clabel;
322 1.4.2.2 yamt RF_Raid_t *raidPtr;
323 1.4.2.2 yamt
324 1.4.2.2 yamt cooldown = params->cooldown != 0
325 1.4.2.2 yamt ? params->cooldown : pm->params.cooldown;
326 1.4.2.2 yamt tickms = params->tickms != 0
327 1.4.2.2 yamt ? params->tickms : pm->params.tickms;
328 1.4.2.2 yamt regions = params->regions != 0
329 1.4.2.2 yamt ? params->regions : pm->params.regions;
330 1.4.2.2 yamt
331 1.4.2.2 yamt if (cooldown < 1 || cooldown > 128) {
332 1.4.2.2 yamt printf("raid%d: cooldown %d out of range\n", pm->raid->raidid,
333 1.4.2.2 yamt cooldown);
334 1.4.2.2 yamt return (-1);
335 1.4.2.2 yamt }
336 1.4.2.2 yamt if (tickms < 10) {
337 1.4.2.2 yamt printf("raid%d: tick time %dms out of range\n",
338 1.4.2.2 yamt pm->raid->raidid, tickms);
339 1.4.2.2 yamt return (-1);
340 1.4.2.2 yamt }
341 1.4.2.2 yamt if (regions == 0) {
342 1.4.2.2 yamt regions = rf_paritymap_nreg(pm->raid);
343 1.4.2.2 yamt } else if (regions > RF_PARITYMAP_NREG) {
344 1.4.2.2 yamt printf("raid%d: region count %u too large (more than %u)\n",
345 1.4.2.2 yamt pm->raid->raidid, regions, RF_PARITYMAP_NREG);
346 1.4.2.2 yamt return (-1);
347 1.4.2.2 yamt }
348 1.4.2.2 yamt
349 1.4.2.2 yamt /* XXX any currently warm parity will be used with the new tickms! */
350 1.4.2.2 yamt pm->params.cooldown = cooldown;
351 1.4.2.2 yamt pm->params.tickms = tickms;
352 1.4.2.2 yamt /* Apply the initial region count, but do not change it after that. */
353 1.4.2.2 yamt if (pm->params.regions == 0)
354 1.4.2.2 yamt pm->params.regions = regions;
355 1.4.2.2 yamt
356 1.4.2.2 yamt /* So that the newly set parameters can be tested: */
357 1.4.2.2 yamt pm->ctrs.nwrite = pm->ctrs.ncachesync = pm->ctrs.nclearing = 0;
358 1.4.2.2 yamt
359 1.4.2.2 yamt if (todisk) {
360 1.4.2.2 yamt raidPtr = pm->raid;
361 1.4.2.2 yamt for (col = 0; col < raidPtr->numCol; col++) {
362 1.4.2.2 yamt if (RF_DEAD_DISK(raidPtr->Disks[col].status))
363 1.4.2.2 yamt continue;
364 1.4.2.2 yamt
365 1.4.2.2 yamt clabel = raidget_component_label(raidPtr, col);
366 1.4.2.2 yamt clabel->parity_map_ntick = cooldown;
367 1.4.2.2 yamt clabel->parity_map_tickms = tickms;
368 1.4.2.2 yamt clabel->parity_map_regions = regions;
369 1.4.2.2 yamt
370 1.4.2.2 yamt /* Don't touch the disk if it's been spared */
371 1.4.2.2 yamt if (clabel->status == rf_ds_spared)
372 1.4.2.2 yamt continue;
373 1.4.2.2 yamt
374 1.4.2.2 yamt raidflush_component_label(raidPtr, col);
375 1.4.2.2 yamt }
376 1.4.2.2 yamt
377 1.4.2.2 yamt /* handle the spares too... */
378 1.4.2.2 yamt for (col = 0; col < raidPtr->numSpare; col++) {
379 1.4.2.2 yamt if (raidPtr->Disks[raidPtr->numCol+col].status == rf_ds_used_spare) {
380 1.4.2.2 yamt clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
381 1.4.2.2 yamt clabel->parity_map_ntick = cooldown;
382 1.4.2.2 yamt clabel->parity_map_tickms = tickms;
383 1.4.2.2 yamt clabel->parity_map_regions = regions;
384 1.4.2.2 yamt raidflush_component_label(raidPtr, raidPtr->numCol+col);
385 1.4.2.2 yamt }
386 1.4.2.2 yamt }
387 1.4.2.2 yamt }
388 1.4.2.2 yamt return 0;
389 1.4.2.2 yamt }
390 1.4.2.2 yamt
391 1.4.2.2 yamt /*
392 1.4.2.2 yamt * The number of regions may not be as many as can fit into the map, because
393 1.4.2.2 yamt * when regions are too small, the overhead of setting parity map bits
394 1.4.2.2 yamt * becomes significant in comparison to the actual I/O, while the
395 1.4.2.2 yamt * corresponding gains in parity verification time become negligible. Thus,
396 1.4.2.2 yamt * a minimum region size (defined above) is imposed.
397 1.4.2.2 yamt *
398 1.4.2.2 yamt * Note that, if the number of regions is less than the maximum, then some of
399 1.4.2.2 yamt * the regions will be "fictional", corresponding to no actual disk; some
400 1.4.2.2 yamt * parts of the code may process them as normal, but they can not ever be
401 1.4.2.2 yamt * written to.
402 1.4.2.2 yamt */
403 1.4.2.2 yamt static u_int
404 1.4.2.2 yamt rf_paritymap_nreg(RF_Raid_t *raid)
405 1.4.2.2 yamt {
406 1.4.2.2 yamt daddr_t bytes_per_disk, nreg;
407 1.4.2.2 yamt
408 1.4.2.2 yamt bytes_per_disk = raid->sectorsPerDisk << raid->logBytesPerSector;
409 1.4.2.2 yamt nreg = bytes_per_disk / REGION_MINSIZE;
410 1.4.2.2 yamt if (nreg > RF_PARITYMAP_NREG)
411 1.4.2.2 yamt nreg = RF_PARITYMAP_NREG;
412 1.4.2.2 yamt
413 1.4.2.2 yamt return (u_int)nreg;
414 1.4.2.2 yamt }
415 1.4.2.2 yamt
416 1.4.2.2 yamt /*
417 1.4.2.2 yamt * Initialize a parity map given specific parameters. This neither reads nor
418 1.4.2.2 yamt * writes the parity map config in the component labels; for that, see below.
419 1.4.2.2 yamt */
420 1.4.2.2 yamt int
421 1.4.2.2 yamt rf_paritymap_init(struct rf_paritymap *pm, RF_Raid_t *raid,
422 1.4.2.2 yamt const struct rf_pmparams *params)
423 1.4.2.2 yamt {
424 1.4.2.2 yamt daddr_t rstripes;
425 1.4.2.2 yamt struct rf_pmparams safe;
426 1.4.2.2 yamt
427 1.4.2.2 yamt pm->raid = raid;
428 1.4.2.2 yamt pm->params.regions = 0;
429 1.4.2.2 yamt if (0 != rf_paritymap_set_params(pm, params, 0)) {
430 1.4.2.2 yamt /*
431 1.4.2.2 yamt * If the parameters are out-of-range, then bring the
432 1.4.2.2 yamt * parity map up with something reasonable, so that
433 1.4.2.2 yamt * the admin can at least go and fix it (or ignore it
434 1.4.2.2 yamt * entirely).
435 1.4.2.2 yamt */
436 1.4.2.2 yamt safe.cooldown = DFL_COOLDOWN;
437 1.4.2.2 yamt safe.tickms = DFL_TICKMS;
438 1.4.2.2 yamt safe.regions = 0;
439 1.4.2.2 yamt
440 1.4.2.2 yamt if (0 != rf_paritymap_set_params(pm, &safe, 0))
441 1.4.2.2 yamt return (-1);
442 1.4.2.2 yamt }
443 1.4.2.2 yamt
444 1.4.2.2 yamt rstripes = howmany(raid->Layout.numStripe, pm->params.regions);
445 1.4.2.2 yamt pm->region_size = rstripes * raid->Layout.dataSectorsPerStripe;
446 1.4.2.2 yamt
447 1.4.2.2 yamt callout_init(&pm->ticker, CALLOUT_MPSAFE);
448 1.4.2.2 yamt callout_setfunc(&pm->ticker, rf_paritymap_tick, pm);
449 1.4.2.2 yamt pm->flags = 0;
450 1.4.2.2 yamt
451 1.4.2.2 yamt pm->disk_boot = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
452 1.4.2.2 yamt KM_SLEEP);
453 1.4.2.2 yamt pm->disk_now = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
454 1.4.2.2 yamt KM_SLEEP);
455 1.4.2.2 yamt pm->current = kmem_zalloc(sizeof(struct rf_paritymap_current),
456 1.4.2.2 yamt KM_SLEEP);
457 1.4.2.2 yamt
458 1.4.2.2 yamt rf_paritymap_kern_read(pm->raid, pm->disk_boot);
459 1.4.2.2 yamt memcpy(pm->disk_now, pm->disk_boot, sizeof(*pm->disk_now));
460 1.4.2.2 yamt
461 1.4.2.2 yamt mutex_init(&pm->lock, MUTEX_DEFAULT, IPL_NONE);
462 1.4.2.2 yamt mutex_init(&pm->lk_flags, MUTEX_DEFAULT, IPL_SOFTCLOCK);
463 1.4.2.2 yamt
464 1.4.2.2 yamt return 0;
465 1.4.2.2 yamt }
466 1.4.2.2 yamt
467 1.4.2.2 yamt /*
468 1.4.2.2 yamt * Destroys a parity map; unless "force" is set, also cleans parity for any
469 1.4.2.2 yamt * regions which were still in cooldown (but are not dirty on disk).
470 1.4.2.2 yamt */
471 1.4.2.2 yamt void
472 1.4.2.2 yamt rf_paritymap_destroy(struct rf_paritymap *pm, int force)
473 1.4.2.2 yamt {
474 1.4.2.2 yamt int i;
475 1.4.2.2 yamt
476 1.4.2.2 yamt callout_halt(&pm->ticker, NULL); /* XXX stop? halt? */
477 1.4.2.2 yamt callout_destroy(&pm->ticker);
478 1.4.2.2 yamt
479 1.4.2.2 yamt if (!force) {
480 1.4.2.2 yamt for (i = 0; i < RF_PARITYMAP_NREG; i++) {
481 1.4.2.2 yamt /* XXX check for > 0 ? */
482 1.4.2.2 yamt if (pm->current->state[i] < 0)
483 1.4.2.2 yamt pm->current->state[i] = 0;
484 1.4.2.2 yamt }
485 1.4.2.2 yamt
486 1.4.2.2 yamt rf_paritymap_write_locked(pm);
487 1.4.2.2 yamt }
488 1.4.2.2 yamt
489 1.4.2.2 yamt mutex_destroy(&pm->lock);
490 1.4.2.2 yamt mutex_destroy(&pm->lk_flags);
491 1.4.2.2 yamt
492 1.4.2.2 yamt kmem_free(pm->disk_boot, sizeof(struct rf_paritymap_ondisk));
493 1.4.2.2 yamt kmem_free(pm->disk_now, sizeof(struct rf_paritymap_ondisk));
494 1.4.2.2 yamt kmem_free(pm->current, sizeof(struct rf_paritymap_current));
495 1.4.2.2 yamt }
496 1.4.2.2 yamt
497 1.4.2.2 yamt /*
498 1.4.2.2 yamt * Rewrite parity, taking parity map into account; this is the equivalent of
499 1.4.2.2 yamt * the old rf_RewriteParity, and is likewise to be called from a suitable
500 1.4.2.2 yamt * thread and shouldn't have multiple copies running in parallel and so on.
501 1.4.2.2 yamt *
502 1.4.2.2 yamt * Note that the fictional regions are "cleaned" in one shot, so that very
503 1.4.2.2 yamt * small RAIDs (useful for testing) will not experience potentially severe
504 1.4.2.2 yamt * regressions in rewrite time.
505 1.4.2.2 yamt */
506 1.4.2.2 yamt int
507 1.4.2.2 yamt rf_paritymap_rewrite(struct rf_paritymap *pm)
508 1.4.2.2 yamt {
509 1.4.2.2 yamt int i, ret_val = 0;
510 1.4.2.2 yamt daddr_t reg_b, reg_e;
511 1.4.2.2 yamt
512 1.4.2.2 yamt /* Process only the actual regions. */
513 1.4.2.2 yamt for (i = 0; i < pm->params.regions; i++) {
514 1.4.2.2 yamt mutex_enter(&pm->lock);
515 1.4.2.2 yamt if (isset(pm->disk_boot->bits, i)) {
516 1.4.2.2 yamt mutex_exit(&pm->lock);
517 1.4.2.2 yamt
518 1.4.2.2 yamt reg_b = i * pm->region_size;
519 1.4.2.2 yamt reg_e = reg_b + pm->region_size;
520 1.4.2.2 yamt if (reg_e > pm->raid->totalSectors)
521 1.4.2.2 yamt reg_e = pm->raid->totalSectors;
522 1.4.2.2 yamt
523 1.4.2.2 yamt if (rf_RewriteParityRange(pm->raid, reg_b,
524 1.4.2.2 yamt reg_e - reg_b)) {
525 1.4.2.2 yamt ret_val = 1;
526 1.4.2.2 yamt if (pm->raid->waitShutdown)
527 1.4.2.2 yamt return ret_val;
528 1.4.2.2 yamt } else {
529 1.4.2.2 yamt mutex_enter(&pm->lock);
530 1.4.2.2 yamt clrbit(pm->disk_boot->bits, i);
531 1.4.2.2 yamt rf_paritymap_write_locked(pm);
532 1.4.2.2 yamt mutex_exit(&pm->lock);
533 1.4.2.2 yamt }
534 1.4.2.2 yamt } else {
535 1.4.2.2 yamt mutex_exit(&pm->lock);
536 1.4.2.2 yamt }
537 1.4.2.2 yamt }
538 1.4.2.2 yamt
539 1.4.2.2 yamt /* Now, clear the fictional regions, if any. */
540 1.4.2.2 yamt rf_paritymap_forceclean(pm);
541 1.4.2.2 yamt rf_paritymap_write(pm);
542 1.4.2.2 yamt
543 1.4.2.2 yamt return ret_val;
544 1.4.2.2 yamt }
545 1.4.2.2 yamt
546 1.4.2.2 yamt /*
547 1.4.2.2 yamt * How to merge the on-disk parity maps when reading them in from the
548 1.4.2.2 yamt * various components; returns whether they differ. In the case that
549 1.4.2.2 yamt * they do differ, sets *dst to the union of *dst and *src.
550 1.4.2.2 yamt *
551 1.4.2.2 yamt * In theory, it should be safe to take the intersection (or just pick
552 1.4.2.2 yamt * a single component arbitrarily), but the paranoid approach costs
553 1.4.2.2 yamt * little.
554 1.4.2.2 yamt *
555 1.4.2.2 yamt * Appropriate locking, if any, is the responsibility of the caller.
556 1.4.2.2 yamt */
557 1.4.2.2 yamt int
558 1.4.2.2 yamt rf_paritymap_merge(struct rf_paritymap_ondisk *dst,
559 1.4.2.2 yamt struct rf_paritymap_ondisk *src)
560 1.4.2.2 yamt {
561 1.4.2.2 yamt int i, discrep = 0;
562 1.4.2.2 yamt
563 1.4.2.2 yamt for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
564 1.4.2.2 yamt if (dst->bits[i] != src->bits[i])
565 1.4.2.2 yamt discrep = 1;
566 1.4.2.2 yamt dst->bits[i] |= src->bits[i];
567 1.4.2.2 yamt }
568 1.4.2.2 yamt
569 1.4.2.2 yamt return discrep;
570 1.4.2.2 yamt }
571 1.4.2.2 yamt
572 1.4.2.2 yamt /*
573 1.4.2.2 yamt * Detach a parity map from its RAID. This is not meant to be applied except
574 1.4.2.2 yamt * when unconfiguring the RAID after all I/O has been resolved, as otherwise
575 1.4.2.2 yamt * an out-of-date parity map could be treated as current.
576 1.4.2.2 yamt */
577 1.4.2.2 yamt void
578 1.4.2.2 yamt rf_paritymap_detach(RF_Raid_t *raidPtr)
579 1.4.2.2 yamt {
580 1.4.2.2 yamt if (raidPtr->parity_map == NULL)
581 1.4.2.2 yamt return;
582 1.4.2.2 yamt
583 1.4.2.2 yamt simple_lock(&(raidPtr->iodone_lock));
584 1.4.2.2 yamt struct rf_paritymap *pm = raidPtr->parity_map;
585 1.4.2.2 yamt raidPtr->parity_map = NULL;
586 1.4.2.2 yamt simple_unlock(&(raidPtr->iodone_lock));
587 1.4.2.2 yamt /* XXXjld is that enough locking? Or too much? */
588 1.4.2.2 yamt rf_paritymap_destroy(pm, 0);
589 1.4.2.2 yamt kmem_free(pm, sizeof(*pm));
590 1.4.2.2 yamt }
591 1.4.2.2 yamt
592 1.4.2.2 yamt /*
593 1.4.2.3 yamt * Is this RAID set ineligible for parity-map use due to not actually
594 1.4.2.3 yamt * having any parity? (If so, rf_paritymap_attach is a no-op, but
595 1.4.2.3 yamt * rf_paritymap_{get,set}_disable will still pointlessly act on the
596 1.4.2.3 yamt * component labels.)
597 1.4.2.3 yamt */
598 1.4.2.3 yamt int
599 1.4.2.3 yamt rf_paritymap_ineligible(RF_Raid_t *raidPtr)
600 1.4.2.3 yamt {
601 1.4.2.3 yamt return raidPtr->Layout.map->faultsTolerated == 0;
602 1.4.2.3 yamt }
603 1.4.2.3 yamt
604 1.4.2.3 yamt /*
605 1.4.2.2 yamt * Attach a parity map to a RAID set if appropriate. Includes
606 1.4.2.2 yamt * configure-time processing of parity-map fields of component label.
607 1.4.2.2 yamt */
608 1.4.2.2 yamt void
609 1.4.2.2 yamt rf_paritymap_attach(RF_Raid_t *raidPtr, int force)
610 1.4.2.2 yamt {
611 1.4.2.2 yamt RF_RowCol_t col;
612 1.4.2.2 yamt int pm_use, pm_zap;
613 1.4.2.2 yamt int g_tickms, g_ntick, g_regions;
614 1.4.2.2 yamt int good;
615 1.4.2.2 yamt RF_ComponentLabel_t *clabel;
616 1.4.2.2 yamt u_int flags, regions;
617 1.4.2.2 yamt struct rf_pmparams params;
618 1.4.2.2 yamt
619 1.4.2.3 yamt if (rf_paritymap_ineligible(raidPtr)) {
620 1.4.2.2 yamt /* There isn't any parity. */
621 1.4.2.2 yamt return;
622 1.4.2.2 yamt }
623 1.4.2.2 yamt
624 1.4.2.2 yamt pm_use = 1;
625 1.4.2.2 yamt pm_zap = 0;
626 1.4.2.2 yamt g_tickms = DFL_TICKMS;
627 1.4.2.2 yamt g_ntick = DFL_COOLDOWN;
628 1.4.2.2 yamt g_regions = 0;
629 1.4.2.2 yamt
630 1.4.2.2 yamt /*
631 1.4.2.2 yamt * Collect opinions on the set config. If this is the initial
632 1.4.2.2 yamt * config (raidctl -C), treat all labels as invalid, since
633 1.4.2.2 yamt * there may be random data present.
634 1.4.2.2 yamt */
635 1.4.2.2 yamt if (!force) {
636 1.4.2.2 yamt for (col = 0; col < raidPtr->numCol; col++) {
637 1.4.2.2 yamt if (RF_DEAD_DISK(raidPtr->Disks[col].status))
638 1.4.2.2 yamt continue;
639 1.4.2.2 yamt clabel = raidget_component_label(raidPtr, col);
640 1.4.2.2 yamt flags = clabel->parity_map_flags;
641 1.4.2.2 yamt /* Check for use by non-parity-map kernel. */
642 1.4.2.2 yamt if (clabel->parity_map_modcount
643 1.4.2.2 yamt != clabel->mod_counter) {
644 1.4.2.2 yamt flags &= ~RF_PMLABEL_WASUSED;
645 1.4.2.2 yamt }
646 1.4.2.2 yamt
647 1.4.2.2 yamt if (flags & RF_PMLABEL_VALID) {
648 1.4.2.2 yamt g_tickms = clabel->parity_map_tickms;
649 1.4.2.2 yamt g_ntick = clabel->parity_map_ntick;
650 1.4.2.2 yamt regions = clabel->parity_map_regions;
651 1.4.2.2 yamt if (g_regions == 0)
652 1.4.2.2 yamt g_regions = regions;
653 1.4.2.2 yamt else if (g_regions != regions) {
654 1.4.2.2 yamt pm_zap = 1; /* important! */
655 1.4.2.2 yamt }
656 1.4.2.2 yamt
657 1.4.2.2 yamt if (flags & RF_PMLABEL_DISABLE) {
658 1.4.2.2 yamt pm_use = 0;
659 1.4.2.2 yamt }
660 1.4.2.2 yamt if (!(flags & RF_PMLABEL_WASUSED)) {
661 1.4.2.2 yamt pm_zap = 1;
662 1.4.2.2 yamt }
663 1.4.2.2 yamt } else {
664 1.4.2.2 yamt pm_zap = 1;
665 1.4.2.2 yamt }
666 1.4.2.2 yamt }
667 1.4.2.2 yamt } else {
668 1.4.2.2 yamt pm_zap = 1;
669 1.4.2.2 yamt }
670 1.4.2.2 yamt
671 1.4.2.2 yamt /* Finally, create and attach the parity map. */
672 1.4.2.2 yamt if (pm_use) {
673 1.4.2.2 yamt params.cooldown = g_ntick;
674 1.4.2.2 yamt params.tickms = g_tickms;
675 1.4.2.2 yamt params.regions = g_regions;
676 1.4.2.2 yamt
677 1.4.2.2 yamt raidPtr->parity_map = kmem_alloc(sizeof(struct rf_paritymap),
678 1.4.2.2 yamt KM_SLEEP);
679 1.4.2.2 yamt if (0 != rf_paritymap_init(raidPtr->parity_map, raidPtr,
680 1.4.2.2 yamt ¶ms)) {
681 1.4.2.2 yamt /* It failed; do without. */
682 1.4.2.2 yamt kmem_free(raidPtr->parity_map,
683 1.4.2.2 yamt sizeof(struct rf_paritymap));
684 1.4.2.2 yamt raidPtr->parity_map = NULL;
685 1.4.2.2 yamt return;
686 1.4.2.2 yamt }
687 1.4.2.2 yamt
688 1.4.2.2 yamt if (g_regions == 0)
689 1.4.2.2 yamt /* Pick up the autoconfigured region count. */
690 1.4.2.2 yamt g_regions = raidPtr->parity_map->params.regions;
691 1.4.2.2 yamt
692 1.4.2.2 yamt if (pm_zap) {
693 1.4.2.2 yamt good = raidPtr->parity_good && !force;
694 1.4.2.2 yamt
695 1.4.2.2 yamt if (good)
696 1.4.2.2 yamt rf_paritymap_forceclean(raidPtr->parity_map);
697 1.4.2.2 yamt else
698 1.4.2.2 yamt rf_paritymap_invalidate(raidPtr->parity_map);
699 1.4.2.2 yamt /* This needs to be on disk before WASUSED is set. */
700 1.4.2.2 yamt rf_paritymap_write(raidPtr->parity_map);
701 1.4.2.2 yamt }
702 1.4.2.2 yamt }
703 1.4.2.2 yamt
704 1.4.2.2 yamt /* Alter labels in-core to reflect the current view of things. */
705 1.4.2.2 yamt for (col = 0; col < raidPtr->numCol; col++) {
706 1.4.2.2 yamt if (RF_DEAD_DISK(raidPtr->Disks[col].status))
707 1.4.2.2 yamt continue;
708 1.4.2.2 yamt clabel = raidget_component_label(raidPtr, col);
709 1.4.2.2 yamt
710 1.4.2.2 yamt if (pm_use)
711 1.4.2.2 yamt flags = RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
712 1.4.2.2 yamt else
713 1.4.2.2 yamt flags = RF_PMLABEL_VALID | RF_PMLABEL_DISABLE;
714 1.4.2.2 yamt
715 1.4.2.2 yamt clabel->parity_map_flags = flags;
716 1.4.2.2 yamt clabel->parity_map_tickms = g_tickms;
717 1.4.2.2 yamt clabel->parity_map_ntick = g_ntick;
718 1.4.2.2 yamt clabel->parity_map_regions = g_regions;
719 1.4.2.2 yamt raidflush_component_label(raidPtr, col);
720 1.4.2.2 yamt }
721 1.4.2.2 yamt /* Note that we're just in 'attach' here, and there won't
722 1.4.2.2 yamt be any spare disks at this point. */
723 1.4.2.2 yamt }
724 1.4.2.2 yamt
725 1.4.2.2 yamt /*
726 1.4.2.2 yamt * For initializing the parity-map fields of a component label, both on
727 1.4.2.2 yamt * initial creation and on reconstruct/copyback/etc. */
728 1.4.2.2 yamt void
729 1.4.2.2 yamt rf_paritymap_init_label(struct rf_paritymap *pm, RF_ComponentLabel_t *clabel)
730 1.4.2.2 yamt {
731 1.4.2.2 yamt if (pm != NULL) {
732 1.4.2.2 yamt clabel->parity_map_flags =
733 1.4.2.2 yamt RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
734 1.4.2.2 yamt clabel->parity_map_tickms = pm->params.tickms;
735 1.4.2.2 yamt clabel->parity_map_ntick = pm->params.cooldown;
736 1.4.2.2 yamt /*
737 1.4.2.2 yamt * XXXjld: If the number of regions is changed on disk, and
738 1.4.2.2 yamt * then a new component is labeled before the next configure,
739 1.4.2.2 yamt * then it will get the old value and they will conflict on
740 1.4.2.2 yamt * the next boot (and the default will be used instead).
741 1.4.2.2 yamt */
742 1.4.2.2 yamt clabel->parity_map_regions = pm->params.regions;
743 1.4.2.2 yamt } else {
744 1.4.2.2 yamt /*
745 1.4.2.2 yamt * XXXjld: if the map is disabled, and all the components are
746 1.4.2.2 yamt * replaced without an intervening unconfigure/reconfigure,
747 1.4.2.2 yamt * then it will become enabled on the next unconfig/reconfig.
748 1.4.2.2 yamt */
749 1.4.2.2 yamt }
750 1.4.2.2 yamt }
751 1.4.2.2 yamt
752 1.4.2.2 yamt
753 1.4.2.2 yamt /* Will the parity map be disabled next time? */
754 1.4.2.2 yamt int
755 1.4.2.2 yamt rf_paritymap_get_disable(RF_Raid_t *raidPtr)
756 1.4.2.2 yamt {
757 1.4.2.2 yamt RF_ComponentLabel_t *clabel;
758 1.4.2.2 yamt RF_RowCol_t col;
759 1.4.2.2 yamt int dis;
760 1.4.2.2 yamt
761 1.4.2.2 yamt dis = 0;
762 1.4.2.2 yamt for (col = 0; col < raidPtr->numCol; col++) {
763 1.4.2.2 yamt if (RF_DEAD_DISK(raidPtr->Disks[col].status))
764 1.4.2.2 yamt continue;
765 1.4.2.2 yamt clabel = raidget_component_label(raidPtr, col);
766 1.4.2.2 yamt if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
767 1.4.2.2 yamt dis = 1;
768 1.4.2.2 yamt }
769 1.4.2.2 yamt for (col = 0; col < raidPtr->numSpare; col++) {
770 1.4.2.2 yamt if (raidPtr->Disks[raidPtr->numCol+col].status != rf_ds_used_spare)
771 1.4.2.2 yamt continue;
772 1.4.2.2 yamt clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
773 1.4.2.2 yamt if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
774 1.4.2.2 yamt dis = 1;
775 1.4.2.2 yamt }
776 1.4.2.2 yamt
777 1.4.2.2 yamt return dis;
778 1.4.2.2 yamt }
779 1.4.2.2 yamt
780 1.4.2.2 yamt /* Set whether the parity map will be disabled next time. */
781 1.4.2.2 yamt void
782 1.4.2.2 yamt rf_paritymap_set_disable(RF_Raid_t *raidPtr, int dis)
783 1.4.2.2 yamt {
784 1.4.2.2 yamt RF_ComponentLabel_t *clabel;
785 1.4.2.2 yamt RF_RowCol_t col;
786 1.4.2.2 yamt
787 1.4.2.2 yamt for (col = 0; col < raidPtr->numCol; col++) {
788 1.4.2.2 yamt if (RF_DEAD_DISK(raidPtr->Disks[col].status))
789 1.4.2.2 yamt continue;
790 1.4.2.2 yamt clabel = raidget_component_label(raidPtr, col);
791 1.4.2.2 yamt if (dis)
792 1.4.2.2 yamt clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
793 1.4.2.2 yamt else
794 1.4.2.2 yamt clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
795 1.4.2.2 yamt raidflush_component_label(raidPtr, col);
796 1.4.2.2 yamt }
797 1.4.2.2 yamt
798 1.4.2.2 yamt /* update any used spares as well */
799 1.4.2.2 yamt for (col = 0; col < raidPtr->numSpare; col++) {
800 1.4.2.2 yamt if (raidPtr->Disks[raidPtr->numCol+col].status != rf_ds_used_spare)
801 1.4.2.2 yamt continue;
802 1.4.2.2 yamt
803 1.4.2.2 yamt clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
804 1.4.2.2 yamt if (dis)
805 1.4.2.2 yamt clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
806 1.4.2.2 yamt else
807 1.4.2.2 yamt clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
808 1.4.2.2 yamt raidflush_component_label(raidPtr, raidPtr->numCol+col);
809 1.4.2.2 yamt }
810 1.4.2.2 yamt }
811