rf_paritymap.c revision 1.5.4.2 1 /* $NetBSD: rf_paritymap.c,v 1.5.4.2 2010/04/21 00:27:51 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2009 Jed Davis.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_paritymap.c,v 1.5.4.2 2010/04/21 00:27:51 matt Exp $");
31
32 #include <sys/param.h>
33 #include <sys/callout.h>
34 #include <sys/kmem.h>
35 #include <sys/mutex.h>
36 #include <sys/rwlock.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39
40 #include <dev/raidframe/rf_paritymap.h>
41 #include <dev/raidframe/rf_stripelocks.h>
42 #include <dev/raidframe/rf_layout.h>
43 #include <dev/raidframe/rf_raid.h>
44 #include <dev/raidframe/rf_parityscan.h>
45 #include <dev/raidframe/rf_kintf.h>
46
47 /* Important parameters: */
48 #define REGION_MINSIZE (25ULL << 20)
49 #define DFL_TICKMS 40000
50 #define DFL_COOLDOWN 8 /* 7-8 intervals of 40s = 5min +/- 20s */
51
52 /* Internal-use flag bits. */
53 #define TICKING 1
54 #define TICKED 2
55
56 /* Prototypes! */
57 static void rf_paritymap_write_locked(struct rf_paritymap *);
58 static void rf_paritymap_tick(void *);
59 static u_int rf_paritymap_nreg(RF_Raid_t *);
60
61 /* Extract the current status of the parity map. */
62 void
63 rf_paritymap_status(struct rf_paritymap *pm, struct rf_pmstat *ps)
64 {
65 memset(ps, 0, sizeof(*ps));
66 if (pm == NULL)
67 ps->enabled = 0;
68 else {
69 ps->enabled = 1;
70 ps->region_size = pm->region_size;
71 mutex_enter(&pm->lock);
72 memcpy(&ps->params, &pm->params, sizeof(ps->params));
73 memcpy(ps->dirty, pm->disk_now, sizeof(ps->dirty));
74 memcpy(&ps->ctrs, &pm->ctrs, sizeof(ps->ctrs));
75 mutex_exit(&pm->lock);
76 }
77 }
78
79 /*
80 * Test whether parity in a given sector is suspected of being inconsistent
81 * on disk (assuming that any pending I/O to it is allowed to complete).
82 * This may be of interest to future work on parity scrubbing.
83 */
84 int
85 rf_paritymap_test(struct rf_paritymap *pm, daddr_t sector)
86 {
87 unsigned region = sector / pm->region_size;
88 int retval;
89
90 mutex_enter(&pm->lock);
91 retval = isset(pm->disk_boot->bits, region) ? 1 : 0;
92 mutex_exit(&pm->lock);
93 return retval;
94 }
95
96 /* To be called before a write to the RAID is submitted. */
97 void
98 rf_paritymap_begin(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
99 {
100 unsigned i, b, e;
101
102 b = offset / pm->region_size;
103 e = (offset + size - 1) / pm->region_size;
104
105 for (i = b; i <= e; i++)
106 rf_paritymap_begin_region(pm, i);
107 }
108
109 /* To be called after a write to the RAID completes. */
110 void
111 rf_paritymap_end(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
112 {
113 unsigned i, b, e;
114
115 b = offset / pm->region_size;
116 e = (offset + size - 1) / pm->region_size;
117
118 for (i = b; i <= e; i++)
119 rf_paritymap_end_region(pm, i);
120 }
121
122 void
123 rf_paritymap_begin_region(struct rf_paritymap *pm, unsigned region)
124 {
125 int needs_write;
126
127 KASSERT(region < RF_PARITYMAP_NREG);
128 pm->ctrs.nwrite++;
129
130 /* If it was being kept warm, deal with that. */
131 mutex_enter(&pm->lock);
132 if (pm->current->state[region] < 0)
133 pm->current->state[region] = 0;
134
135 /* This shouldn't happen unless RAIDOUTSTANDING is set too high. */
136 KASSERT(pm->current->state[region] < 127);
137 pm->current->state[region]++;
138
139 needs_write = isclr(pm->disk_now->bits, region);
140
141 if (needs_write) {
142 KASSERT(pm->current->state[region] == 1);
143 rf_paritymap_write_locked(pm);
144 }
145
146 mutex_exit(&pm->lock);
147 }
148
149 void
150 rf_paritymap_end_region(struct rf_paritymap *pm, unsigned region)
151 {
152 KASSERT(region < RF_PARITYMAP_NREG);
153
154 mutex_enter(&pm->lock);
155 KASSERT(pm->current->state[region] > 0);
156 --pm->current->state[region];
157
158 if (pm->current->state[region] <= 0) {
159 pm->current->state[region] = -pm->params.cooldown;
160 KASSERT(pm->current->state[region] <= 0);
161 mutex_enter(&pm->lk_flags);
162 if (!(pm->flags & TICKING)) {
163 pm->flags |= TICKING;
164 mutex_exit(&pm->lk_flags);
165 callout_schedule(&pm->ticker,
166 mstohz(pm->params.tickms));
167 } else
168 mutex_exit(&pm->lk_flags);
169 }
170 mutex_exit(&pm->lock);
171 }
172
173 /*
174 * Updates the parity map to account for any changes in current activity
175 * and/or an ongoing parity scan, then writes it to disk with appropriate
176 * synchronization.
177 */
178 void
179 rf_paritymap_write(struct rf_paritymap *pm)
180 {
181 mutex_enter(&pm->lock);
182 rf_paritymap_write_locked(pm);
183 mutex_exit(&pm->lock);
184 }
185
186 /* As above, but to be used when pm->lock is already held. */
187 static void
188 rf_paritymap_write_locked(struct rf_paritymap *pm)
189 {
190 char w, w0;
191 int i, j, setting, clearing;
192
193 setting = clearing = 0;
194 for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
195 w0 = pm->disk_now->bits[i];
196 w = pm->disk_boot->bits[i];
197
198 for (j = 0; j < NBBY; j++)
199 if (pm->current->state[i * NBBY + j] != 0)
200 w |= 1 << j;
201
202 if (w & ~w0)
203 setting = 1;
204 if (w0 & ~w)
205 clearing = 1;
206
207 pm->disk_now->bits[i] = w;
208 }
209 pm->ctrs.ncachesync += setting + clearing;
210 pm->ctrs.nclearing += clearing;
211
212 /*
213 * If bits are being set in the parity map, then a sync is
214 * required afterwards, so that the regions are marked dirty
215 * on disk before any writes to them take place. If bits are
216 * being cleared, then a sync is required before the write, so
217 * that any writes to those regions are processed before the
218 * region is marked clean. (Synchronization is somewhat
219 * overkill; a write ordering barrier would suffice, but we
220 * currently have no way to express that directly.)
221 */
222 if (clearing)
223 rf_sync_component_caches(pm->raid);
224 rf_paritymap_kern_write(pm->raid, pm->disk_now);
225 if (setting)
226 rf_sync_component_caches(pm->raid);
227 }
228
229 /* Mark all parity as being in need of rewrite. */
230 void
231 rf_paritymap_invalidate(struct rf_paritymap *pm)
232 {
233 mutex_enter(&pm->lock);
234 memset(pm->disk_boot, ~(unsigned char)0,
235 sizeof(struct rf_paritymap_ondisk));
236 mutex_exit(&pm->lock);
237 }
238
239 /* Mark all parity as being correct. */
240 void
241 rf_paritymap_forceclean(struct rf_paritymap *pm)
242 {
243 mutex_enter(&pm->lock);
244 memset(pm->disk_boot, (unsigned char)0,
245 sizeof(struct rf_paritymap_ondisk));
246 mutex_exit(&pm->lock);
247 }
248
249 /*
250 * The cooldown callout routine just defers its work to a thread; it can't do
251 * the parity map write itself as it would block, and although mutex-induced
252 * blocking is permitted it seems wise to avoid tying up the softint.
253 */
254 static void
255 rf_paritymap_tick(void *arg)
256 {
257 struct rf_paritymap *pm = arg;
258
259 mutex_enter(&pm->lk_flags);
260 pm->flags |= TICKED;
261 mutex_exit(&pm->lk_flags);
262 wakeup(&(pm->raid->iodone)); /* XXX */
263 }
264
265 /*
266 * This is where the parity cooling work (and rearming the callout if needed)
267 * is done; the raidio thread calls it when woken up, as by the above.
268 */
269 void
270 rf_paritymap_checkwork(struct rf_paritymap *pm)
271 {
272 int i, zerop, progressp;
273
274 mutex_enter(&pm->lk_flags);
275 if (pm->flags & TICKED) {
276 zerop = progressp = 0;
277
278 pm->flags &= ~TICKED;
279 mutex_exit(&pm->lk_flags);
280
281 mutex_enter(&pm->lock);
282 for (i = 0; i < RF_PARITYMAP_NREG; i++) {
283 if (pm->current->state[i] < 0) {
284 progressp = 1;
285 pm->current->state[i]++;
286 if (pm->current->state[i] == 0)
287 zerop = 1;
288 }
289 }
290
291 if (progressp)
292 callout_schedule(&pm->ticker,
293 mstohz(pm->params.tickms));
294 else {
295 mutex_enter(&pm->lk_flags);
296 pm->flags &= ~TICKING;
297 mutex_exit(&pm->lk_flags);
298 }
299
300 if (zerop)
301 rf_paritymap_write_locked(pm);
302 mutex_exit(&pm->lock);
303 } else
304 mutex_exit(&pm->lk_flags);
305 }
306
307 /*
308 * Set parity map parameters; used both to alter parameters on the fly and to
309 * establish their initial values. Note that setting a parameter to 0 means
310 * to leave the previous setting unchanged, and that if this is done for the
311 * initial setting of "regions", then a default value will be computed based
312 * on the RAID component size.
313 */
314 int
315 rf_paritymap_set_params(struct rf_paritymap *pm,
316 const struct rf_pmparams *params, int todisk)
317 {
318 int cooldown, tickms;
319 u_int regions;
320 RF_RowCol_t col;
321 RF_ComponentLabel_t *clabel;
322 RF_Raid_t *raidPtr;
323
324 cooldown = params->cooldown != 0
325 ? params->cooldown : pm->params.cooldown;
326 tickms = params->tickms != 0
327 ? params->tickms : pm->params.tickms;
328 regions = params->regions != 0
329 ? params->regions : pm->params.regions;
330
331 if (cooldown < 1 || cooldown > 128) {
332 printf("raid%d: cooldown %d out of range\n", pm->raid->raidid,
333 cooldown);
334 return (-1);
335 }
336 if (tickms < 10) {
337 printf("raid%d: tick time %dms out of range\n",
338 pm->raid->raidid, tickms);
339 return (-1);
340 }
341 if (regions == 0) {
342 regions = rf_paritymap_nreg(pm->raid);
343 } else if (regions > RF_PARITYMAP_NREG) {
344 printf("raid%d: region count %u too large (more than %u)\n",
345 pm->raid->raidid, regions, RF_PARITYMAP_NREG);
346 return (-1);
347 }
348
349 /* XXX any currently warm parity will be used with the new tickms! */
350 pm->params.cooldown = cooldown;
351 pm->params.tickms = tickms;
352 /* Apply the initial region count, but do not change it after that. */
353 if (pm->params.regions == 0)
354 pm->params.regions = regions;
355
356 /* So that the newly set parameters can be tested: */
357 pm->ctrs.nwrite = pm->ctrs.ncachesync = pm->ctrs.nclearing = 0;
358
359 if (todisk) {
360 raidPtr = pm->raid;
361 for (col = 0; col < raidPtr->numCol; col++) {
362 if (RF_DEAD_DISK(raidPtr->Disks[col].status))
363 continue;
364
365 clabel = raidget_component_label(raidPtr, col);
366 clabel->parity_map_ntick = cooldown;
367 clabel->parity_map_tickms = tickms;
368 clabel->parity_map_regions = regions;
369
370 /* Don't touch the disk if it's been spared */
371 if (clabel->status == rf_ds_spared)
372 continue;
373
374 raidflush_component_label(raidPtr, col);
375 }
376
377 /* handle the spares too... */
378 for (col = 0; col < raidPtr->numSpare; col++) {
379 if (raidPtr->Disks[raidPtr->numCol+col].status == rf_ds_used_spare) {
380 clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
381 clabel->parity_map_ntick = cooldown;
382 clabel->parity_map_tickms = tickms;
383 clabel->parity_map_regions = regions;
384 raidflush_component_label(raidPtr, raidPtr->numCol+col);
385 }
386 }
387 }
388 return 0;
389 }
390
391 /*
392 * The number of regions may not be as many as can fit into the map, because
393 * when regions are too small, the overhead of setting parity map bits
394 * becomes significant in comparison to the actual I/O, while the
395 * corresponding gains in parity verification time become negligible. Thus,
396 * a minimum region size (defined above) is imposed.
397 *
398 * Note that, if the number of regions is less than the maximum, then some of
399 * the regions will be "fictional", corresponding to no actual disk; some
400 * parts of the code may process them as normal, but they can not ever be
401 * written to.
402 */
403 static u_int
404 rf_paritymap_nreg(RF_Raid_t *raid)
405 {
406 daddr_t bytes_per_disk, nreg;
407
408 bytes_per_disk = raid->sectorsPerDisk << raid->logBytesPerSector;
409 nreg = bytes_per_disk / REGION_MINSIZE;
410 if (nreg > RF_PARITYMAP_NREG)
411 nreg = RF_PARITYMAP_NREG;
412
413 return (u_int)nreg;
414 }
415
416 /*
417 * Initialize a parity map given specific parameters. This neither reads nor
418 * writes the parity map config in the component labels; for that, see below.
419 */
420 int
421 rf_paritymap_init(struct rf_paritymap *pm, RF_Raid_t *raid,
422 const struct rf_pmparams *params)
423 {
424 daddr_t rstripes;
425 struct rf_pmparams safe;
426
427 pm->raid = raid;
428 pm->params.regions = 0;
429 if (0 != rf_paritymap_set_params(pm, params, 0)) {
430 /*
431 * If the parameters are out-of-range, then bring the
432 * parity map up with something reasonable, so that
433 * the admin can at least go and fix it (or ignore it
434 * entirely).
435 */
436 safe.cooldown = DFL_COOLDOWN;
437 safe.tickms = DFL_TICKMS;
438 safe.regions = 0;
439
440 if (0 != rf_paritymap_set_params(pm, &safe, 0))
441 return (-1);
442 }
443
444 rstripes = howmany(raid->Layout.numStripe, pm->params.regions);
445 pm->region_size = rstripes * raid->Layout.dataSectorsPerStripe;
446
447 callout_init(&pm->ticker, CALLOUT_MPSAFE);
448 callout_setfunc(&pm->ticker, rf_paritymap_tick, pm);
449 pm->flags = 0;
450
451 pm->disk_boot = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
452 KM_SLEEP);
453 pm->disk_now = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
454 KM_SLEEP);
455 pm->current = kmem_zalloc(sizeof(struct rf_paritymap_current),
456 KM_SLEEP);
457
458 rf_paritymap_kern_read(pm->raid, pm->disk_boot);
459 memcpy(pm->disk_now, pm->disk_boot, sizeof(*pm->disk_now));
460
461 mutex_init(&pm->lock, MUTEX_DEFAULT, IPL_NONE);
462 mutex_init(&pm->lk_flags, MUTEX_DEFAULT, IPL_SOFTCLOCK);
463
464 return 0;
465 }
466
467 /*
468 * Destroys a parity map; unless "force" is set, also cleans parity for any
469 * regions which were still in cooldown (but are not dirty on disk).
470 */
471 void
472 rf_paritymap_destroy(struct rf_paritymap *pm, int force)
473 {
474 int i;
475
476 callout_halt(&pm->ticker, NULL); /* XXX stop? halt? */
477 callout_destroy(&pm->ticker);
478
479 if (!force) {
480 for (i = 0; i < RF_PARITYMAP_NREG; i++) {
481 /* XXX check for > 0 ? */
482 if (pm->current->state[i] < 0)
483 pm->current->state[i] = 0;
484 }
485
486 rf_paritymap_write_locked(pm);
487 }
488
489 mutex_destroy(&pm->lock);
490 mutex_destroy(&pm->lk_flags);
491
492 kmem_free(pm->disk_boot, sizeof(struct rf_paritymap_ondisk));
493 kmem_free(pm->disk_now, sizeof(struct rf_paritymap_ondisk));
494 kmem_free(pm->current, sizeof(struct rf_paritymap_current));
495 }
496
497 /*
498 * Rewrite parity, taking parity map into account; this is the equivalent of
499 * the old rf_RewriteParity, and is likewise to be called from a suitable
500 * thread and shouldn't have multiple copies running in parallel and so on.
501 *
502 * Note that the fictional regions are "cleaned" in one shot, so that very
503 * small RAIDs (useful for testing) will not experience potentially severe
504 * regressions in rewrite time.
505 */
506 int
507 rf_paritymap_rewrite(struct rf_paritymap *pm)
508 {
509 int i, ret_val = 0;
510 daddr_t reg_b, reg_e;
511
512 /* Process only the actual regions. */
513 for (i = 0; i < pm->params.regions; i++) {
514 mutex_enter(&pm->lock);
515 if (isset(pm->disk_boot->bits, i)) {
516 mutex_exit(&pm->lock);
517
518 reg_b = i * pm->region_size;
519 reg_e = reg_b + pm->region_size;
520 if (reg_e > pm->raid->totalSectors)
521 reg_e = pm->raid->totalSectors;
522
523 if (rf_RewriteParityRange(pm->raid, reg_b,
524 reg_e - reg_b)) {
525 ret_val = 1;
526 if (pm->raid->waitShutdown)
527 return ret_val;
528 } else {
529 mutex_enter(&pm->lock);
530 clrbit(pm->disk_boot->bits, i);
531 rf_paritymap_write_locked(pm);
532 mutex_exit(&pm->lock);
533 }
534 } else {
535 mutex_exit(&pm->lock);
536 }
537 }
538
539 /* Now, clear the fictional regions, if any. */
540 rf_paritymap_forceclean(pm);
541 rf_paritymap_write(pm);
542
543 return ret_val;
544 }
545
546 /*
547 * How to merge the on-disk parity maps when reading them in from the
548 * various components; returns whether they differ. In the case that
549 * they do differ, sets *dst to the union of *dst and *src.
550 *
551 * In theory, it should be safe to take the intersection (or just pick
552 * a single component arbitrarily), but the paranoid approach costs
553 * little.
554 *
555 * Appropriate locking, if any, is the responsibility of the caller.
556 */
557 int
558 rf_paritymap_merge(struct rf_paritymap_ondisk *dst,
559 struct rf_paritymap_ondisk *src)
560 {
561 int i, discrep = 0;
562
563 for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
564 if (dst->bits[i] != src->bits[i])
565 discrep = 1;
566 dst->bits[i] |= src->bits[i];
567 }
568
569 return discrep;
570 }
571
572 /*
573 * Detach a parity map from its RAID. This is not meant to be applied except
574 * when unconfiguring the RAID after all I/O has been resolved, as otherwise
575 * an out-of-date parity map could be treated as current.
576 */
577 void
578 rf_paritymap_detach(RF_Raid_t *raidPtr)
579 {
580 if (raidPtr->parity_map == NULL)
581 return;
582
583 simple_lock(&(raidPtr->iodone_lock));
584 struct rf_paritymap *pm = raidPtr->parity_map;
585 raidPtr->parity_map = NULL;
586 simple_unlock(&(raidPtr->iodone_lock));
587 /* XXXjld is that enough locking? Or too much? */
588 rf_paritymap_destroy(pm, 0);
589 kmem_free(pm, sizeof(*pm));
590 }
591
592 /*
593 * Attach a parity map to a RAID set if appropriate. Includes
594 * configure-time processing of parity-map fields of component label.
595 */
596 void
597 rf_paritymap_attach(RF_Raid_t *raidPtr, int force)
598 {
599 RF_RowCol_t col;
600 int pm_use, pm_zap;
601 int g_tickms, g_ntick, g_regions;
602 int good;
603 RF_ComponentLabel_t *clabel;
604 u_int flags, regions;
605 struct rf_pmparams params;
606
607 if (raidPtr->Layout.map->faultsTolerated == 0) {
608 /* There isn't any parity. */
609 return;
610 }
611
612 pm_use = 1;
613 pm_zap = 0;
614 g_tickms = DFL_TICKMS;
615 g_ntick = DFL_COOLDOWN;
616 g_regions = 0;
617
618 /*
619 * Collect opinions on the set config. If this is the initial
620 * config (raidctl -C), treat all labels as invalid, since
621 * there may be random data present.
622 */
623 if (!force) {
624 for (col = 0; col < raidPtr->numCol; col++) {
625 if (RF_DEAD_DISK(raidPtr->Disks[col].status))
626 continue;
627 clabel = raidget_component_label(raidPtr, col);
628 flags = clabel->parity_map_flags;
629 /* Check for use by non-parity-map kernel. */
630 if (clabel->parity_map_modcount
631 != clabel->mod_counter) {
632 flags &= ~RF_PMLABEL_WASUSED;
633 }
634
635 if (flags & RF_PMLABEL_VALID) {
636 g_tickms = clabel->parity_map_tickms;
637 g_ntick = clabel->parity_map_ntick;
638 regions = clabel->parity_map_regions;
639 if (g_regions == 0)
640 g_regions = regions;
641 else if (g_regions != regions) {
642 pm_zap = 1; /* important! */
643 }
644
645 if (flags & RF_PMLABEL_DISABLE) {
646 pm_use = 0;
647 }
648 if (!(flags & RF_PMLABEL_WASUSED)) {
649 pm_zap = 1;
650 }
651 } else {
652 pm_zap = 1;
653 }
654 }
655 } else {
656 pm_zap = 1;
657 }
658
659 /* Finally, create and attach the parity map. */
660 if (pm_use) {
661 params.cooldown = g_ntick;
662 params.tickms = g_tickms;
663 params.regions = g_regions;
664
665 raidPtr->parity_map = kmem_alloc(sizeof(struct rf_paritymap),
666 KM_SLEEP);
667 if (0 != rf_paritymap_init(raidPtr->parity_map, raidPtr,
668 ¶ms)) {
669 /* It failed; do without. */
670 kmem_free(raidPtr->parity_map,
671 sizeof(struct rf_paritymap));
672 raidPtr->parity_map = NULL;
673 return;
674 }
675
676 if (g_regions == 0)
677 /* Pick up the autoconfigured region count. */
678 g_regions = raidPtr->parity_map->params.regions;
679
680 if (pm_zap) {
681 good = raidPtr->parity_good && !force;
682
683 if (good)
684 rf_paritymap_forceclean(raidPtr->parity_map);
685 else
686 rf_paritymap_invalidate(raidPtr->parity_map);
687 /* This needs to be on disk before WASUSED is set. */
688 rf_paritymap_write(raidPtr->parity_map);
689 }
690 }
691
692 /* Alter labels in-core to reflect the current view of things. */
693 for (col = 0; col < raidPtr->numCol; col++) {
694 if (RF_DEAD_DISK(raidPtr->Disks[col].status))
695 continue;
696 clabel = raidget_component_label(raidPtr, col);
697
698 if (pm_use)
699 flags = RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
700 else
701 flags = RF_PMLABEL_VALID | RF_PMLABEL_DISABLE;
702
703 clabel->parity_map_flags = flags;
704 clabel->parity_map_tickms = g_tickms;
705 clabel->parity_map_ntick = g_ntick;
706 clabel->parity_map_regions = g_regions;
707 raidflush_component_label(raidPtr, col);
708 }
709 /* Note that we're just in 'attach' here, and there won't
710 be any spare disks at this point. */
711 }
712
713 /*
714 * For initializing the parity-map fields of a component label, both on
715 * initial creation and on reconstruct/copyback/etc. */
716 void
717 rf_paritymap_init_label(struct rf_paritymap *pm, RF_ComponentLabel_t *clabel)
718 {
719 if (pm != NULL) {
720 clabel->parity_map_flags =
721 RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
722 clabel->parity_map_tickms = pm->params.tickms;
723 clabel->parity_map_ntick = pm->params.cooldown;
724 /*
725 * XXXjld: If the number of regions is changed on disk, and
726 * then a new component is labeled before the next configure,
727 * then it will get the old value and they will conflict on
728 * the next boot (and the default will be used instead).
729 */
730 clabel->parity_map_regions = pm->params.regions;
731 } else {
732 /*
733 * XXXjld: if the map is disabled, and all the components are
734 * replaced without an intervening unconfigure/reconfigure,
735 * then it will become enabled on the next unconfig/reconfig.
736 */
737 }
738 }
739
740
741 /* Will the parity map be disabled next time? */
742 int
743 rf_paritymap_get_disable(RF_Raid_t *raidPtr)
744 {
745 RF_ComponentLabel_t *clabel;
746 RF_RowCol_t col;
747 int dis;
748
749 dis = 0;
750 for (col = 0; col < raidPtr->numCol; col++) {
751 if (RF_DEAD_DISK(raidPtr->Disks[col].status))
752 continue;
753 clabel = raidget_component_label(raidPtr, col);
754 if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
755 dis = 1;
756 }
757 for (col = 0; col < raidPtr->numSpare; col++) {
758 if (raidPtr->Disks[raidPtr->numCol+col].status != rf_ds_used_spare)
759 continue;
760 clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
761 if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
762 dis = 1;
763 }
764
765 return dis;
766 }
767
768 /* Set whether the parity map will be disabled next time. */
769 void
770 rf_paritymap_set_disable(RF_Raid_t *raidPtr, int dis)
771 {
772 RF_ComponentLabel_t *clabel;
773 RF_RowCol_t col;
774
775 for (col = 0; col < raidPtr->numCol; col++) {
776 if (RF_DEAD_DISK(raidPtr->Disks[col].status))
777 continue;
778 clabel = raidget_component_label(raidPtr, col);
779 if (dis)
780 clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
781 else
782 clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
783 raidflush_component_label(raidPtr, col);
784 }
785
786 /* update any used spares as well */
787 for (col = 0; col < raidPtr->numSpare; col++) {
788 if (raidPtr->Disks[raidPtr->numCol+col].status != rf_ds_used_spare)
789 continue;
790
791 clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
792 if (dis)
793 clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
794 else
795 clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
796 raidflush_component_label(raidPtr, raidPtr->numCol+col);
797 }
798 }
799