1 1.38 andvar /* $NetBSD: rf_parityscan.c,v 1.38 2021/08/08 21:45:53 andvar Exp $ */ 2 1.1 oster /* 3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University. 4 1.1 oster * All rights reserved. 5 1.1 oster * 6 1.1 oster * Author: Mark Holland 7 1.1 oster * 8 1.1 oster * Permission to use, copy, modify and distribute this software and 9 1.1 oster * its documentation is hereby granted, provided that both the copyright 10 1.1 oster * notice and this permission notice appear in all copies of the 11 1.1 oster * software, derivative works or modified versions, and any portions 12 1.1 oster * thereof, and that both notices appear in supporting documentation. 13 1.1 oster * 14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 1.1 oster * 18 1.1 oster * Carnegie Mellon requests users of this software to return to 19 1.1 oster * 20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU 21 1.1 oster * School of Computer Science 22 1.1 oster * Carnegie Mellon University 23 1.1 oster * Pittsburgh PA 15213-3890 24 1.1 oster * 25 1.1 oster * any improvements or extensions that they make and grant Carnegie the 26 1.1 oster * rights to redistribute these changes. 27 1.1 oster */ 28 1.1 oster 29 1.1 oster /***************************************************************************** 30 1.1 oster * 31 1.1 oster * rf_parityscan.c -- misc utilities related to parity verification 32 1.1 oster * 33 1.22 oster ****************************************************************************/ 34 1.12 lukem 35 1.12 lukem #include <sys/cdefs.h> 36 1.38 andvar __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.38 2021/08/08 21:45:53 andvar Exp $"); 37 1.1 oster 38 1.11 oster #include <dev/raidframe/raidframevar.h> 39 1.11 oster 40 1.1 oster #include "rf_raid.h" 41 1.1 oster #include "rf_dag.h" 42 1.1 oster #include "rf_dagfuncs.h" 43 1.1 oster #include "rf_dagutils.h" 44 1.1 oster #include "rf_mcpair.h" 45 1.1 oster #include "rf_general.h" 46 1.1 oster #include "rf_engine.h" 47 1.1 oster #include "rf_parityscan.h" 48 1.1 oster #include "rf_map.h" 49 1.33 jld #include "rf_paritymap.h" 50 1.1 oster 51 1.22 oster /***************************************************************************** 52 1.1 oster * 53 1.38 andvar * walk through the entire array and write new parity. This works by 54 1.22 oster * creating two DAGs, one to read a stripe of data and one to write 55 1.22 oster * new parity. The first is executed, the data is xored together, and 56 1.22 oster * then the second is executed. To avoid constantly building and 57 1.22 oster * tearing down the DAGs, we create them a priori and fill them in 58 1.22 oster * with the mapping information as we go along. 59 1.1 oster * 60 1.1 oster * there should never be more than one thread running this. 61 1.1 oster * 62 1.22 oster ****************************************************************************/ 63 1.1 oster 64 1.28 perry int 65 1.22 oster rf_RewriteParity(RF_Raid_t *raidPtr) 66 1.1 oster { 67 1.33 jld if (raidPtr->parity_map != NULL) 68 1.33 jld return rf_paritymap_rewrite(raidPtr->parity_map); 69 1.33 jld else 70 1.33 jld return rf_RewriteParityRange(raidPtr, 0, raidPtr->totalSectors); 71 1.33 jld } 72 1.33 jld 73 1.33 jld int 74 1.33 jld rf_RewriteParityRange(RF_Raid_t *raidPtr, RF_SectorNum_t sec_begin, 75 1.33 jld RF_SectorNum_t sec_len) 76 1.33 jld { 77 1.33 jld /* 78 1.33 jld * Note: It is the caller's responsibility to ensure that 79 1.33 jld * sec_begin and sec_len are stripe-aligned. 80 1.33 jld */ 81 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 82 1.3 oster RF_AccessStripeMapHeader_t *asm_h; 83 1.6 oster int ret_val; 84 1.4 oster int rc; 85 1.3 oster RF_SectorNum_t i; 86 1.5 oster 87 1.5 oster if (raidPtr->Layout.map->faultsTolerated == 0) { 88 1.5 oster /* There isn't any parity. Call it "okay." */ 89 1.5 oster return (RF_PARITY_OKAY); 90 1.5 oster } 91 1.19 oster if (raidPtr->status != rf_rs_optimal) { 92 1.5 oster /* 93 1.28 perry * We're in degraded mode. Don't try to verify parity now! 94 1.28 perry * XXX: this should be a "we don't want to", not a 95 1.28 perry * "we can't" error. 96 1.5 oster */ 97 1.5 oster return (RF_PARITY_COULD_NOT_VERIFY); 98 1.5 oster } 99 1.3 oster 100 1.6 oster ret_val = 0; 101 1.6 oster 102 1.6 oster rc = RF_PARITY_OKAY; 103 1.1 oster 104 1.33 jld for (i = sec_begin; i < sec_begin + sec_len && 105 1.28 perry rc <= RF_PARITY_CORRECTED; 106 1.4 oster i += layoutPtr->dataSectorsPerStripe) { 107 1.9 oster if (raidPtr->waitShutdown) { 108 1.9 oster /* Someone is pulling the plug on this set... 109 1.9 oster abort the re-write */ 110 1.9 oster return (1); 111 1.9 oster } 112 1.28 perry asm_h = rf_MapAccess(raidPtr, i, 113 1.28 perry layoutPtr->dataSectorsPerStripe, 114 1.4 oster NULL, RF_DONT_REMAP); 115 1.28 perry raidPtr->parity_rewrite_stripes_done = 116 1.8 oster i / layoutPtr->dataSectorsPerStripe ; 117 1.3 oster rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0); 118 1.4 oster 119 1.3 oster switch (rc) { 120 1.3 oster case RF_PARITY_OKAY: 121 1.3 oster case RF_PARITY_CORRECTED: 122 1.3 oster break; 123 1.3 oster case RF_PARITY_BAD: 124 1.3 oster printf("Parity bad during correction\n"); 125 1.6 oster ret_val = 1; 126 1.3 oster break; 127 1.3 oster case RF_PARITY_COULD_NOT_CORRECT: 128 1.3 oster printf("Could not correct bad parity\n"); 129 1.6 oster ret_val = 1; 130 1.3 oster break; 131 1.3 oster case RF_PARITY_COULD_NOT_VERIFY: 132 1.3 oster printf("Could not verify parity\n"); 133 1.6 oster ret_val = 1; 134 1.3 oster break; 135 1.3 oster default: 136 1.3 oster printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc); 137 1.6 oster ret_val = 1; 138 1.3 oster } 139 1.37 oster rf_FreeAccessStripeMap(raidPtr, asm_h); 140 1.3 oster } 141 1.6 oster return (ret_val); 142 1.1 oster } 143 1.22 oster /***************************************************************************** 144 1.1 oster * 145 1.22 oster * verify that the parity in a particular stripe is correct. we 146 1.22 oster * validate only the range of parity defined by parityPDA, since this 147 1.22 oster * is all we have locked. The way we do this is to create an asm that 148 1.22 oster * maps the whole stripe and then range-restrict it to the parity 149 1.1 oster * region defined by the parityPDA. 150 1.1 oster * 151 1.22 oster ****************************************************************************/ 152 1.28 perry int 153 1.22 oster rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm, 154 1.22 oster int correct_it, RF_RaidAccessFlags_t flags) 155 1.1 oster { 156 1.3 oster RF_PhysDiskAddr_t *parityPDA; 157 1.3 oster RF_AccessStripeMap_t *doasm; 158 1.18 jdolecek const RF_LayoutSW_t *lp; 159 1.3 oster int lrc, rc; 160 1.3 oster 161 1.3 oster lp = raidPtr->Layout.map; 162 1.3 oster if (lp->faultsTolerated == 0) { 163 1.3 oster /* 164 1.3 oster * There isn't any parity. Call it "okay." 165 1.3 oster */ 166 1.3 oster return (RF_PARITY_OKAY); 167 1.3 oster } 168 1.3 oster rc = RF_PARITY_OKAY; 169 1.3 oster if (lp->VerifyParity) { 170 1.3 oster for (doasm = aasm; doasm; doasm = doasm->next) { 171 1.28 perry for (parityPDA = doasm->parityInfo; parityPDA; 172 1.4 oster parityPDA = parityPDA->next) { 173 1.28 perry lrc = lp->VerifyParity(raidPtr, 174 1.28 perry doasm->raidAddress, 175 1.4 oster parityPDA, 176 1.4 oster correct_it, flags); 177 1.3 oster if (lrc > rc) { 178 1.3 oster /* see rf_parityscan.h for why this 179 1.3 oster * works */ 180 1.3 oster rc = lrc; 181 1.3 oster } 182 1.3 oster } 183 1.3 oster } 184 1.3 oster } else { 185 1.3 oster rc = RF_PARITY_COULD_NOT_VERIFY; 186 1.3 oster } 187 1.3 oster return (rc); 188 1.1 oster } 189 1.1 oster 190 1.28 perry int 191 1.22 oster rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr, 192 1.22 oster RF_PhysDiskAddr_t *parityPDA, int correct_it, 193 1.22 oster RF_RaidAccessFlags_t flags) 194 1.1 oster { 195 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); 196 1.4 oster RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, 197 1.4 oster raidAddr); 198 1.3 oster RF_SectorCount_t numsector = parityPDA->numSector; 199 1.3 oster int numbytes = rf_RaidAddressToByte(raidPtr, numsector); 200 1.3 oster int bytesPerStripe = numbytes * layoutPtr->numDataCol; 201 1.3 oster RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */ 202 1.16 oster RF_DagNode_t *blockNode, *wrBlock; 203 1.3 oster RF_AccessStripeMapHeader_t *asm_h; 204 1.3 oster RF_AccessStripeMap_t *asmap; 205 1.3 oster RF_AllocListElem_t *alloclist; 206 1.3 oster RF_PhysDiskAddr_t *pda; 207 1.29 christos char *pbuf, *bf, *end_p, *p; 208 1.3 oster int i, retcode; 209 1.3 oster RF_ReconUnitNum_t which_ru; 210 1.28 perry RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, 211 1.28 perry raidAddr, 212 1.4 oster &which_ru); 213 1.3 oster int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 214 1.24 oster #if RF_ACC_TRACE > 0 215 1.3 oster RF_AccTraceEntry_t tracerec; 216 1.24 oster #endif 217 1.3 oster RF_MCPair_t *mcpair; 218 1.3 oster 219 1.3 oster retcode = RF_PARITY_OKAY; 220 1.3 oster 221 1.37 oster mcpair = rf_AllocMCPair(raidPtr); 222 1.3 oster rf_MakeAllocList(alloclist); 223 1.35 christos bf = RF_MallocAndAdd(numbytes 224 1.35 christos * (layoutPtr->numDataCol + layoutPtr->numParityCol), alloclist); 225 1.35 christos pbuf = RF_MallocAndAdd(numbytes, alloclist); 226 1.29 christos end_p = bf + bytesPerStripe; 227 1.3 oster 228 1.29 christos rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, bf, rf_DiskReadFunc, rf_DiskReadUndoFunc, 229 1.3 oster "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY); 230 1.3 oster blockNode = rd_dag_h->succedents[0]; 231 1.3 oster 232 1.3 oster /* map the stripe and fill in the PDAs in the dag */ 233 1.29 christos asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, bf, RF_DONT_REMAP); 234 1.3 oster asmap = asm_h->stripeMap; 235 1.3 oster 236 1.3 oster for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { 237 1.3 oster RF_ASSERT(pda); 238 1.3 oster rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); 239 1.3 oster RF_ASSERT(pda->numSector != 0); 240 1.3 oster if (rf_TryToRedirectPDA(raidPtr, pda, 0)) 241 1.3 oster goto out; /* no way to verify parity if disk is 242 1.3 oster * dead. return w/ good status */ 243 1.3 oster blockNode->succedents[i]->params[0].p = pda; 244 1.3 oster blockNode->succedents[i]->params[2].v = psID; 245 1.23 oster blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); 246 1.3 oster } 247 1.3 oster 248 1.3 oster RF_ASSERT(!asmap->parityInfo->next); 249 1.3 oster rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1); 250 1.3 oster RF_ASSERT(asmap->parityInfo->numSector != 0); 251 1.3 oster if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1)) 252 1.3 oster goto out; 253 1.3 oster blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo; 254 1.3 oster 255 1.3 oster /* fire off the DAG */ 256 1.24 oster #if RF_ACC_TRACE > 0 257 1.35 christos memset(&tracerec, 0, sizeof(tracerec)); 258 1.3 oster rd_dag_h->tracerec = &tracerec; 259 1.24 oster #endif 260 1.13 oster #if 0 261 1.3 oster if (rf_verifyParityDebug) { 262 1.3 oster printf("Parity verify read dag:\n"); 263 1.3 oster rf_PrintDAGList(rd_dag_h); 264 1.3 oster } 265 1.13 oster #endif 266 1.34 mrg RF_LOCK_MCPAIR(mcpair); 267 1.3 oster mcpair->flag = 0; 268 1.34 mrg RF_UNLOCK_MCPAIR(mcpair); 269 1.25 oster 270 1.3 oster rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, 271 1.3 oster (void *) mcpair); 272 1.25 oster 273 1.34 mrg RF_LOCK_MCPAIR(mcpair); 274 1.3 oster while (!mcpair->flag) 275 1.34 mrg RF_WAIT_MCPAIR(mcpair); 276 1.34 mrg RF_UNLOCK_MCPAIR(mcpair); 277 1.3 oster if (rd_dag_h->status != rf_enable) { 278 1.3 oster RF_ERRORMSG("Unable to verify parity: can't read the stripe\n"); 279 1.3 oster retcode = RF_PARITY_COULD_NOT_VERIFY; 280 1.3 oster goto out; 281 1.3 oster } 282 1.29 christos for (p = bf; p < end_p; p += numbytes) { 283 1.21 oster rf_bxor(p, pbuf, numbytes); 284 1.3 oster } 285 1.3 oster for (i = 0; i < numbytes; i++) { 286 1.29 christos if (pbuf[i] != bf[bytesPerStripe + i]) { 287 1.3 oster if (!correct_it) 288 1.3 oster RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n", 289 1.29 christos i, (u_char) bf[bytesPerStripe + i], (u_char) pbuf[i]); 290 1.3 oster retcode = RF_PARITY_BAD; 291 1.3 oster break; 292 1.3 oster } 293 1.3 oster } 294 1.1 oster 295 1.3 oster if (retcode && correct_it) { 296 1.3 oster wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, 297 1.3 oster "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY); 298 1.3 oster wrBlock = wr_dag_h->succedents[0]; 299 1.3 oster wrBlock->succedents[0]->params[0].p = asmap->parityInfo; 300 1.3 oster wrBlock->succedents[0]->params[2].v = psID; 301 1.23 oster wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); 302 1.24 oster #if RF_ACC_TRACE > 0 303 1.35 christos memset(&tracerec, 0, sizeof(tracerec)); 304 1.3 oster wr_dag_h->tracerec = &tracerec; 305 1.24 oster #endif 306 1.13 oster #if 0 307 1.3 oster if (rf_verifyParityDebug) { 308 1.3 oster printf("Parity verify write dag:\n"); 309 1.3 oster rf_PrintDAGList(wr_dag_h); 310 1.3 oster } 311 1.13 oster #endif 312 1.34 mrg RF_LOCK_MCPAIR(mcpair); 313 1.3 oster mcpair->flag = 0; 314 1.34 mrg RF_UNLOCK_MCPAIR(mcpair); 315 1.25 oster 316 1.3 oster rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, 317 1.3 oster (void *) mcpair); 318 1.25 oster 319 1.34 mrg RF_LOCK_MCPAIR(mcpair); 320 1.3 oster while (!mcpair->flag) 321 1.34 mrg RF_WAIT_MCPAIR(mcpair); 322 1.34 mrg RF_UNLOCK_MCPAIR(mcpair); 323 1.3 oster if (wr_dag_h->status != rf_enable) { 324 1.3 oster RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n"); 325 1.3 oster retcode = RF_PARITY_COULD_NOT_CORRECT; 326 1.3 oster } 327 1.3 oster rf_FreeDAG(wr_dag_h); 328 1.3 oster if (retcode == RF_PARITY_BAD) 329 1.3 oster retcode = RF_PARITY_CORRECTED; 330 1.3 oster } 331 1.1 oster out: 332 1.37 oster rf_FreeAccessStripeMap(raidPtr, asm_h); 333 1.3 oster rf_FreeAllocList(alloclist); 334 1.3 oster rf_FreeDAG(rd_dag_h); 335 1.37 oster rf_FreeMCPair(raidPtr, mcpair); 336 1.3 oster return (retcode); 337 1.1 oster } 338 1.1 oster 339 1.28 perry int 340 1.31 christos rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda, 341 1.32 christos int parity) 342 1.1 oster { 343 1.19 oster if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) { 344 1.19 oster if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) { 345 1.26 oster #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 346 1.3 oster if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 347 1.14 oster #if RF_DEBUG_VERIFYPARITY 348 1.19 oster RF_RowCol_t oc = pda->col; 349 1.3 oster RF_SectorNum_t os = pda->startSector; 350 1.14 oster #endif 351 1.3 oster if (parity) { 352 1.19 oster (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP); 353 1.14 oster #if RF_DEBUG_VERIFYPARITY 354 1.3 oster if (rf_verifyParityDebug) 355 1.19 oster printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n", 356 1.19 oster oc, (long) os, pda->col, (long) pda->startSector); 357 1.14 oster #endif 358 1.3 oster } else { 359 1.19 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP); 360 1.14 oster #if RF_DEBUG_VERIFYPARITY 361 1.3 oster if (rf_verifyParityDebug) 362 1.19 oster printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n", 363 1.19 oster oc, (long) os, pda->col, (long) pda->startSector); 364 1.14 oster #endif 365 1.3 oster } 366 1.3 oster } else { 367 1.26 oster #endif 368 1.19 oster RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol; 369 1.3 oster pda->col = spCol; 370 1.26 oster #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 371 1.3 oster } 372 1.26 oster #endif 373 1.3 oster } 374 1.3 oster } 375 1.19 oster if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status)) 376 1.3 oster return (1); 377 1.3 oster return (0); 378 1.1 oster } 379 1.22 oster /***************************************************************************** 380 1.1 oster * 381 1.1 oster * currently a stub. 382 1.1 oster * 383 1.22 oster * takes as input an ASM describing a write operation and containing 384 1.22 oster * one failure, and verifies that the parity was correctly updated to 385 1.22 oster * reflect the write. 386 1.22 oster * 387 1.22 oster * if it's a data unit that's failed, we read the other data units in 388 1.22 oster * the stripe and the parity unit, XOR them together, and verify that 389 1.22 oster * we get the data intended for the failed disk. Since it's easy, we 390 1.22 oster * also validate that the right data got written to the surviving data 391 1.22 oster * disks. 392 1.22 oster * 393 1.22 oster * If it's the parity that failed, there's really no validation we can 394 1.22 oster * do except the above verification that the right data got written to 395 1.22 oster * all disks. This is because the new data intended for the failed 396 1.22 oster * disk is supplied in the ASM, but this is of course not the case for 397 1.22 oster * the new parity. 398 1.1 oster * 399 1.22 oster ****************************************************************************/ 400 1.15 oster #if 0 401 1.28 perry int 402 1.22 oster rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh) 403 1.1 oster { 404 1.3 oster return (0); 405 1.1 oster } 406 1.15 oster #endif 407 1.1 oster /* creates a simple DAG with a header, a block-recon node at level 1, 408 1.22 oster * nNodes nodes at level 2, an unblock-recon node at level 3, and a 409 1.22 oster * terminator node at level 4. The stripe address field in the block 410 1.22 oster * and unblock nodes are not touched, nor are the pda fields in the 411 1.22 oster * second-level nodes, so they must be filled in later. 412 1.1 oster * 413 1.1 oster * commit point is established at unblock node - this means that any 414 1.28 perry * failure during dag execution causes the dag to fail 415 1.22 oster * 416 1.22 oster * name - node names at the second level 417 1.1 oster */ 418 1.3 oster RF_DagHeader_t * 419 1.22 oster rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf, 420 1.36 christos void (*doFunc) (RF_DagNode_t * node), 421 1.36 christos void (*undoFunc) (RF_DagNode_t * node), 422 1.29 christos const char *name, RF_AllocListElem_t *alloclist, 423 1.32 christos RF_RaidAccessFlags_t flags, int priority) 424 1.1 oster { 425 1.3 oster RF_DagHeader_t *dag_h; 426 1.27 oster RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode; 427 1.3 oster int i; 428 1.3 oster 429 1.27 oster /* grab a DAG header... */ 430 1.3 oster 431 1.37 oster dag_h = rf_AllocDAGHeader(raidPtr); 432 1.3 oster dag_h->raidPtr = (void *) raidPtr; 433 1.3 oster dag_h->allocList = NULL;/* we won't use this alloc list */ 434 1.3 oster dag_h->status = rf_enable; 435 1.3 oster dag_h->numSuccedents = 1; 436 1.3 oster dag_h->creator = "SimpleDAG"; 437 1.3 oster 438 1.3 oster /* this dag can not commit until the unblock node is reached errors 439 1.3 oster * prior to the commit point imply the dag has failed */ 440 1.3 oster dag_h->numCommitNodes = 1; 441 1.3 oster dag_h->numCommits = 0; 442 1.3 oster 443 1.27 oster /* create the nodes, the block & unblock nodes, and the terminator 444 1.27 oster * node */ 445 1.27 oster 446 1.27 oster for (i = 0; i < nNodes; i++) { 447 1.37 oster tmpNode = rf_AllocDAGNode(raidPtr); 448 1.27 oster tmpNode->list_next = dag_h->nodes; 449 1.27 oster dag_h->nodes = tmpNode; 450 1.27 oster } 451 1.27 oster nodes = dag_h->nodes; 452 1.27 oster 453 1.37 oster blockNode = rf_AllocDAGNode(raidPtr); 454 1.27 oster blockNode->list_next = dag_h->nodes; 455 1.27 oster dag_h->nodes = blockNode; 456 1.27 oster 457 1.37 oster unblockNode = rf_AllocDAGNode(raidPtr); 458 1.27 oster unblockNode->list_next = dag_h->nodes; 459 1.27 oster dag_h->nodes = unblockNode; 460 1.27 oster 461 1.37 oster termNode = rf_AllocDAGNode(raidPtr); 462 1.27 oster termNode->list_next = dag_h->nodes; 463 1.27 oster dag_h->nodes = termNode; 464 1.27 oster 465 1.3 oster dag_h->succedents[0] = blockNode; 466 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist); 467 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist); 468 1.3 oster unblockNode->succedents[0] = termNode; 469 1.27 oster tmpNode = nodes; 470 1.3 oster for (i = 0; i < nNodes; i++) { 471 1.27 oster blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode; 472 1.3 oster unblockNode->antType[i] = rf_control; 473 1.27 oster rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist); 474 1.27 oster tmpNode->succedents[0] = unblockNode; 475 1.27 oster tmpNode->antecedents[0] = blockNode; 476 1.27 oster tmpNode->antType[0] = rf_control; 477 1.27 oster tmpNode->params[1].p = (databuf + (i * bytesPerSU)); 478 1.27 oster tmpNode = tmpNode->list_next; 479 1.3 oster } 480 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist); 481 1.3 oster termNode->antecedents[0] = unblockNode; 482 1.3 oster termNode->antType[0] = rf_control; 483 1.3 oster return (dag_h); 484 1.1 oster } 485