rf_parityscan.c revision 1.36 1 1.36 christos /* $NetBSD: rf_parityscan.c,v 1.36 2019/10/10 03:43:59 christos Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*****************************************************************************
30 1.1 oster *
31 1.1 oster * rf_parityscan.c -- misc utilities related to parity verification
32 1.1 oster *
33 1.22 oster ****************************************************************************/
34 1.12 lukem
35 1.12 lukem #include <sys/cdefs.h>
36 1.36 christos __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.36 2019/10/10 03:43:59 christos Exp $");
37 1.1 oster
38 1.11 oster #include <dev/raidframe/raidframevar.h>
39 1.11 oster
40 1.1 oster #include "rf_raid.h"
41 1.1 oster #include "rf_dag.h"
42 1.1 oster #include "rf_dagfuncs.h"
43 1.1 oster #include "rf_dagutils.h"
44 1.1 oster #include "rf_mcpair.h"
45 1.1 oster #include "rf_general.h"
46 1.1 oster #include "rf_engine.h"
47 1.1 oster #include "rf_parityscan.h"
48 1.1 oster #include "rf_map.h"
49 1.33 jld #include "rf_paritymap.h"
50 1.1 oster
51 1.22 oster /*****************************************************************************
52 1.1 oster *
53 1.22 oster * walk through the entire arry and write new parity. This works by
54 1.22 oster * creating two DAGs, one to read a stripe of data and one to write
55 1.22 oster * new parity. The first is executed, the data is xored together, and
56 1.22 oster * then the second is executed. To avoid constantly building and
57 1.22 oster * tearing down the DAGs, we create them a priori and fill them in
58 1.22 oster * with the mapping information as we go along.
59 1.1 oster *
60 1.1 oster * there should never be more than one thread running this.
61 1.1 oster *
62 1.22 oster ****************************************************************************/
63 1.1 oster
64 1.28 perry int
65 1.22 oster rf_RewriteParity(RF_Raid_t *raidPtr)
66 1.1 oster {
67 1.33 jld if (raidPtr->parity_map != NULL)
68 1.33 jld return rf_paritymap_rewrite(raidPtr->parity_map);
69 1.33 jld else
70 1.33 jld return rf_RewriteParityRange(raidPtr, 0, raidPtr->totalSectors);
71 1.33 jld }
72 1.33 jld
73 1.33 jld int
74 1.33 jld rf_RewriteParityRange(RF_Raid_t *raidPtr, RF_SectorNum_t sec_begin,
75 1.33 jld RF_SectorNum_t sec_len)
76 1.33 jld {
77 1.33 jld /*
78 1.33 jld * Note: It is the caller's responsibility to ensure that
79 1.33 jld * sec_begin and sec_len are stripe-aligned.
80 1.33 jld */
81 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
82 1.3 oster RF_AccessStripeMapHeader_t *asm_h;
83 1.6 oster int ret_val;
84 1.4 oster int rc;
85 1.3 oster RF_SectorNum_t i;
86 1.5 oster
87 1.5 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
88 1.5 oster /* There isn't any parity. Call it "okay." */
89 1.5 oster return (RF_PARITY_OKAY);
90 1.5 oster }
91 1.19 oster if (raidPtr->status != rf_rs_optimal) {
92 1.5 oster /*
93 1.28 perry * We're in degraded mode. Don't try to verify parity now!
94 1.28 perry * XXX: this should be a "we don't want to", not a
95 1.28 perry * "we can't" error.
96 1.5 oster */
97 1.5 oster return (RF_PARITY_COULD_NOT_VERIFY);
98 1.5 oster }
99 1.3 oster
100 1.6 oster ret_val = 0;
101 1.6 oster
102 1.6 oster rc = RF_PARITY_OKAY;
103 1.1 oster
104 1.33 jld for (i = sec_begin; i < sec_begin + sec_len &&
105 1.28 perry rc <= RF_PARITY_CORRECTED;
106 1.4 oster i += layoutPtr->dataSectorsPerStripe) {
107 1.9 oster if (raidPtr->waitShutdown) {
108 1.9 oster /* Someone is pulling the plug on this set...
109 1.9 oster abort the re-write */
110 1.9 oster return (1);
111 1.9 oster }
112 1.28 perry asm_h = rf_MapAccess(raidPtr, i,
113 1.28 perry layoutPtr->dataSectorsPerStripe,
114 1.4 oster NULL, RF_DONT_REMAP);
115 1.28 perry raidPtr->parity_rewrite_stripes_done =
116 1.8 oster i / layoutPtr->dataSectorsPerStripe ;
117 1.3 oster rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
118 1.4 oster
119 1.3 oster switch (rc) {
120 1.3 oster case RF_PARITY_OKAY:
121 1.3 oster case RF_PARITY_CORRECTED:
122 1.3 oster break;
123 1.3 oster case RF_PARITY_BAD:
124 1.3 oster printf("Parity bad during correction\n");
125 1.6 oster ret_val = 1;
126 1.3 oster break;
127 1.3 oster case RF_PARITY_COULD_NOT_CORRECT:
128 1.3 oster printf("Could not correct bad parity\n");
129 1.6 oster ret_val = 1;
130 1.3 oster break;
131 1.3 oster case RF_PARITY_COULD_NOT_VERIFY:
132 1.3 oster printf("Could not verify parity\n");
133 1.6 oster ret_val = 1;
134 1.3 oster break;
135 1.3 oster default:
136 1.3 oster printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
137 1.6 oster ret_val = 1;
138 1.3 oster }
139 1.3 oster rf_FreeAccessStripeMap(asm_h);
140 1.3 oster }
141 1.6 oster return (ret_val);
142 1.1 oster }
143 1.22 oster /*****************************************************************************
144 1.1 oster *
145 1.22 oster * verify that the parity in a particular stripe is correct. we
146 1.22 oster * validate only the range of parity defined by parityPDA, since this
147 1.22 oster * is all we have locked. The way we do this is to create an asm that
148 1.22 oster * maps the whole stripe and then range-restrict it to the parity
149 1.1 oster * region defined by the parityPDA.
150 1.1 oster *
151 1.22 oster ****************************************************************************/
152 1.28 perry int
153 1.22 oster rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm,
154 1.22 oster int correct_it, RF_RaidAccessFlags_t flags)
155 1.1 oster {
156 1.3 oster RF_PhysDiskAddr_t *parityPDA;
157 1.3 oster RF_AccessStripeMap_t *doasm;
158 1.18 jdolecek const RF_LayoutSW_t *lp;
159 1.3 oster int lrc, rc;
160 1.3 oster
161 1.3 oster lp = raidPtr->Layout.map;
162 1.3 oster if (lp->faultsTolerated == 0) {
163 1.3 oster /*
164 1.3 oster * There isn't any parity. Call it "okay."
165 1.3 oster */
166 1.3 oster return (RF_PARITY_OKAY);
167 1.3 oster }
168 1.3 oster rc = RF_PARITY_OKAY;
169 1.3 oster if (lp->VerifyParity) {
170 1.3 oster for (doasm = aasm; doasm; doasm = doasm->next) {
171 1.28 perry for (parityPDA = doasm->parityInfo; parityPDA;
172 1.4 oster parityPDA = parityPDA->next) {
173 1.28 perry lrc = lp->VerifyParity(raidPtr,
174 1.28 perry doasm->raidAddress,
175 1.4 oster parityPDA,
176 1.4 oster correct_it, flags);
177 1.3 oster if (lrc > rc) {
178 1.3 oster /* see rf_parityscan.h for why this
179 1.3 oster * works */
180 1.3 oster rc = lrc;
181 1.3 oster }
182 1.3 oster }
183 1.3 oster }
184 1.3 oster } else {
185 1.3 oster rc = RF_PARITY_COULD_NOT_VERIFY;
186 1.3 oster }
187 1.3 oster return (rc);
188 1.1 oster }
189 1.1 oster
190 1.28 perry int
191 1.22 oster rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
192 1.22 oster RF_PhysDiskAddr_t *parityPDA, int correct_it,
193 1.22 oster RF_RaidAccessFlags_t flags)
194 1.1 oster {
195 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
196 1.4 oster RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
197 1.4 oster raidAddr);
198 1.3 oster RF_SectorCount_t numsector = parityPDA->numSector;
199 1.3 oster int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
200 1.3 oster int bytesPerStripe = numbytes * layoutPtr->numDataCol;
201 1.3 oster RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
202 1.16 oster RF_DagNode_t *blockNode, *wrBlock;
203 1.3 oster RF_AccessStripeMapHeader_t *asm_h;
204 1.3 oster RF_AccessStripeMap_t *asmap;
205 1.3 oster RF_AllocListElem_t *alloclist;
206 1.3 oster RF_PhysDiskAddr_t *pda;
207 1.29 christos char *pbuf, *bf, *end_p, *p;
208 1.3 oster int i, retcode;
209 1.3 oster RF_ReconUnitNum_t which_ru;
210 1.28 perry RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
211 1.28 perry raidAddr,
212 1.4 oster &which_ru);
213 1.3 oster int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
214 1.24 oster #if RF_ACC_TRACE > 0
215 1.3 oster RF_AccTraceEntry_t tracerec;
216 1.24 oster #endif
217 1.3 oster RF_MCPair_t *mcpair;
218 1.3 oster
219 1.3 oster retcode = RF_PARITY_OKAY;
220 1.3 oster
221 1.3 oster mcpair = rf_AllocMCPair();
222 1.3 oster rf_MakeAllocList(alloclist);
223 1.35 christos bf = RF_MallocAndAdd(numbytes
224 1.35 christos * (layoutPtr->numDataCol + layoutPtr->numParityCol), alloclist);
225 1.35 christos pbuf = RF_MallocAndAdd(numbytes, alloclist);
226 1.29 christos end_p = bf + bytesPerStripe;
227 1.3 oster
228 1.29 christos rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, bf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
229 1.3 oster "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
230 1.3 oster blockNode = rd_dag_h->succedents[0];
231 1.3 oster
232 1.3 oster /* map the stripe and fill in the PDAs in the dag */
233 1.29 christos asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, bf, RF_DONT_REMAP);
234 1.3 oster asmap = asm_h->stripeMap;
235 1.3 oster
236 1.3 oster for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
237 1.3 oster RF_ASSERT(pda);
238 1.3 oster rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
239 1.3 oster RF_ASSERT(pda->numSector != 0);
240 1.3 oster if (rf_TryToRedirectPDA(raidPtr, pda, 0))
241 1.3 oster goto out; /* no way to verify parity if disk is
242 1.3 oster * dead. return w/ good status */
243 1.3 oster blockNode->succedents[i]->params[0].p = pda;
244 1.3 oster blockNode->succedents[i]->params[2].v = psID;
245 1.23 oster blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
246 1.3 oster }
247 1.3 oster
248 1.3 oster RF_ASSERT(!asmap->parityInfo->next);
249 1.3 oster rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
250 1.3 oster RF_ASSERT(asmap->parityInfo->numSector != 0);
251 1.3 oster if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
252 1.3 oster goto out;
253 1.3 oster blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
254 1.3 oster
255 1.3 oster /* fire off the DAG */
256 1.24 oster #if RF_ACC_TRACE > 0
257 1.35 christos memset(&tracerec, 0, sizeof(tracerec));
258 1.3 oster rd_dag_h->tracerec = &tracerec;
259 1.24 oster #endif
260 1.13 oster #if 0
261 1.3 oster if (rf_verifyParityDebug) {
262 1.3 oster printf("Parity verify read dag:\n");
263 1.3 oster rf_PrintDAGList(rd_dag_h);
264 1.3 oster }
265 1.13 oster #endif
266 1.34 mrg RF_LOCK_MCPAIR(mcpair);
267 1.3 oster mcpair->flag = 0;
268 1.34 mrg RF_UNLOCK_MCPAIR(mcpair);
269 1.25 oster
270 1.3 oster rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
271 1.3 oster (void *) mcpair);
272 1.25 oster
273 1.34 mrg RF_LOCK_MCPAIR(mcpair);
274 1.3 oster while (!mcpair->flag)
275 1.34 mrg RF_WAIT_MCPAIR(mcpair);
276 1.34 mrg RF_UNLOCK_MCPAIR(mcpair);
277 1.3 oster if (rd_dag_h->status != rf_enable) {
278 1.3 oster RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
279 1.3 oster retcode = RF_PARITY_COULD_NOT_VERIFY;
280 1.3 oster goto out;
281 1.3 oster }
282 1.29 christos for (p = bf; p < end_p; p += numbytes) {
283 1.21 oster rf_bxor(p, pbuf, numbytes);
284 1.3 oster }
285 1.3 oster for (i = 0; i < numbytes; i++) {
286 1.29 christos if (pbuf[i] != bf[bytesPerStripe + i]) {
287 1.3 oster if (!correct_it)
288 1.3 oster RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
289 1.29 christos i, (u_char) bf[bytesPerStripe + i], (u_char) pbuf[i]);
290 1.3 oster retcode = RF_PARITY_BAD;
291 1.3 oster break;
292 1.3 oster }
293 1.3 oster }
294 1.1 oster
295 1.3 oster if (retcode && correct_it) {
296 1.3 oster wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
297 1.3 oster "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
298 1.3 oster wrBlock = wr_dag_h->succedents[0];
299 1.3 oster wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
300 1.3 oster wrBlock->succedents[0]->params[2].v = psID;
301 1.23 oster wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
302 1.24 oster #if RF_ACC_TRACE > 0
303 1.35 christos memset(&tracerec, 0, sizeof(tracerec));
304 1.3 oster wr_dag_h->tracerec = &tracerec;
305 1.24 oster #endif
306 1.13 oster #if 0
307 1.3 oster if (rf_verifyParityDebug) {
308 1.3 oster printf("Parity verify write dag:\n");
309 1.3 oster rf_PrintDAGList(wr_dag_h);
310 1.3 oster }
311 1.13 oster #endif
312 1.34 mrg RF_LOCK_MCPAIR(mcpair);
313 1.3 oster mcpair->flag = 0;
314 1.34 mrg RF_UNLOCK_MCPAIR(mcpair);
315 1.25 oster
316 1.3 oster rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
317 1.3 oster (void *) mcpair);
318 1.25 oster
319 1.34 mrg RF_LOCK_MCPAIR(mcpair);
320 1.3 oster while (!mcpair->flag)
321 1.34 mrg RF_WAIT_MCPAIR(mcpair);
322 1.34 mrg RF_UNLOCK_MCPAIR(mcpair);
323 1.3 oster if (wr_dag_h->status != rf_enable) {
324 1.3 oster RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
325 1.3 oster retcode = RF_PARITY_COULD_NOT_CORRECT;
326 1.3 oster }
327 1.3 oster rf_FreeDAG(wr_dag_h);
328 1.3 oster if (retcode == RF_PARITY_BAD)
329 1.3 oster retcode = RF_PARITY_CORRECTED;
330 1.3 oster }
331 1.1 oster out:
332 1.3 oster rf_FreeAccessStripeMap(asm_h);
333 1.3 oster rf_FreeAllocList(alloclist);
334 1.3 oster rf_FreeDAG(rd_dag_h);
335 1.3 oster rf_FreeMCPair(mcpair);
336 1.3 oster return (retcode);
337 1.1 oster }
338 1.1 oster
339 1.28 perry int
340 1.31 christos rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
341 1.32 christos int parity)
342 1.1 oster {
343 1.19 oster if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) {
344 1.19 oster if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
345 1.26 oster #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
346 1.3 oster if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
347 1.14 oster #if RF_DEBUG_VERIFYPARITY
348 1.19 oster RF_RowCol_t oc = pda->col;
349 1.3 oster RF_SectorNum_t os = pda->startSector;
350 1.14 oster #endif
351 1.3 oster if (parity) {
352 1.19 oster (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
353 1.14 oster #if RF_DEBUG_VERIFYPARITY
354 1.3 oster if (rf_verifyParityDebug)
355 1.19 oster printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n",
356 1.19 oster oc, (long) os, pda->col, (long) pda->startSector);
357 1.14 oster #endif
358 1.3 oster } else {
359 1.19 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
360 1.14 oster #if RF_DEBUG_VERIFYPARITY
361 1.3 oster if (rf_verifyParityDebug)
362 1.19 oster printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n",
363 1.19 oster oc, (long) os, pda->col, (long) pda->startSector);
364 1.14 oster #endif
365 1.3 oster }
366 1.3 oster } else {
367 1.26 oster #endif
368 1.19 oster RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol;
369 1.3 oster pda->col = spCol;
370 1.26 oster #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
371 1.3 oster }
372 1.26 oster #endif
373 1.3 oster }
374 1.3 oster }
375 1.19 oster if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status))
376 1.3 oster return (1);
377 1.3 oster return (0);
378 1.1 oster }
379 1.22 oster /*****************************************************************************
380 1.1 oster *
381 1.1 oster * currently a stub.
382 1.1 oster *
383 1.22 oster * takes as input an ASM describing a write operation and containing
384 1.22 oster * one failure, and verifies that the parity was correctly updated to
385 1.22 oster * reflect the write.
386 1.22 oster *
387 1.22 oster * if it's a data unit that's failed, we read the other data units in
388 1.22 oster * the stripe and the parity unit, XOR them together, and verify that
389 1.22 oster * we get the data intended for the failed disk. Since it's easy, we
390 1.22 oster * also validate that the right data got written to the surviving data
391 1.22 oster * disks.
392 1.22 oster *
393 1.22 oster * If it's the parity that failed, there's really no validation we can
394 1.22 oster * do except the above verification that the right data got written to
395 1.22 oster * all disks. This is because the new data intended for the failed
396 1.22 oster * disk is supplied in the ASM, but this is of course not the case for
397 1.22 oster * the new parity.
398 1.1 oster *
399 1.22 oster ****************************************************************************/
400 1.15 oster #if 0
401 1.28 perry int
402 1.22 oster rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh)
403 1.1 oster {
404 1.3 oster return (0);
405 1.1 oster }
406 1.15 oster #endif
407 1.1 oster /* creates a simple DAG with a header, a block-recon node at level 1,
408 1.22 oster * nNodes nodes at level 2, an unblock-recon node at level 3, and a
409 1.22 oster * terminator node at level 4. The stripe address field in the block
410 1.22 oster * and unblock nodes are not touched, nor are the pda fields in the
411 1.22 oster * second-level nodes, so they must be filled in later.
412 1.1 oster *
413 1.1 oster * commit point is established at unblock node - this means that any
414 1.28 perry * failure during dag execution causes the dag to fail
415 1.22 oster *
416 1.22 oster * name - node names at the second level
417 1.1 oster */
418 1.3 oster RF_DagHeader_t *
419 1.22 oster rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf,
420 1.36 christos void (*doFunc) (RF_DagNode_t * node),
421 1.36 christos void (*undoFunc) (RF_DagNode_t * node),
422 1.29 christos const char *name, RF_AllocListElem_t *alloclist,
423 1.32 christos RF_RaidAccessFlags_t flags, int priority)
424 1.1 oster {
425 1.3 oster RF_DagHeader_t *dag_h;
426 1.27 oster RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode;
427 1.3 oster int i;
428 1.3 oster
429 1.27 oster /* grab a DAG header... */
430 1.3 oster
431 1.3 oster dag_h = rf_AllocDAGHeader();
432 1.3 oster dag_h->raidPtr = (void *) raidPtr;
433 1.3 oster dag_h->allocList = NULL;/* we won't use this alloc list */
434 1.3 oster dag_h->status = rf_enable;
435 1.3 oster dag_h->numSuccedents = 1;
436 1.3 oster dag_h->creator = "SimpleDAG";
437 1.3 oster
438 1.3 oster /* this dag can not commit until the unblock node is reached errors
439 1.3 oster * prior to the commit point imply the dag has failed */
440 1.3 oster dag_h->numCommitNodes = 1;
441 1.3 oster dag_h->numCommits = 0;
442 1.3 oster
443 1.27 oster /* create the nodes, the block & unblock nodes, and the terminator
444 1.27 oster * node */
445 1.27 oster
446 1.27 oster for (i = 0; i < nNodes; i++) {
447 1.27 oster tmpNode = rf_AllocDAGNode();
448 1.27 oster tmpNode->list_next = dag_h->nodes;
449 1.27 oster dag_h->nodes = tmpNode;
450 1.27 oster }
451 1.27 oster nodes = dag_h->nodes;
452 1.27 oster
453 1.27 oster blockNode = rf_AllocDAGNode();
454 1.27 oster blockNode->list_next = dag_h->nodes;
455 1.27 oster dag_h->nodes = blockNode;
456 1.27 oster
457 1.27 oster unblockNode = rf_AllocDAGNode();
458 1.27 oster unblockNode->list_next = dag_h->nodes;
459 1.27 oster dag_h->nodes = unblockNode;
460 1.27 oster
461 1.27 oster termNode = rf_AllocDAGNode();
462 1.27 oster termNode->list_next = dag_h->nodes;
463 1.27 oster dag_h->nodes = termNode;
464 1.27 oster
465 1.3 oster dag_h->succedents[0] = blockNode;
466 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
467 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
468 1.3 oster unblockNode->succedents[0] = termNode;
469 1.27 oster tmpNode = nodes;
470 1.3 oster for (i = 0; i < nNodes; i++) {
471 1.27 oster blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode;
472 1.3 oster unblockNode->antType[i] = rf_control;
473 1.27 oster rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
474 1.27 oster tmpNode->succedents[0] = unblockNode;
475 1.27 oster tmpNode->antecedents[0] = blockNode;
476 1.27 oster tmpNode->antType[0] = rf_control;
477 1.27 oster tmpNode->params[1].p = (databuf + (i * bytesPerSU));
478 1.27 oster tmpNode = tmpNode->list_next;
479 1.3 oster }
480 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
481 1.3 oster termNode->antecedents[0] = unblockNode;
482 1.3 oster termNode->antType[0] = rf_control;
483 1.3 oster return (dag_h);
484 1.1 oster }
485