rf_parityscan.c revision 1.14 1 /* $NetBSD: rf_parityscan.c,v 1.14 2002/09/14 17:11:30 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_parityscan.c -- misc utilities related to parity verification
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.14 2002/09/14 17:11:30 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_raid.h"
41 #include "rf_dag.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_dagutils.h"
44 #include "rf_mcpair.h"
45 #include "rf_general.h"
46 #include "rf_engine.h"
47 #include "rf_parityscan.h"
48 #include "rf_map.h"
49
50 /*****************************************************************************************
51 *
52 * walk through the entire arry and write new parity.
53 * This works by creating two DAGs, one to read a stripe of data and one to
54 * write new parity. The first is executed, the data is xored together, and
55 * then the second is executed. To avoid constantly building and tearing down
56 * the DAGs, we create them a priori and fill them in with the mapping
57 * information as we go along.
58 *
59 * there should never be more than one thread running this.
60 *
61 ****************************************************************************************/
62
63 int
64 rf_RewriteParity(raidPtr)
65 RF_Raid_t *raidPtr;
66 {
67 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
68 RF_AccessStripeMapHeader_t *asm_h;
69 int ret_val;
70 int rc;
71 RF_PhysDiskAddr_t pda;
72 RF_SectorNum_t i;
73
74 if (raidPtr->Layout.map->faultsTolerated == 0) {
75 /* There isn't any parity. Call it "okay." */
76 return (RF_PARITY_OKAY);
77 }
78 if (raidPtr->status[0] != rf_rs_optimal) {
79 /*
80 * We're in degraded mode. Don't try to verify parity now!
81 * XXX: this should be a "we don't want to", not a
82 * "we can't" error.
83 */
84 return (RF_PARITY_COULD_NOT_VERIFY);
85 }
86
87 ret_val = 0;
88
89 pda.startSector = 0;
90 pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
91 rc = RF_PARITY_OKAY;
92
93 for (i = 0; i < raidPtr->totalSectors &&
94 rc <= RF_PARITY_CORRECTED;
95 i += layoutPtr->dataSectorsPerStripe) {
96 if (raidPtr->waitShutdown) {
97 /* Someone is pulling the plug on this set...
98 abort the re-write */
99 return (1);
100 }
101 asm_h = rf_MapAccess(raidPtr, i,
102 layoutPtr->dataSectorsPerStripe,
103 NULL, RF_DONT_REMAP);
104 raidPtr->parity_rewrite_stripes_done =
105 i / layoutPtr->dataSectorsPerStripe ;
106 rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
107
108 switch (rc) {
109 case RF_PARITY_OKAY:
110 case RF_PARITY_CORRECTED:
111 break;
112 case RF_PARITY_BAD:
113 printf("Parity bad during correction\n");
114 ret_val = 1;
115 break;
116 case RF_PARITY_COULD_NOT_CORRECT:
117 printf("Could not correct bad parity\n");
118 ret_val = 1;
119 break;
120 case RF_PARITY_COULD_NOT_VERIFY:
121 printf("Could not verify parity\n");
122 ret_val = 1;
123 break;
124 default:
125 printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
126 ret_val = 1;
127 }
128 rf_FreeAccessStripeMap(asm_h);
129 }
130 return (ret_val);
131 }
132 /*****************************************************************************************
133 *
134 * verify that the parity in a particular stripe is correct.
135 * we validate only the range of parity defined by parityPDA, since
136 * this is all we have locked. The way we do this is to create an asm
137 * that maps the whole stripe and then range-restrict it to the parity
138 * region defined by the parityPDA.
139 *
140 ****************************************************************************************/
141 int
142 rf_VerifyParity(raidPtr, aasm, correct_it, flags)
143 RF_Raid_t *raidPtr;
144 RF_AccessStripeMap_t *aasm;
145 int correct_it;
146 RF_RaidAccessFlags_t flags;
147 {
148 RF_PhysDiskAddr_t *parityPDA;
149 RF_AccessStripeMap_t *doasm;
150 RF_LayoutSW_t *lp;
151 int lrc, rc;
152
153 lp = raidPtr->Layout.map;
154 if (lp->faultsTolerated == 0) {
155 /*
156 * There isn't any parity. Call it "okay."
157 */
158 return (RF_PARITY_OKAY);
159 }
160 rc = RF_PARITY_OKAY;
161 if (lp->VerifyParity) {
162 for (doasm = aasm; doasm; doasm = doasm->next) {
163 for (parityPDA = doasm->parityInfo; parityPDA;
164 parityPDA = parityPDA->next) {
165 lrc = lp->VerifyParity(raidPtr,
166 doasm->raidAddress,
167 parityPDA,
168 correct_it, flags);
169 if (lrc > rc) {
170 /* see rf_parityscan.h for why this
171 * works */
172 rc = lrc;
173 }
174 }
175 }
176 } else {
177 rc = RF_PARITY_COULD_NOT_VERIFY;
178 }
179 return (rc);
180 }
181
182 int
183 rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
184 RF_Raid_t *raidPtr;
185 RF_RaidAddr_t raidAddr;
186 RF_PhysDiskAddr_t *parityPDA;
187 int correct_it;
188 RF_RaidAccessFlags_t flags;
189 {
190 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
191 RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
192 raidAddr);
193 RF_SectorCount_t numsector = parityPDA->numSector;
194 int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
195 int bytesPerStripe = numbytes * layoutPtr->numDataCol;
196 RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
197 RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
198 RF_AccessStripeMapHeader_t *asm_h;
199 RF_AccessStripeMap_t *asmap;
200 RF_AllocListElem_t *alloclist;
201 RF_PhysDiskAddr_t *pda;
202 char *pbuf, *buf, *end_p, *p;
203 int i, retcode;
204 RF_ReconUnitNum_t which_ru;
205 RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
206 raidAddr,
207 &which_ru);
208 int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
209 RF_AccTraceEntry_t tracerec;
210 RF_MCPair_t *mcpair;
211
212 retcode = RF_PARITY_OKAY;
213
214 mcpair = rf_AllocMCPair();
215 rf_MakeAllocList(alloclist);
216 RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
217 RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make
218 * sure buffer is zeroed */
219 end_p = buf + bytesPerStripe;
220
221 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
222 "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
223 blockNode = rd_dag_h->succedents[0];
224 unblockNode = blockNode->succedents[0]->succedents[0];
225
226 /* map the stripe and fill in the PDAs in the dag */
227 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
228 asmap = asm_h->stripeMap;
229
230 for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
231 RF_ASSERT(pda);
232 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
233 RF_ASSERT(pda->numSector != 0);
234 if (rf_TryToRedirectPDA(raidPtr, pda, 0))
235 goto out; /* no way to verify parity if disk is
236 * dead. return w/ good status */
237 blockNode->succedents[i]->params[0].p = pda;
238 blockNode->succedents[i]->params[2].v = psID;
239 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
240 }
241
242 RF_ASSERT(!asmap->parityInfo->next);
243 rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
244 RF_ASSERT(asmap->parityInfo->numSector != 0);
245 if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
246 goto out;
247 blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
248
249 /* fire off the DAG */
250 memset((char *) &tracerec, 0, sizeof(tracerec));
251 rd_dag_h->tracerec = &tracerec;
252 #if 0
253 if (rf_verifyParityDebug) {
254 printf("Parity verify read dag:\n");
255 rf_PrintDAGList(rd_dag_h);
256 }
257 #endif
258 RF_LOCK_MUTEX(mcpair->mutex);
259 mcpair->flag = 0;
260 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
261 (void *) mcpair);
262 while (!mcpair->flag)
263 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
264 RF_UNLOCK_MUTEX(mcpair->mutex);
265 if (rd_dag_h->status != rf_enable) {
266 RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
267 retcode = RF_PARITY_COULD_NOT_VERIFY;
268 goto out;
269 }
270 for (p = buf; p < end_p; p += numbytes) {
271 rf_bxor(p, pbuf, numbytes, NULL);
272 }
273 for (i = 0; i < numbytes; i++) {
274 #if 0
275 if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) {
276 printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]);
277 }
278 #endif
279 if (pbuf[i] != buf[bytesPerStripe + i]) {
280 if (!correct_it)
281 RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
282 i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
283 retcode = RF_PARITY_BAD;
284 break;
285 }
286 }
287
288 if (retcode && correct_it) {
289 wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
290 "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
291 wrBlock = wr_dag_h->succedents[0];
292 wrUnblock = wrBlock->succedents[0]->succedents[0];
293 wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
294 wrBlock->succedents[0]->params[2].v = psID;
295 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
296 memset((char *) &tracerec, 0, sizeof(tracerec));
297 wr_dag_h->tracerec = &tracerec;
298 #if 0
299 if (rf_verifyParityDebug) {
300 printf("Parity verify write dag:\n");
301 rf_PrintDAGList(wr_dag_h);
302 }
303 #endif
304 RF_LOCK_MUTEX(mcpair->mutex);
305 mcpair->flag = 0;
306 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
307 (void *) mcpair);
308 while (!mcpair->flag)
309 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
310 RF_UNLOCK_MUTEX(mcpair->mutex);
311 if (wr_dag_h->status != rf_enable) {
312 RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
313 retcode = RF_PARITY_COULD_NOT_CORRECT;
314 }
315 rf_FreeDAG(wr_dag_h);
316 if (retcode == RF_PARITY_BAD)
317 retcode = RF_PARITY_CORRECTED;
318 }
319 out:
320 rf_FreeAccessStripeMap(asm_h);
321 rf_FreeAllocList(alloclist);
322 rf_FreeDAG(rd_dag_h);
323 rf_FreeMCPair(mcpair);
324 return (retcode);
325 }
326
327 int
328 rf_TryToRedirectPDA(raidPtr, pda, parity)
329 RF_Raid_t *raidPtr;
330 RF_PhysDiskAddr_t *pda;
331 int parity;
332 {
333 if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
334 if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
335 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
336 #if RF_DEBUG_VERIFYPARITY
337 RF_RowCol_t or = pda->row, oc = pda->col;
338 RF_SectorNum_t os = pda->startSector;
339 #endif
340 if (parity) {
341 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
342 #if RF_DEBUG_VERIFYPARITY
343 if (rf_verifyParityDebug)
344 printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
345 or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
346 #endif
347 } else {
348 (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
349 #if RF_DEBUG_VERIFYPARITY
350 if (rf_verifyParityDebug)
351 printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
352 or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
353 #endif
354 }
355 } else {
356 RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
357 RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
358 pda->row = spRow;
359 pda->col = spCol;
360 }
361 }
362 }
363 if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status))
364 return (1);
365 return (0);
366 }
367 /*****************************************************************************************
368 *
369 * currently a stub.
370 *
371 * takes as input an ASM describing a write operation and containing one failure, and
372 * verifies that the parity was correctly updated to reflect the write.
373 *
374 * if it's a data unit that's failed, we read the other data units in the stripe and
375 * the parity unit, XOR them together, and verify that we get the data intended for
376 * the failed disk. Since it's easy, we also validate that the right data got written
377 * to the surviving data disks.
378 *
379 * If it's the parity that failed, there's really no validation we can do except the
380 * above verification that the right data got written to all disks. This is because
381 * the new data intended for the failed disk is supplied in the ASM, but this is of
382 * course not the case for the new parity.
383 *
384 ****************************************************************************************/
385 int
386 rf_VerifyDegrModeWrite(raidPtr, asmh)
387 RF_Raid_t *raidPtr;
388 RF_AccessStripeMapHeader_t *asmh;
389 {
390 return (0);
391 }
392 /* creates a simple DAG with a header, a block-recon node at level 1,
393 * nNodes nodes at level 2, an unblock-recon node at level 3, and
394 * a terminator node at level 4. The stripe address field in
395 * the block and unblock nodes are not touched, nor are the pda
396 * fields in the second-level nodes, so they must be filled in later.
397 *
398 * commit point is established at unblock node - this means that any
399 * failure during dag execution causes the dag to fail
400 */
401 RF_DagHeader_t *
402 rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
403 RF_Raid_t *raidPtr;
404 int nNodes;
405 int bytesPerSU;
406 char *databuf;
407 int (*doFunc) (RF_DagNode_t * node);
408 int (*undoFunc) (RF_DagNode_t * node);
409 char *name; /* node names at the second level */
410 RF_AllocListElem_t *alloclist;
411 RF_RaidAccessFlags_t flags;
412 int priority;
413 {
414 RF_DagHeader_t *dag_h;
415 RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
416 int i;
417
418 /* create the nodes, the block & unblock nodes, and the terminator
419 * node */
420 RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
421 blockNode = &nodes[nNodes];
422 unblockNode = blockNode + 1;
423 termNode = unblockNode + 1;
424
425 dag_h = rf_AllocDAGHeader();
426 dag_h->raidPtr = (void *) raidPtr;
427 dag_h->allocList = NULL;/* we won't use this alloc list */
428 dag_h->status = rf_enable;
429 dag_h->numSuccedents = 1;
430 dag_h->creator = "SimpleDAG";
431
432 /* this dag can not commit until the unblock node is reached errors
433 * prior to the commit point imply the dag has failed */
434 dag_h->numCommitNodes = 1;
435 dag_h->numCommits = 0;
436
437 dag_h->succedents[0] = blockNode;
438 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
439 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
440 unblockNode->succedents[0] = termNode;
441 for (i = 0; i < nNodes; i++) {
442 blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
443 unblockNode->antType[i] = rf_control;
444 rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
445 nodes[i].succedents[0] = unblockNode;
446 nodes[i].antecedents[0] = blockNode;
447 nodes[i].antType[0] = rf_control;
448 nodes[i].params[1].p = (databuf + (i * bytesPerSU));
449 }
450 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
451 termNode->antecedents[0] = unblockNode;
452 termNode->antType[0] = rf_control;
453 return (dag_h);
454 }
455