rf_parityscan.c revision 1.2 1 /* $NetBSD: rf_parityscan.c,v 1.2 1999/01/26 02:34:00 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_parityscan.c -- misc utilities related to parity verification
32 *
33 *****************************************************************************/
34
35 #include "rf_types.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_dagfuncs.h"
39 #include "rf_dagutils.h"
40 #include "rf_mcpair.h"
41 #include "rf_general.h"
42 #include "rf_engine.h"
43 #include "rf_parityscan.h"
44 #include "rf_map.h"
45 #include "rf_sys.h"
46
47 /*****************************************************************************************
48 *
49 * walk through the entire arry and write new parity.
50 * This works by creating two DAGs, one to read a stripe of data and one to
51 * write new parity. The first is executed, the data is xored together, and
52 * then the second is executed. To avoid constantly building and tearing down
53 * the DAGs, we create them a priori and fill them in with the mapping
54 * information as we go along.
55 *
56 * there should never be more than one thread running this.
57 *
58 ****************************************************************************************/
59
60 int rf_RewriteParity(raidPtr)
61 RF_Raid_t *raidPtr;
62 {
63 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
64 RF_AccessStripeMapHeader_t *asm_h;
65 int old_pctg, new_pctg, rc;
66 RF_PhysDiskAddr_t pda;
67 RF_SectorNum_t i;
68
69 pda.startSector = 0;
70 pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
71 old_pctg = -1;
72
73 /* rf_verifyParityDebug=1; */
74 for (i=0; i<raidPtr->totalSectors; i+=layoutPtr->dataSectorsPerStripe) {
75 asm_h = rf_MapAccess(raidPtr, i, layoutPtr->dataSectorsPerStripe, NULL, RF_DONT_REMAP);
76 rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
77 /* printf("Parity verified: rc=%d\n",rc); */
78 switch (rc) {
79 case RF_PARITY_OKAY:
80 case RF_PARITY_CORRECTED:
81 break;
82 case RF_PARITY_BAD:
83 printf("Parity bad during correction\n");
84 RF_PANIC();
85 break;
86 case RF_PARITY_COULD_NOT_CORRECT:
87 printf("Could not correct bad parity\n");
88 RF_PANIC();
89 break;
90 case RF_PARITY_COULD_NOT_VERIFY:
91 printf("Could not verify parity\n");
92 RF_PANIC();
93 break;
94 default:
95 printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
96 RF_PANIC();
97 }
98 rf_FreeAccessStripeMap(asm_h);
99 new_pctg = i*1000/raidPtr->totalSectors;
100 if (new_pctg != old_pctg) {
101 }
102 old_pctg = new_pctg;
103 }
104 #if 1
105 return(0); /* XXX nothing was here.. GO */
106 #endif
107 }
108
109 /*****************************************************************************************
110 *
111 * verify that the parity in a particular stripe is correct.
112 * we validate only the range of parity defined by parityPDA, since
113 * this is all we have locked. The way we do this is to create an asm
114 * that maps the whole stripe and then range-restrict it to the parity
115 * region defined by the parityPDA.
116 *
117 ****************************************************************************************/
118 int rf_VerifyParity(raidPtr, aasm, correct_it, flags)
119 RF_Raid_t *raidPtr;
120 RF_AccessStripeMap_t *aasm;
121 int correct_it;
122 RF_RaidAccessFlags_t flags;
123 {
124 RF_PhysDiskAddr_t *parityPDA;
125 RF_AccessStripeMap_t *doasm;
126 RF_LayoutSW_t *lp;
127 int lrc, rc;
128
129 lp = raidPtr->Layout.map;
130 if (lp->faultsTolerated == 0) {
131 /*
132 * There isn't any parity. Call it "okay."
133 */
134 return(RF_PARITY_OKAY);
135 }
136 rc = RF_PARITY_OKAY;
137 if (lp->VerifyParity) {
138 for(doasm=aasm;doasm;doasm=doasm->next) {
139 for(parityPDA=doasm->parityInfo;parityPDA;parityPDA=parityPDA->next) {
140 lrc = lp->VerifyParity(raidPtr, doasm->raidAddress, parityPDA,
141 correct_it, flags);
142 if (lrc > rc) {
143 /* see rf_parityscan.h for why this works */
144 rc = lrc;
145 }
146 }
147 }
148 }
149 else {
150 rc = RF_PARITY_COULD_NOT_VERIFY;
151 }
152 return(rc);
153 }
154
155 int rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
156 RF_Raid_t *raidPtr;
157 RF_RaidAddr_t raidAddr;
158 RF_PhysDiskAddr_t *parityPDA;
159 int correct_it;
160 RF_RaidAccessFlags_t flags;
161 {
162 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
163 RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
164 RF_SectorCount_t numsector = parityPDA->numSector;
165 int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
166 int bytesPerStripe = numbytes * layoutPtr->numDataCol;
167 RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
168 RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
169 RF_AccessStripeMapHeader_t *asm_h;
170 RF_AccessStripeMap_t *asmap;
171 RF_AllocListElem_t *alloclist;
172 RF_PhysDiskAddr_t *pda;
173 char *pbuf, *buf, *end_p, *p;
174 int i, retcode;
175 RF_ReconUnitNum_t which_ru;
176 RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
177 int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
178 RF_AccTraceEntry_t tracerec;
179 RF_MCPair_t *mcpair;
180
181 retcode = RF_PARITY_OKAY;
182
183 mcpair = rf_AllocMCPair();
184 rf_MakeAllocList(alloclist);
185 RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
186 RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make sure buffer is zeroed */
187 end_p = buf + bytesPerStripe;
188
189 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
190 "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
191 blockNode = rd_dag_h->succedents[0];
192 unblockNode = blockNode->succedents[0]->succedents[0];
193
194 /* map the stripe and fill in the PDAs in the dag */
195 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
196 asmap = asm_h->stripeMap;
197
198 for (pda=asmap->physInfo,i=0; i<layoutPtr->numDataCol; i++,pda=pda->next) {
199 RF_ASSERT(pda);
200 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
201 RF_ASSERT(pda->numSector != 0);
202 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) goto out; /* no way to verify parity if disk is dead. return w/ good status */
203 blockNode->succedents[i]->params[0].p = pda;
204 blockNode->succedents[i]->params[2].v = psID;
205 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
206 }
207
208 RF_ASSERT(!asmap->parityInfo->next);
209 rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
210 RF_ASSERT(asmap->parityInfo->numSector != 0);
211 if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
212 goto out;
213 blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
214
215 /* fire off the DAG */
216 bzero((char *)&tracerec,sizeof(tracerec));
217 rd_dag_h->tracerec = &tracerec;
218
219 if (rf_verifyParityDebug) {
220 printf("Parity verify read dag:\n");
221 rf_PrintDAGList(rd_dag_h);
222 }
223
224 RF_LOCK_MUTEX(mcpair->mutex);
225 mcpair->flag = 0;
226 rf_DispatchDAG(rd_dag_h, (void (*)(void *))rf_MCPairWakeupFunc,
227 (void *) mcpair);
228 while (!mcpair->flag)
229 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
230 RF_UNLOCK_MUTEX(mcpair->mutex);
231 if (rd_dag_h->status != rf_enable) {
232 RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
233 retcode = RF_PARITY_COULD_NOT_VERIFY;
234 goto out;
235 }
236
237 for (p=buf; p<end_p; p+=numbytes) {
238 rf_bxor(p, pbuf, numbytes, NULL);
239 }
240 for (i=0; i<numbytes; i++) {
241 #if 0
242 if (pbuf[i]!=0 || buf[bytesPerStripe+i]!=0) {
243 printf("Bytes: %d %d %d\n",i,pbuf[i],buf[bytesPerStripe+i]);
244 }
245 #endif
246 if (pbuf[i] != buf[bytesPerStripe+i]) {
247 if (!correct_it)
248 RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
249 i,(u_char) buf[bytesPerStripe+i],(u_char) pbuf[i]);
250 retcode = RF_PARITY_BAD;
251 break;
252 }
253 }
254
255 if (retcode && correct_it) {
256 wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
257 "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
258 wrBlock = wr_dag_h->succedents[0]; wrUnblock = wrBlock->succedents[0]->succedents[0];
259 wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
260 wrBlock->succedents[0]->params[2].v = psID;
261 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
262 bzero((char *)&tracerec,sizeof(tracerec));
263 wr_dag_h->tracerec = &tracerec;
264 if (rf_verifyParityDebug) {
265 printf("Parity verify write dag:\n");
266 rf_PrintDAGList(wr_dag_h);
267 }
268 RF_LOCK_MUTEX(mcpair->mutex);
269 mcpair->flag = 0;
270 rf_DispatchDAG(wr_dag_h, (void (*)(void *))rf_MCPairWakeupFunc,
271 (void *) mcpair);
272 while (!mcpair->flag)
273 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
274 RF_UNLOCK_MUTEX(mcpair->mutex);
275 if (wr_dag_h->status != rf_enable) {
276 RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
277 retcode = RF_PARITY_COULD_NOT_CORRECT;
278 }
279 rf_FreeDAG(wr_dag_h);
280 if (retcode == RF_PARITY_BAD)
281 retcode = RF_PARITY_CORRECTED;
282 }
283
284 out:
285 rf_FreeAccessStripeMap(asm_h);
286 rf_FreeAllocList(alloclist);
287 rf_FreeDAG(rd_dag_h);
288 rf_FreeMCPair(mcpair);
289 return(retcode);
290 }
291
292 int rf_TryToRedirectPDA(raidPtr, pda, parity)
293 RF_Raid_t *raidPtr;
294 RF_PhysDiskAddr_t *pda;
295 int parity;
296 {
297 if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
298 if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
299 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
300 RF_RowCol_t or = pda->row, oc = pda->col;
301 RF_SectorNum_t os = pda->startSector;
302 if (parity) {
303 (raidPtr->Layout.map->MapParity)(raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
304 if (rf_verifyParityDebug) printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
305 or,oc,(long)os,pda->row,pda->col,(long)pda->startSector);
306 } else {
307 (raidPtr->Layout.map->MapSector)(raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
308 if (rf_verifyParityDebug) printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
309 or,oc,(long)os,pda->row,pda->col,(long)pda->startSector);
310 }
311 } else {
312 RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
313 RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
314 pda->row = spRow;
315 pda->col = spCol;
316 }
317 }
318 }
319 if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status)) return(1);
320 return(0);
321 }
322
323 /*****************************************************************************************
324 *
325 * currently a stub.
326 *
327 * takes as input an ASM describing a write operation and containing one failure, and
328 * verifies that the parity was correctly updated to reflect the write.
329 *
330 * if it's a data unit that's failed, we read the other data units in the stripe and
331 * the parity unit, XOR them together, and verify that we get the data intended for
332 * the failed disk. Since it's easy, we also validate that the right data got written
333 * to the surviving data disks.
334 *
335 * If it's the parity that failed, there's really no validation we can do except the
336 * above verification that the right data got written to all disks. This is because
337 * the new data intended for the failed disk is supplied in the ASM, but this is of
338 * course not the case for the new parity.
339 *
340 ****************************************************************************************/
341 int rf_VerifyDegrModeWrite(raidPtr, asmh)
342 RF_Raid_t *raidPtr;
343 RF_AccessStripeMapHeader_t *asmh;
344 {
345 return(0);
346 }
347
348 /* creates a simple DAG with a header, a block-recon node at level 1,
349 * nNodes nodes at level 2, an unblock-recon node at level 3, and
350 * a terminator node at level 4. The stripe address field in
351 * the block and unblock nodes are not touched, nor are the pda
352 * fields in the second-level nodes, so they must be filled in later.
353 *
354 * commit point is established at unblock node - this means that any
355 * failure during dag execution causes the dag to fail
356 */
357 RF_DagHeader_t *rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
358 RF_Raid_t *raidPtr;
359 int nNodes;
360 int bytesPerSU;
361 char *databuf;
362 int (*doFunc)(RF_DagNode_t *node);
363 int (*undoFunc)(RF_DagNode_t *node);
364 char *name; /* node names at the second level */
365 RF_AllocListElem_t *alloclist;
366 RF_RaidAccessFlags_t flags;
367 int priority;
368 {
369 RF_DagHeader_t *dag_h;
370 RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
371 int i;
372
373 /* create the nodes, the block & unblock nodes, and the terminator node */
374 RF_CallocAndAdd(nodes, nNodes+3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
375 blockNode = &nodes[nNodes];
376 unblockNode = blockNode+1;
377 termNode = unblockNode+1;
378
379 dag_h = rf_AllocDAGHeader();
380 dag_h->raidPtr = (void *) raidPtr;
381 dag_h->allocList = NULL; /* we won't use this alloc list */
382 dag_h->status = rf_enable;
383 dag_h->numSuccedents = 1;
384 dag_h->creator = "SimpleDAG";
385
386 /* this dag can not commit until the unblock node is reached
387 * errors prior to the commit point imply the dag has failed
388 */
389 dag_h->numCommitNodes = 1;
390 dag_h->numCommits = 0;
391
392 dag_h->succedents[0] = blockNode;
393 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
394 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
395 unblockNode->succedents[0] = termNode;
396 for (i=0; i<nNodes; i++) {
397 blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
398 unblockNode->antType[i] = rf_control;
399 rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
400 nodes[i].succedents[0] = unblockNode;
401 nodes[i].antecedents[0] = blockNode;
402 nodes[i].antType[0] = rf_control;
403 nodes[i].params[1].p = (databuf + (i*bytesPerSU));
404 }
405 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
406 termNode->antecedents[0] = unblockNode;
407 termNode->antType[0] = rf_control;
408 return(dag_h);
409 }
410