rf_parityscan.c revision 1.22 1 /* $NetBSD: rf_parityscan.c,v 1.22 2003/12/31 16:23:50 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_parityscan.c -- misc utilities related to parity verification
32 *
33 ****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.22 2003/12/31 16:23:50 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_raid.h"
41 #include "rf_dag.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_dagutils.h"
44 #include "rf_mcpair.h"
45 #include "rf_general.h"
46 #include "rf_engine.h"
47 #include "rf_parityscan.h"
48 #include "rf_map.h"
49
50 /*****************************************************************************
51 *
52 * walk through the entire arry and write new parity. This works by
53 * creating two DAGs, one to read a stripe of data and one to write
54 * new parity. The first is executed, the data is xored together, and
55 * then the second is executed. To avoid constantly building and
56 * tearing down the DAGs, we create them a priori and fill them in
57 * with the mapping information as we go along.
58 *
59 * there should never be more than one thread running this.
60 *
61 ****************************************************************************/
62
63 int
64 rf_RewriteParity(RF_Raid_t *raidPtr)
65 {
66 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
67 RF_AccessStripeMapHeader_t *asm_h;
68 int ret_val;
69 int rc;
70 RF_SectorNum_t i;
71
72 if (raidPtr->Layout.map->faultsTolerated == 0) {
73 /* There isn't any parity. Call it "okay." */
74 return (RF_PARITY_OKAY);
75 }
76 if (raidPtr->status != rf_rs_optimal) {
77 /*
78 * We're in degraded mode. Don't try to verify parity now!
79 * XXX: this should be a "we don't want to", not a
80 * "we can't" error.
81 */
82 return (RF_PARITY_COULD_NOT_VERIFY);
83 }
84
85 ret_val = 0;
86
87 rc = RF_PARITY_OKAY;
88
89 for (i = 0; i < raidPtr->totalSectors &&
90 rc <= RF_PARITY_CORRECTED;
91 i += layoutPtr->dataSectorsPerStripe) {
92 if (raidPtr->waitShutdown) {
93 /* Someone is pulling the plug on this set...
94 abort the re-write */
95 return (1);
96 }
97 asm_h = rf_MapAccess(raidPtr, i,
98 layoutPtr->dataSectorsPerStripe,
99 NULL, RF_DONT_REMAP);
100 raidPtr->parity_rewrite_stripes_done =
101 i / layoutPtr->dataSectorsPerStripe ;
102 rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
103
104 switch (rc) {
105 case RF_PARITY_OKAY:
106 case RF_PARITY_CORRECTED:
107 break;
108 case RF_PARITY_BAD:
109 printf("Parity bad during correction\n");
110 ret_val = 1;
111 break;
112 case RF_PARITY_COULD_NOT_CORRECT:
113 printf("Could not correct bad parity\n");
114 ret_val = 1;
115 break;
116 case RF_PARITY_COULD_NOT_VERIFY:
117 printf("Could not verify parity\n");
118 ret_val = 1;
119 break;
120 default:
121 printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
122 ret_val = 1;
123 }
124 rf_FreeAccessStripeMap(asm_h);
125 }
126 return (ret_val);
127 }
128 /*****************************************************************************
129 *
130 * verify that the parity in a particular stripe is correct. we
131 * validate only the range of parity defined by parityPDA, since this
132 * is all we have locked. The way we do this is to create an asm that
133 * maps the whole stripe and then range-restrict it to the parity
134 * region defined by the parityPDA.
135 *
136 ****************************************************************************/
137 int
138 rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm,
139 int correct_it, RF_RaidAccessFlags_t flags)
140 {
141 RF_PhysDiskAddr_t *parityPDA;
142 RF_AccessStripeMap_t *doasm;
143 const RF_LayoutSW_t *lp;
144 int lrc, rc;
145
146 lp = raidPtr->Layout.map;
147 if (lp->faultsTolerated == 0) {
148 /*
149 * There isn't any parity. Call it "okay."
150 */
151 return (RF_PARITY_OKAY);
152 }
153 rc = RF_PARITY_OKAY;
154 if (lp->VerifyParity) {
155 for (doasm = aasm; doasm; doasm = doasm->next) {
156 for (parityPDA = doasm->parityInfo; parityPDA;
157 parityPDA = parityPDA->next) {
158 lrc = lp->VerifyParity(raidPtr,
159 doasm->raidAddress,
160 parityPDA,
161 correct_it, flags);
162 if (lrc > rc) {
163 /* see rf_parityscan.h for why this
164 * works */
165 rc = lrc;
166 }
167 }
168 }
169 } else {
170 rc = RF_PARITY_COULD_NOT_VERIFY;
171 }
172 return (rc);
173 }
174
175 int
176 rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
177 RF_PhysDiskAddr_t *parityPDA, int correct_it,
178 RF_RaidAccessFlags_t flags)
179 {
180 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
181 RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
182 raidAddr);
183 RF_SectorCount_t numsector = parityPDA->numSector;
184 int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
185 int bytesPerStripe = numbytes * layoutPtr->numDataCol;
186 RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
187 RF_DagNode_t *blockNode, *wrBlock;
188 RF_AccessStripeMapHeader_t *asm_h;
189 RF_AccessStripeMap_t *asmap;
190 RF_AllocListElem_t *alloclist;
191 RF_PhysDiskAddr_t *pda;
192 char *pbuf, *buf, *end_p, *p;
193 int i, retcode;
194 RF_ReconUnitNum_t which_ru;
195 RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
196 raidAddr,
197 &which_ru);
198 int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
199 RF_AccTraceEntry_t tracerec;
200 RF_MCPair_t *mcpair;
201
202 retcode = RF_PARITY_OKAY;
203
204 mcpair = rf_AllocMCPair();
205 rf_MakeAllocList(alloclist);
206 RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
207 RF_MallocAndAdd(pbuf, numbytes, (char *), alloclist);
208 end_p = buf + bytesPerStripe;
209
210 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
211 "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
212 blockNode = rd_dag_h->succedents[0];
213
214 /* map the stripe and fill in the PDAs in the dag */
215 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
216 asmap = asm_h->stripeMap;
217
218 for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
219 RF_ASSERT(pda);
220 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
221 RF_ASSERT(pda->numSector != 0);
222 if (rf_TryToRedirectPDA(raidPtr, pda, 0))
223 goto out; /* no way to verify parity if disk is
224 * dead. return w/ good status */
225 blockNode->succedents[i]->params[0].p = pda;
226 blockNode->succedents[i]->params[2].v = psID;
227 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
228 }
229
230 RF_ASSERT(!asmap->parityInfo->next);
231 rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
232 RF_ASSERT(asmap->parityInfo->numSector != 0);
233 if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
234 goto out;
235 blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
236
237 /* fire off the DAG */
238 memset((char *) &tracerec, 0, sizeof(tracerec));
239 rd_dag_h->tracerec = &tracerec;
240 #if 0
241 if (rf_verifyParityDebug) {
242 printf("Parity verify read dag:\n");
243 rf_PrintDAGList(rd_dag_h);
244 }
245 #endif
246 RF_LOCK_MUTEX(mcpair->mutex);
247 mcpair->flag = 0;
248 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
249 (void *) mcpair);
250 while (!mcpair->flag)
251 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
252 RF_UNLOCK_MUTEX(mcpair->mutex);
253 if (rd_dag_h->status != rf_enable) {
254 RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
255 retcode = RF_PARITY_COULD_NOT_VERIFY;
256 goto out;
257 }
258 for (p = buf; p < end_p; p += numbytes) {
259 rf_bxor(p, pbuf, numbytes);
260 }
261 for (i = 0; i < numbytes; i++) {
262 if (pbuf[i] != buf[bytesPerStripe + i]) {
263 if (!correct_it)
264 RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
265 i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
266 retcode = RF_PARITY_BAD;
267 break;
268 }
269 }
270
271 if (retcode && correct_it) {
272 wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
273 "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
274 wrBlock = wr_dag_h->succedents[0];
275 wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
276 wrBlock->succedents[0]->params[2].v = psID;
277 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
278 memset((char *) &tracerec, 0, sizeof(tracerec));
279 wr_dag_h->tracerec = &tracerec;
280 #if 0
281 if (rf_verifyParityDebug) {
282 printf("Parity verify write dag:\n");
283 rf_PrintDAGList(wr_dag_h);
284 }
285 #endif
286 RF_LOCK_MUTEX(mcpair->mutex);
287 mcpair->flag = 0;
288 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
289 (void *) mcpair);
290 while (!mcpair->flag)
291 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
292 RF_UNLOCK_MUTEX(mcpair->mutex);
293 if (wr_dag_h->status != rf_enable) {
294 RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
295 retcode = RF_PARITY_COULD_NOT_CORRECT;
296 }
297 rf_FreeDAG(wr_dag_h);
298 if (retcode == RF_PARITY_BAD)
299 retcode = RF_PARITY_CORRECTED;
300 }
301 out:
302 rf_FreeAccessStripeMap(asm_h);
303 rf_FreeAllocList(alloclist);
304 rf_FreeDAG(rd_dag_h);
305 rf_FreeMCPair(mcpair);
306 return (retcode);
307 }
308
309 int
310 rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda, int parity)
311 {
312 if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) {
313 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
314 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
315 #if RF_DEBUG_VERIFYPARITY
316 RF_RowCol_t oc = pda->col;
317 RF_SectorNum_t os = pda->startSector;
318 #endif
319 if (parity) {
320 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
321 #if RF_DEBUG_VERIFYPARITY
322 if (rf_verifyParityDebug)
323 printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n",
324 oc, (long) os, pda->col, (long) pda->startSector);
325 #endif
326 } else {
327 (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
328 #if RF_DEBUG_VERIFYPARITY
329 if (rf_verifyParityDebug)
330 printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n",
331 oc, (long) os, pda->col, (long) pda->startSector);
332 #endif
333 }
334 } else {
335 RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol;
336 pda->col = spCol;
337 }
338 }
339 }
340 if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status))
341 return (1);
342 return (0);
343 }
344 /*****************************************************************************
345 *
346 * currently a stub.
347 *
348 * takes as input an ASM describing a write operation and containing
349 * one failure, and verifies that the parity was correctly updated to
350 * reflect the write.
351 *
352 * if it's a data unit that's failed, we read the other data units in
353 * the stripe and the parity unit, XOR them together, and verify that
354 * we get the data intended for the failed disk. Since it's easy, we
355 * also validate that the right data got written to the surviving data
356 * disks.
357 *
358 * If it's the parity that failed, there's really no validation we can
359 * do except the above verification that the right data got written to
360 * all disks. This is because the new data intended for the failed
361 * disk is supplied in the ASM, but this is of course not the case for
362 * the new parity.
363 *
364 ****************************************************************************/
365 #if 0
366 int
367 rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh)
368 {
369 return (0);
370 }
371 #endif
372 /* creates a simple DAG with a header, a block-recon node at level 1,
373 * nNodes nodes at level 2, an unblock-recon node at level 3, and a
374 * terminator node at level 4. The stripe address field in the block
375 * and unblock nodes are not touched, nor are the pda fields in the
376 * second-level nodes, so they must be filled in later.
377 *
378 * commit point is established at unblock node - this means that any
379 * failure during dag execution causes the dag to fail
380 *
381 * name - node names at the second level
382 */
383 RF_DagHeader_t *
384 rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf,
385 int (*doFunc) (RF_DagNode_t * node),
386 int (*undoFunc) (RF_DagNode_t * node),
387 char *name, RF_AllocListElem_t *alloclist,
388 RF_RaidAccessFlags_t flags, int priority)
389 {
390 RF_DagHeader_t *dag_h;
391 RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
392 int i;
393
394 /* create the nodes, the block & unblock nodes, and the terminator
395 * node */
396 RF_MallocAndAdd(nodes, (nNodes + 3) * sizeof(RF_DagNode_t),
397 (RF_DagNode_t *), alloclist);
398 blockNode = &nodes[nNodes];
399 unblockNode = blockNode + 1;
400 termNode = unblockNode + 1;
401
402 dag_h = rf_AllocDAGHeader();
403 dag_h->raidPtr = (void *) raidPtr;
404 dag_h->allocList = NULL;/* we won't use this alloc list */
405 dag_h->status = rf_enable;
406 dag_h->numSuccedents = 1;
407 dag_h->creator = "SimpleDAG";
408
409 /* this dag can not commit until the unblock node is reached errors
410 * prior to the commit point imply the dag has failed */
411 dag_h->numCommitNodes = 1;
412 dag_h->numCommits = 0;
413
414 dag_h->succedents[0] = blockNode;
415 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
416 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
417 unblockNode->succedents[0] = termNode;
418 for (i = 0; i < nNodes; i++) {
419 blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
420 unblockNode->antType[i] = rf_control;
421 rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
422 nodes[i].succedents[0] = unblockNode;
423 nodes[i].antecedents[0] = blockNode;
424 nodes[i].antType[0] = rf_control;
425 nodes[i].params[1].p = (databuf + (i * bytesPerSU));
426 }
427 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
428 termNode->antecedents[0] = unblockNode;
429 termNode->antType[0] = rf_control;
430 return (dag_h);
431 }
432