Home | History | Annotate | Line # | Download | only in raidframe
rf_parityscan.c revision 1.34
      1 /*	$NetBSD: rf_parityscan.c,v 1.34 2011/05/01 01:09:05 mrg Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_parityscan.c -- misc utilities related to parity verification
     32  *
     33  ****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.34 2011/05/01 01:09:05 mrg Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_raid.h"
     41 #include "rf_dag.h"
     42 #include "rf_dagfuncs.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_mcpair.h"
     45 #include "rf_general.h"
     46 #include "rf_engine.h"
     47 #include "rf_parityscan.h"
     48 #include "rf_map.h"
     49 #include "rf_paritymap.h"
     50 
     51 /*****************************************************************************
     52  *
     53  * walk through the entire arry and write new parity.  This works by
     54  * creating two DAGs, one to read a stripe of data and one to write
     55  * new parity.  The first is executed, the data is xored together, and
     56  * then the second is executed.  To avoid constantly building and
     57  * tearing down the DAGs, we create them a priori and fill them in
     58  * with the mapping information as we go along.
     59  *
     60  * there should never be more than one thread running this.
     61  *
     62  ****************************************************************************/
     63 
     64 int
     65 rf_RewriteParity(RF_Raid_t *raidPtr)
     66 {
     67 	if (raidPtr->parity_map != NULL)
     68 		return rf_paritymap_rewrite(raidPtr->parity_map);
     69 	else
     70 		return rf_RewriteParityRange(raidPtr, 0, raidPtr->totalSectors);
     71 }
     72 
     73 int
     74 rf_RewriteParityRange(RF_Raid_t *raidPtr, RF_SectorNum_t sec_begin,
     75     RF_SectorNum_t sec_len)
     76 {
     77 	/*
     78 	 * Note: It is the caller's responsibility to ensure that
     79 	 * sec_begin and sec_len are stripe-aligned.
     80 	 */
     81 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     82 	RF_AccessStripeMapHeader_t *asm_h;
     83 	int ret_val;
     84 	int rc;
     85 	RF_SectorNum_t i;
     86 
     87 	if (raidPtr->Layout.map->faultsTolerated == 0) {
     88 		/* There isn't any parity. Call it "okay." */
     89 		return (RF_PARITY_OKAY);
     90 	}
     91 	if (raidPtr->status != rf_rs_optimal) {
     92 		/*
     93 		 * We're in degraded mode.  Don't try to verify parity now!
     94 		 * XXX: this should be a "we don't want to", not a
     95 		 * "we can't" error.
     96 		 */
     97 		return (RF_PARITY_COULD_NOT_VERIFY);
     98 	}
     99 
    100 	ret_val = 0;
    101 
    102 	rc = RF_PARITY_OKAY;
    103 
    104 	for (i = sec_begin; i < sec_begin + sec_len &&
    105 		     rc <= RF_PARITY_CORRECTED;
    106 	     i += layoutPtr->dataSectorsPerStripe) {
    107 		if (raidPtr->waitShutdown) {
    108 			/* Someone is pulling the plug on this set...
    109 			   abort the re-write */
    110 			return (1);
    111 		}
    112 		asm_h = rf_MapAccess(raidPtr, i,
    113 				     layoutPtr->dataSectorsPerStripe,
    114 				     NULL, RF_DONT_REMAP);
    115 		raidPtr->parity_rewrite_stripes_done =
    116 			i / layoutPtr->dataSectorsPerStripe ;
    117 		rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
    118 
    119 		switch (rc) {
    120 		case RF_PARITY_OKAY:
    121 		case RF_PARITY_CORRECTED:
    122 			break;
    123 		case RF_PARITY_BAD:
    124 			printf("Parity bad during correction\n");
    125 			ret_val = 1;
    126 			break;
    127 		case RF_PARITY_COULD_NOT_CORRECT:
    128 			printf("Could not correct bad parity\n");
    129 			ret_val = 1;
    130 			break;
    131 		case RF_PARITY_COULD_NOT_VERIFY:
    132 			printf("Could not verify parity\n");
    133 			ret_val = 1;
    134 			break;
    135 		default:
    136 			printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
    137 			ret_val = 1;
    138 		}
    139 		rf_FreeAccessStripeMap(asm_h);
    140 	}
    141 	return (ret_val);
    142 }
    143 /*****************************************************************************
    144  *
    145  * verify that the parity in a particular stripe is correct.  we
    146  * validate only the range of parity defined by parityPDA, since this
    147  * is all we have locked.  The way we do this is to create an asm that
    148  * maps the whole stripe and then range-restrict it to the parity
    149  * region defined by the parityPDA.
    150  *
    151  ****************************************************************************/
    152 int
    153 rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm,
    154 		int correct_it, RF_RaidAccessFlags_t flags)
    155 {
    156 	RF_PhysDiskAddr_t *parityPDA;
    157 	RF_AccessStripeMap_t *doasm;
    158 	const RF_LayoutSW_t *lp;
    159 	int     lrc, rc;
    160 
    161 	lp = raidPtr->Layout.map;
    162 	if (lp->faultsTolerated == 0) {
    163 		/*
    164 	         * There isn't any parity. Call it "okay."
    165 	         */
    166 		return (RF_PARITY_OKAY);
    167 	}
    168 	rc = RF_PARITY_OKAY;
    169 	if (lp->VerifyParity) {
    170 		for (doasm = aasm; doasm; doasm = doasm->next) {
    171 			for (parityPDA = doasm->parityInfo; parityPDA;
    172 			     parityPDA = parityPDA->next) {
    173 				lrc = lp->VerifyParity(raidPtr,
    174 						       doasm->raidAddress,
    175 						       parityPDA,
    176 						       correct_it, flags);
    177 				if (lrc > rc) {
    178 					/* see rf_parityscan.h for why this
    179 					 * works */
    180 					rc = lrc;
    181 				}
    182 			}
    183 		}
    184 	} else {
    185 		rc = RF_PARITY_COULD_NOT_VERIFY;
    186 	}
    187 	return (rc);
    188 }
    189 
    190 int
    191 rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
    192 		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
    193 		     RF_RaidAccessFlags_t flags)
    194 {
    195 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    196 	RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    197 								     raidAddr);
    198 	RF_SectorCount_t numsector = parityPDA->numSector;
    199 	int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
    200 	int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
    201 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;	/* read, write dag */
    202 	RF_DagNode_t *blockNode, *wrBlock;
    203 	RF_AccessStripeMapHeader_t *asm_h;
    204 	RF_AccessStripeMap_t *asmap;
    205 	RF_AllocListElem_t *alloclist;
    206 	RF_PhysDiskAddr_t *pda;
    207 	char   *pbuf, *bf, *end_p, *p;
    208 	int     i, retcode;
    209 	RF_ReconUnitNum_t which_ru;
    210 	RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
    211 							     raidAddr,
    212 							     &which_ru);
    213 	int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    214 #if RF_ACC_TRACE > 0
    215 	RF_AccTraceEntry_t tracerec;
    216 #endif
    217 	RF_MCPair_t *mcpair;
    218 
    219 	retcode = RF_PARITY_OKAY;
    220 
    221 	mcpair = rf_AllocMCPair();
    222 	rf_MakeAllocList(alloclist);
    223 	RF_MallocAndAdd(bf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
    224 	RF_MallocAndAdd(pbuf, numbytes, (char *), alloclist);
    225 	end_p = bf + bytesPerStripe;
    226 
    227 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, bf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    228 	    "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
    229 	blockNode = rd_dag_h->succedents[0];
    230 
    231 	/* map the stripe and fill in the PDAs in the dag */
    232 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, bf, RF_DONT_REMAP);
    233 	asmap = asm_h->stripeMap;
    234 
    235 	for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    236 		RF_ASSERT(pda);
    237 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    238 		RF_ASSERT(pda->numSector != 0);
    239 		if (rf_TryToRedirectPDA(raidPtr, pda, 0))
    240 			goto out;	/* no way to verify parity if disk is
    241 					 * dead.  return w/ good status */
    242 		blockNode->succedents[i]->params[0].p = pda;
    243 		blockNode->succedents[i]->params[2].v = psID;
    244 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    245 	}
    246 
    247 	RF_ASSERT(!asmap->parityInfo->next);
    248 	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
    249 	RF_ASSERT(asmap->parityInfo->numSector != 0);
    250 	if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
    251 		goto out;
    252 	blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
    253 
    254 	/* fire off the DAG */
    255 #if RF_ACC_TRACE > 0
    256 	memset((char *) &tracerec, 0, sizeof(tracerec));
    257 	rd_dag_h->tracerec = &tracerec;
    258 #endif
    259 #if 0
    260 	if (rf_verifyParityDebug) {
    261 		printf("Parity verify read dag:\n");
    262 		rf_PrintDAGList(rd_dag_h);
    263 	}
    264 #endif
    265 	RF_LOCK_MCPAIR(mcpair);
    266 	mcpair->flag = 0;
    267 	RF_UNLOCK_MCPAIR(mcpair);
    268 
    269 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    270 	    (void *) mcpair);
    271 
    272 	RF_LOCK_MCPAIR(mcpair);
    273 	while (!mcpair->flag)
    274 		RF_WAIT_MCPAIR(mcpair);
    275 	RF_UNLOCK_MCPAIR(mcpair);
    276 	if (rd_dag_h->status != rf_enable) {
    277 		RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
    278 		retcode = RF_PARITY_COULD_NOT_VERIFY;
    279 		goto out;
    280 	}
    281 	for (p = bf; p < end_p; p += numbytes) {
    282 		rf_bxor(p, pbuf, numbytes);
    283 	}
    284 	for (i = 0; i < numbytes; i++) {
    285 		if (pbuf[i] != bf[bytesPerStripe + i]) {
    286 			if (!correct_it)
    287 				RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
    288 				    i, (u_char) bf[bytesPerStripe + i], (u_char) pbuf[i]);
    289 			retcode = RF_PARITY_BAD;
    290 			break;
    291 		}
    292 	}
    293 
    294 	if (retcode && correct_it) {
    295 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    296 		    "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
    297 		wrBlock = wr_dag_h->succedents[0];
    298 		wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
    299 		wrBlock->succedents[0]->params[2].v = psID;
    300 		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    301 #if RF_ACC_TRACE > 0
    302 		memset((char *) &tracerec, 0, sizeof(tracerec));
    303 		wr_dag_h->tracerec = &tracerec;
    304 #endif
    305 #if 0
    306 		if (rf_verifyParityDebug) {
    307 			printf("Parity verify write dag:\n");
    308 			rf_PrintDAGList(wr_dag_h);
    309 		}
    310 #endif
    311 		RF_LOCK_MCPAIR(mcpair);
    312 		mcpair->flag = 0;
    313 		RF_UNLOCK_MCPAIR(mcpair);
    314 
    315 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    316 		    (void *) mcpair);
    317 
    318 		RF_LOCK_MCPAIR(mcpair);
    319 		while (!mcpair->flag)
    320 			RF_WAIT_MCPAIR(mcpair);
    321 		RF_UNLOCK_MCPAIR(mcpair);
    322 		if (wr_dag_h->status != rf_enable) {
    323 			RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
    324 			retcode = RF_PARITY_COULD_NOT_CORRECT;
    325 		}
    326 		rf_FreeDAG(wr_dag_h);
    327 		if (retcode == RF_PARITY_BAD)
    328 			retcode = RF_PARITY_CORRECTED;
    329 	}
    330 out:
    331 	rf_FreeAccessStripeMap(asm_h);
    332 	rf_FreeAllocList(alloclist);
    333 	rf_FreeDAG(rd_dag_h);
    334 	rf_FreeMCPair(mcpair);
    335 	return (retcode);
    336 }
    337 
    338 int
    339 rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    340     int parity)
    341 {
    342 	if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) {
    343 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    344 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    345 			if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    346 #if RF_DEBUG_VERIFYPARITY
    347 				RF_RowCol_t oc = pda->col;
    348 				RF_SectorNum_t os = pda->startSector;
    349 #endif
    350 				if (parity) {
    351 					(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    352 #if RF_DEBUG_VERIFYPARITY
    353 					if (rf_verifyParityDebug)
    354 						printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n",
    355 						    oc, (long) os, pda->col, (long) pda->startSector);
    356 #endif
    357 				} else {
    358 					(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    359 #if RF_DEBUG_VERIFYPARITY
    360 					if (rf_verifyParityDebug)
    361 						printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n",
    362 						   oc, (long) os, pda->col, (long) pda->startSector);
    363 #endif
    364 				}
    365 			} else {
    366 #endif
    367 				RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol;
    368 				pda->col = spCol;
    369 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    370 			}
    371 #endif
    372 		}
    373 	}
    374 	if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status))
    375 		return (1);
    376 	return (0);
    377 }
    378 /*****************************************************************************
    379  *
    380  * currently a stub.
    381  *
    382  * takes as input an ASM describing a write operation and containing
    383  * one failure, and verifies that the parity was correctly updated to
    384  * reflect the write.
    385  *
    386  * if it's a data unit that's failed, we read the other data units in
    387  * the stripe and the parity unit, XOR them together, and verify that
    388  * we get the data intended for the failed disk.  Since it's easy, we
    389  * also validate that the right data got written to the surviving data
    390  * disks.
    391  *
    392  * If it's the parity that failed, there's really no validation we can
    393  * do except the above verification that the right data got written to
    394  * all disks.  This is because the new data intended for the failed
    395  * disk is supplied in the ASM, but this is of course not the case for
    396  * the new parity.
    397  *
    398  ****************************************************************************/
    399 #if 0
    400 int
    401 rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh)
    402 {
    403 	return (0);
    404 }
    405 #endif
    406 /* creates a simple DAG with a header, a block-recon node at level 1,
    407  * nNodes nodes at level 2, an unblock-recon node at level 3, and a
    408  * terminator node at level 4.  The stripe address field in the block
    409  * and unblock nodes are not touched, nor are the pda fields in the
    410  * second-level nodes, so they must be filled in later.
    411  *
    412  * commit point is established at unblock node - this means that any
    413  * failure during dag execution causes the dag to fail
    414  *
    415  * name - node names at the second level
    416  */
    417 RF_DagHeader_t *
    418 rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf,
    419 		 int (*doFunc) (RF_DagNode_t * node),
    420 		 int (*undoFunc) (RF_DagNode_t * node),
    421 		 const char *name, RF_AllocListElem_t *alloclist,
    422 		 RF_RaidAccessFlags_t flags, int priority)
    423 {
    424 	RF_DagHeader_t *dag_h;
    425 	RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode;
    426 	int     i;
    427 
    428 	/* grab a DAG header... */
    429 
    430 	dag_h = rf_AllocDAGHeader();
    431 	dag_h->raidPtr = (void *) raidPtr;
    432 	dag_h->allocList = NULL;/* we won't use this alloc list */
    433 	dag_h->status = rf_enable;
    434 	dag_h->numSuccedents = 1;
    435 	dag_h->creator = "SimpleDAG";
    436 
    437 	/* this dag can not commit until the unblock node is reached errors
    438 	 * prior to the commit point imply the dag has failed */
    439 	dag_h->numCommitNodes = 1;
    440 	dag_h->numCommits = 0;
    441 
    442 	/* create the nodes, the block & unblock nodes, and the terminator
    443 	 * node */
    444 
    445 	for (i = 0; i < nNodes; i++) {
    446 		tmpNode = rf_AllocDAGNode();
    447 		tmpNode->list_next = dag_h->nodes;
    448 		dag_h->nodes = tmpNode;
    449 	}
    450 	nodes = dag_h->nodes;
    451 
    452 	blockNode = rf_AllocDAGNode();
    453 	blockNode->list_next = dag_h->nodes;
    454 	dag_h->nodes = blockNode;
    455 
    456 	unblockNode = rf_AllocDAGNode();
    457 	unblockNode->list_next = dag_h->nodes;
    458 	dag_h->nodes = unblockNode;
    459 
    460 	termNode = rf_AllocDAGNode();
    461 	termNode->list_next = dag_h->nodes;
    462 	dag_h->nodes = termNode;
    463 
    464 	dag_h->succedents[0] = blockNode;
    465 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
    466 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
    467 	unblockNode->succedents[0] = termNode;
    468 	tmpNode = nodes;
    469 	for (i = 0; i < nNodes; i++) {
    470 		blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode;
    471 		unblockNode->antType[i] = rf_control;
    472 		rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
    473 		tmpNode->succedents[0] = unblockNode;
    474 		tmpNode->antecedents[0] = blockNode;
    475 		tmpNode->antType[0] = rf_control;
    476 		tmpNode->params[1].p = (databuf + (i * bytesPerSU));
    477 		tmpNode = tmpNode->list_next;
    478 	}
    479 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
    480 	termNode->antecedents[0] = unblockNode;
    481 	termNode->antType[0] = rf_control;
    482 	return (dag_h);
    483 }
    484