Home | History | Annotate | Line # | Download | only in raidframe
rf_parityscan.c revision 1.4
      1 /*	$NetBSD: rf_parityscan.c,v 1.4 1999/03/14 22:10:46 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_parityscan.c -- misc utilities related to parity verification
     32  *
     33  *****************************************************************************/
     34 
     35 #include "rf_types.h"
     36 #include "rf_raid.h"
     37 #include "rf_dag.h"
     38 #include "rf_dagfuncs.h"
     39 #include "rf_dagutils.h"
     40 #include "rf_mcpair.h"
     41 #include "rf_general.h"
     42 #include "rf_engine.h"
     43 #include "rf_parityscan.h"
     44 #include "rf_map.h"
     45 #include "rf_sys.h"
     46 
     47 /*****************************************************************************************
     48  *
     49  * walk through the entire arry and write new parity.
     50  * This works by creating two DAGs, one to read a stripe of data and one to
     51  * write new parity.  The first is executed, the data is xored together, and
     52  * then the second is executed.  To avoid constantly building and tearing down
     53  * the DAGs, we create them a priori and fill them in with the mapping
     54  * information as we go along.
     55  *
     56  * there should never be more than one thread running this.
     57  *
     58  ****************************************************************************************/
     59 
     60 int
     61 rf_RewriteParity(raidPtr)
     62 	RF_Raid_t *raidPtr;
     63 {
     64 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     65 	RF_AccessStripeMapHeader_t *asm_h;
     66 	int rc;
     67 	RF_PhysDiskAddr_t pda;
     68 	RF_SectorNum_t i;
     69 
     70 	pda.startSector = 0;
     71 	pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
     72 
     73 	for (i = 0; i < raidPtr->totalSectors;
     74 	     i += layoutPtr->dataSectorsPerStripe) {
     75 		asm_h = rf_MapAccess(raidPtr, i,
     76 				     layoutPtr->dataSectorsPerStripe,
     77 				     NULL, RF_DONT_REMAP);
     78 
     79 		rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
     80 
     81 		switch (rc) {
     82 		case RF_PARITY_OKAY:
     83 		case RF_PARITY_CORRECTED:
     84 			break;
     85 		case RF_PARITY_BAD:
     86 			printf("Parity bad during correction\n");
     87 			RF_PANIC();
     88 			break;
     89 		case RF_PARITY_COULD_NOT_CORRECT:
     90 			printf("Could not correct bad parity\n");
     91 			RF_PANIC();
     92 			break;
     93 		case RF_PARITY_COULD_NOT_VERIFY:
     94 			printf("Could not verify parity\n");
     95 			RF_PANIC();
     96 			break;
     97 		default:
     98 			printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
     99 			RF_PANIC();
    100 		}
    101 		rf_FreeAccessStripeMap(asm_h);
    102 	}
    103 	return (0);
    104 }
    105 /*****************************************************************************************
    106  *
    107  * verify that the parity in a particular stripe is correct.
    108  * we validate only the range of parity defined by parityPDA, since
    109  * this is all we have locked.  The way we do this is to create an asm
    110  * that maps the whole stripe and then range-restrict it to the parity
    111  * region defined by the parityPDA.
    112  *
    113  ****************************************************************************************/
    114 int
    115 rf_VerifyParity(raidPtr, aasm, correct_it, flags)
    116 	RF_Raid_t *raidPtr;
    117 	RF_AccessStripeMap_t *aasm;
    118 	int     correct_it;
    119 	RF_RaidAccessFlags_t flags;
    120 {
    121 	RF_PhysDiskAddr_t *parityPDA;
    122 	RF_AccessStripeMap_t *doasm;
    123 	RF_LayoutSW_t *lp;
    124 	int     lrc, rc;
    125 
    126 	lp = raidPtr->Layout.map;
    127 	if (lp->faultsTolerated == 0) {
    128 		/*
    129 	         * There isn't any parity. Call it "okay."
    130 	         */
    131 		return (RF_PARITY_OKAY);
    132 	}
    133 	rc = RF_PARITY_OKAY;
    134 	if (lp->VerifyParity) {
    135 		for (doasm = aasm; doasm; doasm = doasm->next) {
    136 			for (parityPDA = doasm->parityInfo; parityPDA;
    137 			     parityPDA = parityPDA->next) {
    138 				lrc = lp->VerifyParity(raidPtr,
    139 						       doasm->raidAddress,
    140 						       parityPDA,
    141 						       correct_it, flags);
    142 				if (lrc > rc) {
    143 					/* see rf_parityscan.h for why this
    144 					 * works */
    145 					rc = lrc;
    146 				}
    147 			}
    148 		}
    149 	} else {
    150 		rc = RF_PARITY_COULD_NOT_VERIFY;
    151 	}
    152 	return (rc);
    153 }
    154 
    155 int
    156 rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
    157 	RF_Raid_t *raidPtr;
    158 	RF_RaidAddr_t raidAddr;
    159 	RF_PhysDiskAddr_t *parityPDA;
    160 	int     correct_it;
    161 	RF_RaidAccessFlags_t flags;
    162 {
    163 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    164 	RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    165 								     raidAddr);
    166 	RF_SectorCount_t numsector = parityPDA->numSector;
    167 	int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
    168 	int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
    169 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;	/* read, write dag */
    170 	RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
    171 	RF_AccessStripeMapHeader_t *asm_h;
    172 	RF_AccessStripeMap_t *asmap;
    173 	RF_AllocListElem_t *alloclist;
    174 	RF_PhysDiskAddr_t *pda;
    175 	char   *pbuf, *buf, *end_p, *p;
    176 	int     i, retcode;
    177 	RF_ReconUnitNum_t which_ru;
    178 	RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
    179 							     raidAddr,
    180 							     &which_ru);
    181 	int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    182 	RF_AccTraceEntry_t tracerec;
    183 	RF_MCPair_t *mcpair;
    184 
    185 	retcode = RF_PARITY_OKAY;
    186 
    187 	mcpair = rf_AllocMCPair();
    188 	rf_MakeAllocList(alloclist);
    189 	RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
    190 	RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist);	/* use calloc to make
    191 									 * sure buffer is zeroed */
    192 	end_p = buf + bytesPerStripe;
    193 
    194 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    195 	    "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
    196 	blockNode = rd_dag_h->succedents[0];
    197 	unblockNode = blockNode->succedents[0]->succedents[0];
    198 
    199 	/* map the stripe and fill in the PDAs in the dag */
    200 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
    201 	asmap = asm_h->stripeMap;
    202 
    203 	for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    204 		RF_ASSERT(pda);
    205 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    206 		RF_ASSERT(pda->numSector != 0);
    207 		if (rf_TryToRedirectPDA(raidPtr, pda, 0))
    208 			goto out;	/* no way to verify parity if disk is
    209 					 * dead.  return w/ good status */
    210 		blockNode->succedents[i]->params[0].p = pda;
    211 		blockNode->succedents[i]->params[2].v = psID;
    212 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    213 	}
    214 
    215 	RF_ASSERT(!asmap->parityInfo->next);
    216 	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
    217 	RF_ASSERT(asmap->parityInfo->numSector != 0);
    218 	if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
    219 		goto out;
    220 	blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
    221 
    222 	/* fire off the DAG */
    223 	bzero((char *) &tracerec, sizeof(tracerec));
    224 	rd_dag_h->tracerec = &tracerec;
    225 
    226 	if (rf_verifyParityDebug) {
    227 		printf("Parity verify read dag:\n");
    228 		rf_PrintDAGList(rd_dag_h);
    229 	}
    230 	RF_LOCK_MUTEX(mcpair->mutex);
    231 	mcpair->flag = 0;
    232 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    233 	    (void *) mcpair);
    234 	while (!mcpair->flag)
    235 		RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    236 	RF_UNLOCK_MUTEX(mcpair->mutex);
    237 	if (rd_dag_h->status != rf_enable) {
    238 		RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
    239 		retcode = RF_PARITY_COULD_NOT_VERIFY;
    240 		goto out;
    241 	}
    242 	for (p = buf; p < end_p; p += numbytes) {
    243 		rf_bxor(p, pbuf, numbytes, NULL);
    244 	}
    245 	for (i = 0; i < numbytes; i++) {
    246 #if 0
    247 		if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) {
    248 			printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]);
    249 		}
    250 #endif
    251 		if (pbuf[i] != buf[bytesPerStripe + i]) {
    252 			if (!correct_it)
    253 				RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
    254 				    i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
    255 			retcode = RF_PARITY_BAD;
    256 			break;
    257 		}
    258 	}
    259 
    260 	if (retcode && correct_it) {
    261 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    262 		    "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
    263 		wrBlock = wr_dag_h->succedents[0];
    264 		wrUnblock = wrBlock->succedents[0]->succedents[0];
    265 		wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
    266 		wrBlock->succedents[0]->params[2].v = psID;
    267 		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    268 		bzero((char *) &tracerec, sizeof(tracerec));
    269 		wr_dag_h->tracerec = &tracerec;
    270 		if (rf_verifyParityDebug) {
    271 			printf("Parity verify write dag:\n");
    272 			rf_PrintDAGList(wr_dag_h);
    273 		}
    274 		RF_LOCK_MUTEX(mcpair->mutex);
    275 		mcpair->flag = 0;
    276 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    277 		    (void *) mcpair);
    278 		while (!mcpair->flag)
    279 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    280 		RF_UNLOCK_MUTEX(mcpair->mutex);
    281 		if (wr_dag_h->status != rf_enable) {
    282 			RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
    283 			retcode = RF_PARITY_COULD_NOT_CORRECT;
    284 		}
    285 		rf_FreeDAG(wr_dag_h);
    286 		if (retcode == RF_PARITY_BAD)
    287 			retcode = RF_PARITY_CORRECTED;
    288 	}
    289 out:
    290 	rf_FreeAccessStripeMap(asm_h);
    291 	rf_FreeAllocList(alloclist);
    292 	rf_FreeDAG(rd_dag_h);
    293 	rf_FreeMCPair(mcpair);
    294 	return (retcode);
    295 }
    296 
    297 int
    298 rf_TryToRedirectPDA(raidPtr, pda, parity)
    299 	RF_Raid_t *raidPtr;
    300 	RF_PhysDiskAddr_t *pda;
    301 	int     parity;
    302 {
    303 	if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
    304 		if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
    305 			if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    306 				RF_RowCol_t or = pda->row, oc = pda->col;
    307 				RF_SectorNum_t os = pda->startSector;
    308 				if (parity) {
    309 					(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    310 					if (rf_verifyParityDebug)
    311 						printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
    312 						    or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
    313 				} else {
    314 					(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    315 					if (rf_verifyParityDebug)
    316 						printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
    317 						    or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
    318 				}
    319 			} else {
    320 				RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
    321 				RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
    322 				pda->row = spRow;
    323 				pda->col = spCol;
    324 			}
    325 		}
    326 	}
    327 	if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status))
    328 		return (1);
    329 	return (0);
    330 }
    331 /*****************************************************************************************
    332  *
    333  * currently a stub.
    334  *
    335  * takes as input an ASM describing a write operation and containing one failure, and
    336  * verifies that the parity was correctly updated to reflect the write.
    337  *
    338  * if it's a data unit that's failed, we read the other data units in the stripe and
    339  * the parity unit, XOR them together, and verify that we get the data intended for
    340  * the failed disk.  Since it's easy, we also validate that the right data got written
    341  * to the surviving data disks.
    342  *
    343  * If it's the parity that failed, there's really no validation we can do except the
    344  * above verification that the right data got written to all disks.  This is because
    345  * the new data intended for the failed disk is supplied in the ASM, but this is of
    346  * course not the case for the new parity.
    347  *
    348  ****************************************************************************************/
    349 int
    350 rf_VerifyDegrModeWrite(raidPtr, asmh)
    351 	RF_Raid_t *raidPtr;
    352 	RF_AccessStripeMapHeader_t *asmh;
    353 {
    354 	return (0);
    355 }
    356 /* creates a simple DAG with a header, a block-recon node at level 1,
    357  * nNodes nodes at level 2, an unblock-recon node at level 3, and
    358  * a terminator node at level 4.  The stripe address field in
    359  * the block and unblock nodes are not touched, nor are the pda
    360  * fields in the second-level nodes, so they must be filled in later.
    361  *
    362  * commit point is established at unblock node - this means that any
    363  * failure during dag execution causes the dag to fail
    364  */
    365 RF_DagHeader_t *
    366 rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
    367 	RF_Raid_t *raidPtr;
    368 	int     nNodes;
    369 	int     bytesPerSU;
    370 	char   *databuf;
    371 	int     (*doFunc) (RF_DagNode_t * node);
    372 	int     (*undoFunc) (RF_DagNode_t * node);
    373 	char   *name;		/* node names at the second level */
    374 	RF_AllocListElem_t *alloclist;
    375 	RF_RaidAccessFlags_t flags;
    376 	int     priority;
    377 {
    378 	RF_DagHeader_t *dag_h;
    379 	RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
    380 	int     i;
    381 
    382 	/* create the nodes, the block & unblock nodes, and the terminator
    383 	 * node */
    384 	RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
    385 	blockNode = &nodes[nNodes];
    386 	unblockNode = blockNode + 1;
    387 	termNode = unblockNode + 1;
    388 
    389 	dag_h = rf_AllocDAGHeader();
    390 	dag_h->raidPtr = (void *) raidPtr;
    391 	dag_h->allocList = NULL;/* we won't use this alloc list */
    392 	dag_h->status = rf_enable;
    393 	dag_h->numSuccedents = 1;
    394 	dag_h->creator = "SimpleDAG";
    395 
    396 	/* this dag can not commit until the unblock node is reached errors
    397 	 * prior to the commit point imply the dag has failed */
    398 	dag_h->numCommitNodes = 1;
    399 	dag_h->numCommits = 0;
    400 
    401 	dag_h->succedents[0] = blockNode;
    402 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
    403 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
    404 	unblockNode->succedents[0] = termNode;
    405 	for (i = 0; i < nNodes; i++) {
    406 		blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
    407 		unblockNode->antType[i] = rf_control;
    408 		rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
    409 		nodes[i].succedents[0] = unblockNode;
    410 		nodes[i].antecedents[0] = blockNode;
    411 		nodes[i].antType[0] = rf_control;
    412 		nodes[i].params[1].p = (databuf + (i * bytesPerSU));
    413 	}
    414 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
    415 	termNode->antecedents[0] = unblockNode;
    416 	termNode->antType[0] = rf_control;
    417 	return (dag_h);
    418 }
    419