rf_parityscan.c revision 1.5 1 /* $NetBSD: rf_parityscan.c,v 1.5 1999/08/10 01:53:26 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_parityscan.c -- misc utilities related to parity verification
32 *
33 *****************************************************************************/
34
35 #include "rf_types.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_dagfuncs.h"
39 #include "rf_dagutils.h"
40 #include "rf_mcpair.h"
41 #include "rf_general.h"
42 #include "rf_engine.h"
43 #include "rf_parityscan.h"
44 #include "rf_map.h"
45 #include "rf_sys.h"
46
47 /*****************************************************************************************
48 *
49 * walk through the entire arry and write new parity.
50 * This works by creating two DAGs, one to read a stripe of data and one to
51 * write new parity. The first is executed, the data is xored together, and
52 * then the second is executed. To avoid constantly building and tearing down
53 * the DAGs, we create them a priori and fill them in with the mapping
54 * information as we go along.
55 *
56 * there should never be more than one thread running this.
57 *
58 ****************************************************************************************/
59
60 int
61 rf_RewriteParity(raidPtr)
62 RF_Raid_t *raidPtr;
63 {
64 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
65 RF_AccessStripeMapHeader_t *asm_h;
66 int rc;
67 RF_PhysDiskAddr_t pda;
68 RF_SectorNum_t i;
69
70 if (raidPtr->Layout.map->faultsTolerated == 0) {
71 /* There isn't any parity. Call it "okay." */
72 return (RF_PARITY_OKAY);
73 }
74 if (raidPtr->status[0] != rf_rs_optimal) {
75 /*
76 * We're in degraded mode. Don't try to verify parity now!
77 * XXX: this should be a "we don't want to", not a
78 * "we can't" error.
79 */
80 return (RF_PARITY_COULD_NOT_VERIFY);
81 }
82
83 pda.startSector = 0;
84 pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
85
86 for (i = 0; i < raidPtr->totalSectors;
87 i += layoutPtr->dataSectorsPerStripe) {
88 asm_h = rf_MapAccess(raidPtr, i,
89 layoutPtr->dataSectorsPerStripe,
90 NULL, RF_DONT_REMAP);
91
92 rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
93
94 switch (rc) {
95 case RF_PARITY_OKAY:
96 case RF_PARITY_CORRECTED:
97 break;
98 case RF_PARITY_BAD:
99 printf("Parity bad during correction\n");
100 RF_PANIC();
101 break;
102 case RF_PARITY_COULD_NOT_CORRECT:
103 printf("Could not correct bad parity\n");
104 RF_PANIC();
105 break;
106 case RF_PARITY_COULD_NOT_VERIFY:
107 printf("Could not verify parity\n");
108 RF_PANIC();
109 break;
110 default:
111 printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
112 RF_PANIC();
113 }
114 rf_FreeAccessStripeMap(asm_h);
115 }
116 return (0);
117 }
118 /*****************************************************************************************
119 *
120 * verify that the parity in a particular stripe is correct.
121 * we validate only the range of parity defined by parityPDA, since
122 * this is all we have locked. The way we do this is to create an asm
123 * that maps the whole stripe and then range-restrict it to the parity
124 * region defined by the parityPDA.
125 *
126 ****************************************************************************************/
127 int
128 rf_VerifyParity(raidPtr, aasm, correct_it, flags)
129 RF_Raid_t *raidPtr;
130 RF_AccessStripeMap_t *aasm;
131 int correct_it;
132 RF_RaidAccessFlags_t flags;
133 {
134 RF_PhysDiskAddr_t *parityPDA;
135 RF_AccessStripeMap_t *doasm;
136 RF_LayoutSW_t *lp;
137 int lrc, rc;
138
139 lp = raidPtr->Layout.map;
140 if (lp->faultsTolerated == 0) {
141 /*
142 * There isn't any parity. Call it "okay."
143 */
144 return (RF_PARITY_OKAY);
145 }
146 rc = RF_PARITY_OKAY;
147 if (lp->VerifyParity) {
148 for (doasm = aasm; doasm; doasm = doasm->next) {
149 for (parityPDA = doasm->parityInfo; parityPDA;
150 parityPDA = parityPDA->next) {
151 lrc = lp->VerifyParity(raidPtr,
152 doasm->raidAddress,
153 parityPDA,
154 correct_it, flags);
155 if (lrc > rc) {
156 /* see rf_parityscan.h for why this
157 * works */
158 rc = lrc;
159 }
160 }
161 }
162 } else {
163 rc = RF_PARITY_COULD_NOT_VERIFY;
164 }
165 return (rc);
166 }
167
168 int
169 rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
170 RF_Raid_t *raidPtr;
171 RF_RaidAddr_t raidAddr;
172 RF_PhysDiskAddr_t *parityPDA;
173 int correct_it;
174 RF_RaidAccessFlags_t flags;
175 {
176 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
177 RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
178 raidAddr);
179 RF_SectorCount_t numsector = parityPDA->numSector;
180 int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
181 int bytesPerStripe = numbytes * layoutPtr->numDataCol;
182 RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
183 RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
184 RF_AccessStripeMapHeader_t *asm_h;
185 RF_AccessStripeMap_t *asmap;
186 RF_AllocListElem_t *alloclist;
187 RF_PhysDiskAddr_t *pda;
188 char *pbuf, *buf, *end_p, *p;
189 int i, retcode;
190 RF_ReconUnitNum_t which_ru;
191 RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
192 raidAddr,
193 &which_ru);
194 int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
195 RF_AccTraceEntry_t tracerec;
196 RF_MCPair_t *mcpair;
197
198 retcode = RF_PARITY_OKAY;
199
200 mcpair = rf_AllocMCPair();
201 rf_MakeAllocList(alloclist);
202 RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
203 RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make
204 * sure buffer is zeroed */
205 end_p = buf + bytesPerStripe;
206
207 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
208 "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
209 blockNode = rd_dag_h->succedents[0];
210 unblockNode = blockNode->succedents[0]->succedents[0];
211
212 /* map the stripe and fill in the PDAs in the dag */
213 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
214 asmap = asm_h->stripeMap;
215
216 for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
217 RF_ASSERT(pda);
218 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
219 RF_ASSERT(pda->numSector != 0);
220 if (rf_TryToRedirectPDA(raidPtr, pda, 0))
221 goto out; /* no way to verify parity if disk is
222 * dead. return w/ good status */
223 blockNode->succedents[i]->params[0].p = pda;
224 blockNode->succedents[i]->params[2].v = psID;
225 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
226 }
227
228 RF_ASSERT(!asmap->parityInfo->next);
229 rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
230 RF_ASSERT(asmap->parityInfo->numSector != 0);
231 if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
232 goto out;
233 blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
234
235 /* fire off the DAG */
236 bzero((char *) &tracerec, sizeof(tracerec));
237 rd_dag_h->tracerec = &tracerec;
238
239 if (rf_verifyParityDebug) {
240 printf("Parity verify read dag:\n");
241 rf_PrintDAGList(rd_dag_h);
242 }
243 RF_LOCK_MUTEX(mcpair->mutex);
244 mcpair->flag = 0;
245 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
246 (void *) mcpair);
247 while (!mcpair->flag)
248 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
249 RF_UNLOCK_MUTEX(mcpair->mutex);
250 if (rd_dag_h->status != rf_enable) {
251 RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
252 retcode = RF_PARITY_COULD_NOT_VERIFY;
253 goto out;
254 }
255 for (p = buf; p < end_p; p += numbytes) {
256 rf_bxor(p, pbuf, numbytes, NULL);
257 }
258 for (i = 0; i < numbytes; i++) {
259 #if 0
260 if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) {
261 printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]);
262 }
263 #endif
264 if (pbuf[i] != buf[bytesPerStripe + i]) {
265 if (!correct_it)
266 RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
267 i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
268 retcode = RF_PARITY_BAD;
269 break;
270 }
271 }
272
273 if (retcode && correct_it) {
274 wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
275 "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
276 wrBlock = wr_dag_h->succedents[0];
277 wrUnblock = wrBlock->succedents[0]->succedents[0];
278 wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
279 wrBlock->succedents[0]->params[2].v = psID;
280 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
281 bzero((char *) &tracerec, sizeof(tracerec));
282 wr_dag_h->tracerec = &tracerec;
283 if (rf_verifyParityDebug) {
284 printf("Parity verify write dag:\n");
285 rf_PrintDAGList(wr_dag_h);
286 }
287 RF_LOCK_MUTEX(mcpair->mutex);
288 mcpair->flag = 0;
289 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
290 (void *) mcpair);
291 while (!mcpair->flag)
292 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
293 RF_UNLOCK_MUTEX(mcpair->mutex);
294 if (wr_dag_h->status != rf_enable) {
295 RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
296 retcode = RF_PARITY_COULD_NOT_CORRECT;
297 }
298 rf_FreeDAG(wr_dag_h);
299 if (retcode == RF_PARITY_BAD)
300 retcode = RF_PARITY_CORRECTED;
301 }
302 out:
303 rf_FreeAccessStripeMap(asm_h);
304 rf_FreeAllocList(alloclist);
305 rf_FreeDAG(rd_dag_h);
306 rf_FreeMCPair(mcpair);
307 return (retcode);
308 }
309
310 int
311 rf_TryToRedirectPDA(raidPtr, pda, parity)
312 RF_Raid_t *raidPtr;
313 RF_PhysDiskAddr_t *pda;
314 int parity;
315 {
316 if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
317 if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
318 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
319 RF_RowCol_t or = pda->row, oc = pda->col;
320 RF_SectorNum_t os = pda->startSector;
321 if (parity) {
322 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
323 if (rf_verifyParityDebug)
324 printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
325 or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
326 } else {
327 (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
328 if (rf_verifyParityDebug)
329 printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
330 or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
331 }
332 } else {
333 RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
334 RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
335 pda->row = spRow;
336 pda->col = spCol;
337 }
338 }
339 }
340 if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status))
341 return (1);
342 return (0);
343 }
344 /*****************************************************************************************
345 *
346 * currently a stub.
347 *
348 * takes as input an ASM describing a write operation and containing one failure, and
349 * verifies that the parity was correctly updated to reflect the write.
350 *
351 * if it's a data unit that's failed, we read the other data units in the stripe and
352 * the parity unit, XOR them together, and verify that we get the data intended for
353 * the failed disk. Since it's easy, we also validate that the right data got written
354 * to the surviving data disks.
355 *
356 * If it's the parity that failed, there's really no validation we can do except the
357 * above verification that the right data got written to all disks. This is because
358 * the new data intended for the failed disk is supplied in the ASM, but this is of
359 * course not the case for the new parity.
360 *
361 ****************************************************************************************/
362 int
363 rf_VerifyDegrModeWrite(raidPtr, asmh)
364 RF_Raid_t *raidPtr;
365 RF_AccessStripeMapHeader_t *asmh;
366 {
367 return (0);
368 }
369 /* creates a simple DAG with a header, a block-recon node at level 1,
370 * nNodes nodes at level 2, an unblock-recon node at level 3, and
371 * a terminator node at level 4. The stripe address field in
372 * the block and unblock nodes are not touched, nor are the pda
373 * fields in the second-level nodes, so they must be filled in later.
374 *
375 * commit point is established at unblock node - this means that any
376 * failure during dag execution causes the dag to fail
377 */
378 RF_DagHeader_t *
379 rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
380 RF_Raid_t *raidPtr;
381 int nNodes;
382 int bytesPerSU;
383 char *databuf;
384 int (*doFunc) (RF_DagNode_t * node);
385 int (*undoFunc) (RF_DagNode_t * node);
386 char *name; /* node names at the second level */
387 RF_AllocListElem_t *alloclist;
388 RF_RaidAccessFlags_t flags;
389 int priority;
390 {
391 RF_DagHeader_t *dag_h;
392 RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
393 int i;
394
395 /* create the nodes, the block & unblock nodes, and the terminator
396 * node */
397 RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
398 blockNode = &nodes[nNodes];
399 unblockNode = blockNode + 1;
400 termNode = unblockNode + 1;
401
402 dag_h = rf_AllocDAGHeader();
403 dag_h->raidPtr = (void *) raidPtr;
404 dag_h->allocList = NULL;/* we won't use this alloc list */
405 dag_h->status = rf_enable;
406 dag_h->numSuccedents = 1;
407 dag_h->creator = "SimpleDAG";
408
409 /* this dag can not commit until the unblock node is reached errors
410 * prior to the commit point imply the dag has failed */
411 dag_h->numCommitNodes = 1;
412 dag_h->numCommits = 0;
413
414 dag_h->succedents[0] = blockNode;
415 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
416 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
417 unblockNode->succedents[0] = termNode;
418 for (i = 0; i < nNodes; i++) {
419 blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
420 unblockNode->antType[i] = rf_control;
421 rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
422 nodes[i].succedents[0] = unblockNode;
423 nodes[i].antecedents[0] = blockNode;
424 nodes[i].antType[0] = rf_control;
425 nodes[i].params[1].p = (databuf + (i * bytesPerSU));
426 }
427 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
428 termNode->antecedents[0] = unblockNode;
429 termNode->antType[0] = rf_control;
430 return (dag_h);
431 }
432