rf_parityscan.c revision 1.6 1 /* $NetBSD: rf_parityscan.c,v 1.6 1999/08/10 22:19:27 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_parityscan.c -- misc utilities related to parity verification
32 *
33 *****************************************************************************/
34
35 #include "rf_types.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_dagfuncs.h"
39 #include "rf_dagutils.h"
40 #include "rf_mcpair.h"
41 #include "rf_general.h"
42 #include "rf_engine.h"
43 #include "rf_parityscan.h"
44 #include "rf_map.h"
45 #include "rf_sys.h"
46
47 /*****************************************************************************************
48 *
49 * walk through the entire arry and write new parity.
50 * This works by creating two DAGs, one to read a stripe of data and one to
51 * write new parity. The first is executed, the data is xored together, and
52 * then the second is executed. To avoid constantly building and tearing down
53 * the DAGs, we create them a priori and fill them in with the mapping
54 * information as we go along.
55 *
56 * there should never be more than one thread running this.
57 *
58 ****************************************************************************************/
59
60 int
61 rf_RewriteParity(raidPtr)
62 RF_Raid_t *raidPtr;
63 {
64 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
65 RF_AccessStripeMapHeader_t *asm_h;
66 int ret_val;
67 int rc;
68 RF_PhysDiskAddr_t pda;
69 RF_SectorNum_t i;
70
71 if (raidPtr->Layout.map->faultsTolerated == 0) {
72 /* There isn't any parity. Call it "okay." */
73 return (RF_PARITY_OKAY);
74 }
75 if (raidPtr->status[0] != rf_rs_optimal) {
76 /*
77 * We're in degraded mode. Don't try to verify parity now!
78 * XXX: this should be a "we don't want to", not a
79 * "we can't" error.
80 */
81 return (RF_PARITY_COULD_NOT_VERIFY);
82 }
83
84 ret_val = 0;
85
86 pda.startSector = 0;
87 pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
88 rc = RF_PARITY_OKAY;
89
90 for (i = 0; i < raidPtr->totalSectors &&
91 rc <= RF_PARITY_CORRECTED;
92 i += layoutPtr->dataSectorsPerStripe) {
93 asm_h = rf_MapAccess(raidPtr, i,
94 layoutPtr->dataSectorsPerStripe,
95 NULL, RF_DONT_REMAP);
96
97 rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
98
99 switch (rc) {
100 case RF_PARITY_OKAY:
101 case RF_PARITY_CORRECTED:
102 break;
103 case RF_PARITY_BAD:
104 printf("Parity bad during correction\n");
105 ret_val = 1;
106 break;
107 case RF_PARITY_COULD_NOT_CORRECT:
108 printf("Could not correct bad parity\n");
109 ret_val = 1;
110 break;
111 case RF_PARITY_COULD_NOT_VERIFY:
112 printf("Could not verify parity\n");
113 ret_val = 1;
114 break;
115 default:
116 printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
117 ret_val = 1;
118 }
119 rf_FreeAccessStripeMap(asm_h);
120 }
121 return (ret_val);
122 }
123 /*****************************************************************************************
124 *
125 * verify that the parity in a particular stripe is correct.
126 * we validate only the range of parity defined by parityPDA, since
127 * this is all we have locked. The way we do this is to create an asm
128 * that maps the whole stripe and then range-restrict it to the parity
129 * region defined by the parityPDA.
130 *
131 ****************************************************************************************/
132 int
133 rf_VerifyParity(raidPtr, aasm, correct_it, flags)
134 RF_Raid_t *raidPtr;
135 RF_AccessStripeMap_t *aasm;
136 int correct_it;
137 RF_RaidAccessFlags_t flags;
138 {
139 RF_PhysDiskAddr_t *parityPDA;
140 RF_AccessStripeMap_t *doasm;
141 RF_LayoutSW_t *lp;
142 int lrc, rc;
143
144 lp = raidPtr->Layout.map;
145 if (lp->faultsTolerated == 0) {
146 /*
147 * There isn't any parity. Call it "okay."
148 */
149 return (RF_PARITY_OKAY);
150 }
151 rc = RF_PARITY_OKAY;
152 if (lp->VerifyParity) {
153 for (doasm = aasm; doasm; doasm = doasm->next) {
154 for (parityPDA = doasm->parityInfo; parityPDA;
155 parityPDA = parityPDA->next) {
156 lrc = lp->VerifyParity(raidPtr,
157 doasm->raidAddress,
158 parityPDA,
159 correct_it, flags);
160 if (lrc > rc) {
161 /* see rf_parityscan.h for why this
162 * works */
163 rc = lrc;
164 }
165 }
166 }
167 } else {
168 rc = RF_PARITY_COULD_NOT_VERIFY;
169 }
170 return (rc);
171 }
172
173 int
174 rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
175 RF_Raid_t *raidPtr;
176 RF_RaidAddr_t raidAddr;
177 RF_PhysDiskAddr_t *parityPDA;
178 int correct_it;
179 RF_RaidAccessFlags_t flags;
180 {
181 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
182 RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
183 raidAddr);
184 RF_SectorCount_t numsector = parityPDA->numSector;
185 int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
186 int bytesPerStripe = numbytes * layoutPtr->numDataCol;
187 RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
188 RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
189 RF_AccessStripeMapHeader_t *asm_h;
190 RF_AccessStripeMap_t *asmap;
191 RF_AllocListElem_t *alloclist;
192 RF_PhysDiskAddr_t *pda;
193 char *pbuf, *buf, *end_p, *p;
194 int i, retcode;
195 RF_ReconUnitNum_t which_ru;
196 RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
197 raidAddr,
198 &which_ru);
199 int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
200 RF_AccTraceEntry_t tracerec;
201 RF_MCPair_t *mcpair;
202
203 retcode = RF_PARITY_OKAY;
204
205 mcpair = rf_AllocMCPair();
206 rf_MakeAllocList(alloclist);
207 RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
208 RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make
209 * sure buffer is zeroed */
210 end_p = buf + bytesPerStripe;
211
212 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
213 "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
214 blockNode = rd_dag_h->succedents[0];
215 unblockNode = blockNode->succedents[0]->succedents[0];
216
217 /* map the stripe and fill in the PDAs in the dag */
218 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
219 asmap = asm_h->stripeMap;
220
221 for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
222 RF_ASSERT(pda);
223 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
224 RF_ASSERT(pda->numSector != 0);
225 if (rf_TryToRedirectPDA(raidPtr, pda, 0))
226 goto out; /* no way to verify parity if disk is
227 * dead. return w/ good status */
228 blockNode->succedents[i]->params[0].p = pda;
229 blockNode->succedents[i]->params[2].v = psID;
230 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
231 }
232
233 RF_ASSERT(!asmap->parityInfo->next);
234 rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
235 RF_ASSERT(asmap->parityInfo->numSector != 0);
236 if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
237 goto out;
238 blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
239
240 /* fire off the DAG */
241 bzero((char *) &tracerec, sizeof(tracerec));
242 rd_dag_h->tracerec = &tracerec;
243
244 if (rf_verifyParityDebug) {
245 printf("Parity verify read dag:\n");
246 rf_PrintDAGList(rd_dag_h);
247 }
248 RF_LOCK_MUTEX(mcpair->mutex);
249 mcpair->flag = 0;
250 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
251 (void *) mcpair);
252 while (!mcpair->flag)
253 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
254 RF_UNLOCK_MUTEX(mcpair->mutex);
255 if (rd_dag_h->status != rf_enable) {
256 RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
257 retcode = RF_PARITY_COULD_NOT_VERIFY;
258 goto out;
259 }
260 for (p = buf; p < end_p; p += numbytes) {
261 rf_bxor(p, pbuf, numbytes, NULL);
262 }
263 for (i = 0; i < numbytes; i++) {
264 #if 0
265 if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) {
266 printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]);
267 }
268 #endif
269 if (pbuf[i] != buf[bytesPerStripe + i]) {
270 if (!correct_it)
271 RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
272 i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
273 retcode = RF_PARITY_BAD;
274 break;
275 }
276 }
277
278 if (retcode && correct_it) {
279 wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
280 "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
281 wrBlock = wr_dag_h->succedents[0];
282 wrUnblock = wrBlock->succedents[0]->succedents[0];
283 wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
284 wrBlock->succedents[0]->params[2].v = psID;
285 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
286 bzero((char *) &tracerec, sizeof(tracerec));
287 wr_dag_h->tracerec = &tracerec;
288 if (rf_verifyParityDebug) {
289 printf("Parity verify write dag:\n");
290 rf_PrintDAGList(wr_dag_h);
291 }
292 RF_LOCK_MUTEX(mcpair->mutex);
293 mcpair->flag = 0;
294 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
295 (void *) mcpair);
296 while (!mcpair->flag)
297 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
298 RF_UNLOCK_MUTEX(mcpair->mutex);
299 if (wr_dag_h->status != rf_enable) {
300 RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
301 retcode = RF_PARITY_COULD_NOT_CORRECT;
302 }
303 rf_FreeDAG(wr_dag_h);
304 if (retcode == RF_PARITY_BAD)
305 retcode = RF_PARITY_CORRECTED;
306 }
307 out:
308 rf_FreeAccessStripeMap(asm_h);
309 rf_FreeAllocList(alloclist);
310 rf_FreeDAG(rd_dag_h);
311 rf_FreeMCPair(mcpair);
312 return (retcode);
313 }
314
315 int
316 rf_TryToRedirectPDA(raidPtr, pda, parity)
317 RF_Raid_t *raidPtr;
318 RF_PhysDiskAddr_t *pda;
319 int parity;
320 {
321 if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
322 if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
323 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
324 RF_RowCol_t or = pda->row, oc = pda->col;
325 RF_SectorNum_t os = pda->startSector;
326 if (parity) {
327 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
328 if (rf_verifyParityDebug)
329 printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
330 or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
331 } else {
332 (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
333 if (rf_verifyParityDebug)
334 printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
335 or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
336 }
337 } else {
338 RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
339 RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
340 pda->row = spRow;
341 pda->col = spCol;
342 }
343 }
344 }
345 if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status))
346 return (1);
347 return (0);
348 }
349 /*****************************************************************************************
350 *
351 * currently a stub.
352 *
353 * takes as input an ASM describing a write operation and containing one failure, and
354 * verifies that the parity was correctly updated to reflect the write.
355 *
356 * if it's a data unit that's failed, we read the other data units in the stripe and
357 * the parity unit, XOR them together, and verify that we get the data intended for
358 * the failed disk. Since it's easy, we also validate that the right data got written
359 * to the surviving data disks.
360 *
361 * If it's the parity that failed, there's really no validation we can do except the
362 * above verification that the right data got written to all disks. This is because
363 * the new data intended for the failed disk is supplied in the ASM, but this is of
364 * course not the case for the new parity.
365 *
366 ****************************************************************************************/
367 int
368 rf_VerifyDegrModeWrite(raidPtr, asmh)
369 RF_Raid_t *raidPtr;
370 RF_AccessStripeMapHeader_t *asmh;
371 {
372 return (0);
373 }
374 /* creates a simple DAG with a header, a block-recon node at level 1,
375 * nNodes nodes at level 2, an unblock-recon node at level 3, and
376 * a terminator node at level 4. The stripe address field in
377 * the block and unblock nodes are not touched, nor are the pda
378 * fields in the second-level nodes, so they must be filled in later.
379 *
380 * commit point is established at unblock node - this means that any
381 * failure during dag execution causes the dag to fail
382 */
383 RF_DagHeader_t *
384 rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
385 RF_Raid_t *raidPtr;
386 int nNodes;
387 int bytesPerSU;
388 char *databuf;
389 int (*doFunc) (RF_DagNode_t * node);
390 int (*undoFunc) (RF_DagNode_t * node);
391 char *name; /* node names at the second level */
392 RF_AllocListElem_t *alloclist;
393 RF_RaidAccessFlags_t flags;
394 int priority;
395 {
396 RF_DagHeader_t *dag_h;
397 RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
398 int i;
399
400 /* create the nodes, the block & unblock nodes, and the terminator
401 * node */
402 RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
403 blockNode = &nodes[nNodes];
404 unblockNode = blockNode + 1;
405 termNode = unblockNode + 1;
406
407 dag_h = rf_AllocDAGHeader();
408 dag_h->raidPtr = (void *) raidPtr;
409 dag_h->allocList = NULL;/* we won't use this alloc list */
410 dag_h->status = rf_enable;
411 dag_h->numSuccedents = 1;
412 dag_h->creator = "SimpleDAG";
413
414 /* this dag can not commit until the unblock node is reached errors
415 * prior to the commit point imply the dag has failed */
416 dag_h->numCommitNodes = 1;
417 dag_h->numCommits = 0;
418
419 dag_h->succedents[0] = blockNode;
420 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
421 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
422 unblockNode->succedents[0] = termNode;
423 for (i = 0; i < nNodes; i++) {
424 blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
425 unblockNode->antType[i] = rf_control;
426 rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
427 nodes[i].succedents[0] = unblockNode;
428 nodes[i].antecedents[0] = blockNode;
429 nodes[i].antType[0] = rf_control;
430 nodes[i].params[1].p = (databuf + (i * bytesPerSU));
431 }
432 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
433 termNode->antecedents[0] = unblockNode;
434 termNode->antType[0] = rf_control;
435 return (dag_h);
436 }
437