Home | History | Annotate | Line # | Download | only in raidframe
rf_parityscan.c revision 1.7
      1 /*	$NetBSD: rf_parityscan.c,v 1.7 1999/08/13 03:41:57 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_parityscan.c -- misc utilities related to parity verification
     32  *
     33  *****************************************************************************/
     34 
     35 #include "rf_types.h"
     36 #include "rf_raid.h"
     37 #include "rf_dag.h"
     38 #include "rf_dagfuncs.h"
     39 #include "rf_dagutils.h"
     40 #include "rf_mcpair.h"
     41 #include "rf_general.h"
     42 #include "rf_engine.h"
     43 #include "rf_parityscan.h"
     44 #include "rf_map.h"
     45 
     46 /*****************************************************************************************
     47  *
     48  * walk through the entire arry and write new parity.
     49  * This works by creating two DAGs, one to read a stripe of data and one to
     50  * write new parity.  The first is executed, the data is xored together, and
     51  * then the second is executed.  To avoid constantly building and tearing down
     52  * the DAGs, we create them a priori and fill them in with the mapping
     53  * information as we go along.
     54  *
     55  * there should never be more than one thread running this.
     56  *
     57  ****************************************************************************************/
     58 
     59 int
     60 rf_RewriteParity(raidPtr)
     61 	RF_Raid_t *raidPtr;
     62 {
     63 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     64 	RF_AccessStripeMapHeader_t *asm_h;
     65 	int ret_val;
     66 	int rc;
     67 	RF_PhysDiskAddr_t pda;
     68 	RF_SectorNum_t i;
     69 
     70 	if (raidPtr->Layout.map->faultsTolerated == 0) {
     71 		/* There isn't any parity. Call it "okay." */
     72 		return (RF_PARITY_OKAY);
     73 	}
     74 	if (raidPtr->status[0] != rf_rs_optimal) {
     75 		/*
     76 		 * We're in degraded mode.  Don't try to verify parity now!
     77 		 * XXX: this should be a "we don't want to", not a
     78 		 * "we can't" error.
     79 		 */
     80 		return (RF_PARITY_COULD_NOT_VERIFY);
     81 	}
     82 
     83 	ret_val = 0;
     84 
     85 	pda.startSector = 0;
     86 	pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
     87 	rc = RF_PARITY_OKAY;
     88 
     89 	for (i = 0; i < raidPtr->totalSectors &&
     90 		     rc <= RF_PARITY_CORRECTED;
     91 	     i += layoutPtr->dataSectorsPerStripe) {
     92 		asm_h = rf_MapAccess(raidPtr, i,
     93 				     layoutPtr->dataSectorsPerStripe,
     94 				     NULL, RF_DONT_REMAP);
     95 
     96 		rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
     97 
     98 		switch (rc) {
     99 		case RF_PARITY_OKAY:
    100 		case RF_PARITY_CORRECTED:
    101 			break;
    102 		case RF_PARITY_BAD:
    103 			printf("Parity bad during correction\n");
    104 			ret_val = 1;
    105 			break;
    106 		case RF_PARITY_COULD_NOT_CORRECT:
    107 			printf("Could not correct bad parity\n");
    108 			ret_val = 1;
    109 			break;
    110 		case RF_PARITY_COULD_NOT_VERIFY:
    111 			printf("Could not verify parity\n");
    112 			ret_val = 1;
    113 			break;
    114 		default:
    115 			printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
    116 			ret_val = 1;
    117 		}
    118 		rf_FreeAccessStripeMap(asm_h);
    119 	}
    120 	return (ret_val);
    121 }
    122 /*****************************************************************************************
    123  *
    124  * verify that the parity in a particular stripe is correct.
    125  * we validate only the range of parity defined by parityPDA, since
    126  * this is all we have locked.  The way we do this is to create an asm
    127  * that maps the whole stripe and then range-restrict it to the parity
    128  * region defined by the parityPDA.
    129  *
    130  ****************************************************************************************/
    131 int
    132 rf_VerifyParity(raidPtr, aasm, correct_it, flags)
    133 	RF_Raid_t *raidPtr;
    134 	RF_AccessStripeMap_t *aasm;
    135 	int     correct_it;
    136 	RF_RaidAccessFlags_t flags;
    137 {
    138 	RF_PhysDiskAddr_t *parityPDA;
    139 	RF_AccessStripeMap_t *doasm;
    140 	RF_LayoutSW_t *lp;
    141 	int     lrc, rc;
    142 
    143 	lp = raidPtr->Layout.map;
    144 	if (lp->faultsTolerated == 0) {
    145 		/*
    146 	         * There isn't any parity. Call it "okay."
    147 	         */
    148 		return (RF_PARITY_OKAY);
    149 	}
    150 	rc = RF_PARITY_OKAY;
    151 	if (lp->VerifyParity) {
    152 		for (doasm = aasm; doasm; doasm = doasm->next) {
    153 			for (parityPDA = doasm->parityInfo; parityPDA;
    154 			     parityPDA = parityPDA->next) {
    155 				lrc = lp->VerifyParity(raidPtr,
    156 						       doasm->raidAddress,
    157 						       parityPDA,
    158 						       correct_it, flags);
    159 				if (lrc > rc) {
    160 					/* see rf_parityscan.h for why this
    161 					 * works */
    162 					rc = lrc;
    163 				}
    164 			}
    165 		}
    166 	} else {
    167 		rc = RF_PARITY_COULD_NOT_VERIFY;
    168 	}
    169 	return (rc);
    170 }
    171 
    172 int
    173 rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
    174 	RF_Raid_t *raidPtr;
    175 	RF_RaidAddr_t raidAddr;
    176 	RF_PhysDiskAddr_t *parityPDA;
    177 	int     correct_it;
    178 	RF_RaidAccessFlags_t flags;
    179 {
    180 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    181 	RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    182 								     raidAddr);
    183 	RF_SectorCount_t numsector = parityPDA->numSector;
    184 	int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
    185 	int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
    186 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;	/* read, write dag */
    187 	RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
    188 	RF_AccessStripeMapHeader_t *asm_h;
    189 	RF_AccessStripeMap_t *asmap;
    190 	RF_AllocListElem_t *alloclist;
    191 	RF_PhysDiskAddr_t *pda;
    192 	char   *pbuf, *buf, *end_p, *p;
    193 	int     i, retcode;
    194 	RF_ReconUnitNum_t which_ru;
    195 	RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
    196 							     raidAddr,
    197 							     &which_ru);
    198 	int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    199 	RF_AccTraceEntry_t tracerec;
    200 	RF_MCPair_t *mcpair;
    201 
    202 	retcode = RF_PARITY_OKAY;
    203 
    204 	mcpair = rf_AllocMCPair();
    205 	rf_MakeAllocList(alloclist);
    206 	RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
    207 	RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist);	/* use calloc to make
    208 									 * sure buffer is zeroed */
    209 	end_p = buf + bytesPerStripe;
    210 
    211 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    212 	    "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
    213 	blockNode = rd_dag_h->succedents[0];
    214 	unblockNode = blockNode->succedents[0]->succedents[0];
    215 
    216 	/* map the stripe and fill in the PDAs in the dag */
    217 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
    218 	asmap = asm_h->stripeMap;
    219 
    220 	for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    221 		RF_ASSERT(pda);
    222 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    223 		RF_ASSERT(pda->numSector != 0);
    224 		if (rf_TryToRedirectPDA(raidPtr, pda, 0))
    225 			goto out;	/* no way to verify parity if disk is
    226 					 * dead.  return w/ good status */
    227 		blockNode->succedents[i]->params[0].p = pda;
    228 		blockNode->succedents[i]->params[2].v = psID;
    229 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    230 	}
    231 
    232 	RF_ASSERT(!asmap->parityInfo->next);
    233 	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
    234 	RF_ASSERT(asmap->parityInfo->numSector != 0);
    235 	if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
    236 		goto out;
    237 	blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
    238 
    239 	/* fire off the DAG */
    240 	bzero((char *) &tracerec, sizeof(tracerec));
    241 	rd_dag_h->tracerec = &tracerec;
    242 
    243 	if (rf_verifyParityDebug) {
    244 		printf("Parity verify read dag:\n");
    245 		rf_PrintDAGList(rd_dag_h);
    246 	}
    247 	RF_LOCK_MUTEX(mcpair->mutex);
    248 	mcpair->flag = 0;
    249 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    250 	    (void *) mcpair);
    251 	while (!mcpair->flag)
    252 		RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    253 	RF_UNLOCK_MUTEX(mcpair->mutex);
    254 	if (rd_dag_h->status != rf_enable) {
    255 		RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
    256 		retcode = RF_PARITY_COULD_NOT_VERIFY;
    257 		goto out;
    258 	}
    259 	for (p = buf; p < end_p; p += numbytes) {
    260 		rf_bxor(p, pbuf, numbytes, NULL);
    261 	}
    262 	for (i = 0; i < numbytes; i++) {
    263 #if 0
    264 		if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) {
    265 			printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]);
    266 		}
    267 #endif
    268 		if (pbuf[i] != buf[bytesPerStripe + i]) {
    269 			if (!correct_it)
    270 				RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
    271 				    i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
    272 			retcode = RF_PARITY_BAD;
    273 			break;
    274 		}
    275 	}
    276 
    277 	if (retcode && correct_it) {
    278 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    279 		    "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
    280 		wrBlock = wr_dag_h->succedents[0];
    281 		wrUnblock = wrBlock->succedents[0]->succedents[0];
    282 		wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
    283 		wrBlock->succedents[0]->params[2].v = psID;
    284 		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    285 		bzero((char *) &tracerec, sizeof(tracerec));
    286 		wr_dag_h->tracerec = &tracerec;
    287 		if (rf_verifyParityDebug) {
    288 			printf("Parity verify write dag:\n");
    289 			rf_PrintDAGList(wr_dag_h);
    290 		}
    291 		RF_LOCK_MUTEX(mcpair->mutex);
    292 		mcpair->flag = 0;
    293 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    294 		    (void *) mcpair);
    295 		while (!mcpair->flag)
    296 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    297 		RF_UNLOCK_MUTEX(mcpair->mutex);
    298 		if (wr_dag_h->status != rf_enable) {
    299 			RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
    300 			retcode = RF_PARITY_COULD_NOT_CORRECT;
    301 		}
    302 		rf_FreeDAG(wr_dag_h);
    303 		if (retcode == RF_PARITY_BAD)
    304 			retcode = RF_PARITY_CORRECTED;
    305 	}
    306 out:
    307 	rf_FreeAccessStripeMap(asm_h);
    308 	rf_FreeAllocList(alloclist);
    309 	rf_FreeDAG(rd_dag_h);
    310 	rf_FreeMCPair(mcpair);
    311 	return (retcode);
    312 }
    313 
    314 int
    315 rf_TryToRedirectPDA(raidPtr, pda, parity)
    316 	RF_Raid_t *raidPtr;
    317 	RF_PhysDiskAddr_t *pda;
    318 	int     parity;
    319 {
    320 	if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
    321 		if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
    322 			if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    323 				RF_RowCol_t or = pda->row, oc = pda->col;
    324 				RF_SectorNum_t os = pda->startSector;
    325 				if (parity) {
    326 					(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    327 					if (rf_verifyParityDebug)
    328 						printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
    329 						    or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
    330 				} else {
    331 					(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    332 					if (rf_verifyParityDebug)
    333 						printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
    334 						    or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
    335 				}
    336 			} else {
    337 				RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
    338 				RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
    339 				pda->row = spRow;
    340 				pda->col = spCol;
    341 			}
    342 		}
    343 	}
    344 	if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status))
    345 		return (1);
    346 	return (0);
    347 }
    348 /*****************************************************************************************
    349  *
    350  * currently a stub.
    351  *
    352  * takes as input an ASM describing a write operation and containing one failure, and
    353  * verifies that the parity was correctly updated to reflect the write.
    354  *
    355  * if it's a data unit that's failed, we read the other data units in the stripe and
    356  * the parity unit, XOR them together, and verify that we get the data intended for
    357  * the failed disk.  Since it's easy, we also validate that the right data got written
    358  * to the surviving data disks.
    359  *
    360  * If it's the parity that failed, there's really no validation we can do except the
    361  * above verification that the right data got written to all disks.  This is because
    362  * the new data intended for the failed disk is supplied in the ASM, but this is of
    363  * course not the case for the new parity.
    364  *
    365  ****************************************************************************************/
    366 int
    367 rf_VerifyDegrModeWrite(raidPtr, asmh)
    368 	RF_Raid_t *raidPtr;
    369 	RF_AccessStripeMapHeader_t *asmh;
    370 {
    371 	return (0);
    372 }
    373 /* creates a simple DAG with a header, a block-recon node at level 1,
    374  * nNodes nodes at level 2, an unblock-recon node at level 3, and
    375  * a terminator node at level 4.  The stripe address field in
    376  * the block and unblock nodes are not touched, nor are the pda
    377  * fields in the second-level nodes, so they must be filled in later.
    378  *
    379  * commit point is established at unblock node - this means that any
    380  * failure during dag execution causes the dag to fail
    381  */
    382 RF_DagHeader_t *
    383 rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
    384 	RF_Raid_t *raidPtr;
    385 	int     nNodes;
    386 	int     bytesPerSU;
    387 	char   *databuf;
    388 	int     (*doFunc) (RF_DagNode_t * node);
    389 	int     (*undoFunc) (RF_DagNode_t * node);
    390 	char   *name;		/* node names at the second level */
    391 	RF_AllocListElem_t *alloclist;
    392 	RF_RaidAccessFlags_t flags;
    393 	int     priority;
    394 {
    395 	RF_DagHeader_t *dag_h;
    396 	RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
    397 	int     i;
    398 
    399 	/* create the nodes, the block & unblock nodes, and the terminator
    400 	 * node */
    401 	RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
    402 	blockNode = &nodes[nNodes];
    403 	unblockNode = blockNode + 1;
    404 	termNode = unblockNode + 1;
    405 
    406 	dag_h = rf_AllocDAGHeader();
    407 	dag_h->raidPtr = (void *) raidPtr;
    408 	dag_h->allocList = NULL;/* we won't use this alloc list */
    409 	dag_h->status = rf_enable;
    410 	dag_h->numSuccedents = 1;
    411 	dag_h->creator = "SimpleDAG";
    412 
    413 	/* this dag can not commit until the unblock node is reached errors
    414 	 * prior to the commit point imply the dag has failed */
    415 	dag_h->numCommitNodes = 1;
    416 	dag_h->numCommits = 0;
    417 
    418 	dag_h->succedents[0] = blockNode;
    419 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
    420 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
    421 	unblockNode->succedents[0] = termNode;
    422 	for (i = 0; i < nNodes; i++) {
    423 		blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
    424 		unblockNode->antType[i] = rf_control;
    425 		rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
    426 		nodes[i].succedents[0] = unblockNode;
    427 		nodes[i].antecedents[0] = blockNode;
    428 		nodes[i].antType[0] = rf_control;
    429 		nodes[i].params[1].p = (databuf + (i * bytesPerSU));
    430 	}
    431 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
    432 	termNode->antecedents[0] = unblockNode;
    433 	termNode->antType[0] = rf_control;
    434 	return (dag_h);
    435 }
    436