Home | History | Annotate | Line # | Download | only in raidframe
rf_parityscan.c revision 1.9
      1 /*	$NetBSD: rf_parityscan.c,v 1.9 2000/05/28 03:00:31 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_parityscan.c -- misc utilities related to parity verification
     32  *
     33  *****************************************************************************/
     34 
     35 #include "rf_types.h"
     36 #include "rf_raid.h"
     37 #include "rf_dag.h"
     38 #include "rf_dagfuncs.h"
     39 #include "rf_dagutils.h"
     40 #include "rf_mcpair.h"
     41 #include "rf_general.h"
     42 #include "rf_engine.h"
     43 #include "rf_parityscan.h"
     44 #include "rf_map.h"
     45 
     46 /*****************************************************************************************
     47  *
     48  * walk through the entire arry and write new parity.
     49  * This works by creating two DAGs, one to read a stripe of data and one to
     50  * write new parity.  The first is executed, the data is xored together, and
     51  * then the second is executed.  To avoid constantly building and tearing down
     52  * the DAGs, we create them a priori and fill them in with the mapping
     53  * information as we go along.
     54  *
     55  * there should never be more than one thread running this.
     56  *
     57  ****************************************************************************************/
     58 
     59 int
     60 rf_RewriteParity(raidPtr)
     61 	RF_Raid_t *raidPtr;
     62 {
     63 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     64 	RF_AccessStripeMapHeader_t *asm_h;
     65 	int ret_val;
     66 	int rc;
     67 	RF_PhysDiskAddr_t pda;
     68 	RF_SectorNum_t i;
     69 
     70 	if (raidPtr->Layout.map->faultsTolerated == 0) {
     71 		/* There isn't any parity. Call it "okay." */
     72 		return (RF_PARITY_OKAY);
     73 	}
     74 	if (raidPtr->status[0] != rf_rs_optimal) {
     75 		/*
     76 		 * We're in degraded mode.  Don't try to verify parity now!
     77 		 * XXX: this should be a "we don't want to", not a
     78 		 * "we can't" error.
     79 		 */
     80 		return (RF_PARITY_COULD_NOT_VERIFY);
     81 	}
     82 
     83 	ret_val = 0;
     84 
     85 	pda.startSector = 0;
     86 	pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
     87 	rc = RF_PARITY_OKAY;
     88 
     89 	for (i = 0; i < raidPtr->totalSectors &&
     90 		     rc <= RF_PARITY_CORRECTED;
     91 	     i += layoutPtr->dataSectorsPerStripe) {
     92 		if (raidPtr->waitShutdown) {
     93 			/* Someone is pulling the plug on this set...
     94 			   abort the re-write */
     95 			return (1);
     96 		}
     97 		asm_h = rf_MapAccess(raidPtr, i,
     98 				     layoutPtr->dataSectorsPerStripe,
     99 				     NULL, RF_DONT_REMAP);
    100 		raidPtr->parity_rewrite_stripes_done =
    101 			i / layoutPtr->dataSectorsPerStripe ;
    102 		rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
    103 
    104 		switch (rc) {
    105 		case RF_PARITY_OKAY:
    106 		case RF_PARITY_CORRECTED:
    107 			break;
    108 		case RF_PARITY_BAD:
    109 			printf("Parity bad during correction\n");
    110 			ret_val = 1;
    111 			break;
    112 		case RF_PARITY_COULD_NOT_CORRECT:
    113 			printf("Could not correct bad parity\n");
    114 			ret_val = 1;
    115 			break;
    116 		case RF_PARITY_COULD_NOT_VERIFY:
    117 			printf("Could not verify parity\n");
    118 			ret_val = 1;
    119 			break;
    120 		default:
    121 			printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
    122 			ret_val = 1;
    123 		}
    124 		rf_FreeAccessStripeMap(asm_h);
    125 	}
    126 	return (ret_val);
    127 }
    128 /*****************************************************************************************
    129  *
    130  * verify that the parity in a particular stripe is correct.
    131  * we validate only the range of parity defined by parityPDA, since
    132  * this is all we have locked.  The way we do this is to create an asm
    133  * that maps the whole stripe and then range-restrict it to the parity
    134  * region defined by the parityPDA.
    135  *
    136  ****************************************************************************************/
    137 int
    138 rf_VerifyParity(raidPtr, aasm, correct_it, flags)
    139 	RF_Raid_t *raidPtr;
    140 	RF_AccessStripeMap_t *aasm;
    141 	int     correct_it;
    142 	RF_RaidAccessFlags_t flags;
    143 {
    144 	RF_PhysDiskAddr_t *parityPDA;
    145 	RF_AccessStripeMap_t *doasm;
    146 	RF_LayoutSW_t *lp;
    147 	int     lrc, rc;
    148 
    149 	lp = raidPtr->Layout.map;
    150 	if (lp->faultsTolerated == 0) {
    151 		/*
    152 	         * There isn't any parity. Call it "okay."
    153 	         */
    154 		return (RF_PARITY_OKAY);
    155 	}
    156 	rc = RF_PARITY_OKAY;
    157 	if (lp->VerifyParity) {
    158 		for (doasm = aasm; doasm; doasm = doasm->next) {
    159 			for (parityPDA = doasm->parityInfo; parityPDA;
    160 			     parityPDA = parityPDA->next) {
    161 				lrc = lp->VerifyParity(raidPtr,
    162 						       doasm->raidAddress,
    163 						       parityPDA,
    164 						       correct_it, flags);
    165 				if (lrc > rc) {
    166 					/* see rf_parityscan.h for why this
    167 					 * works */
    168 					rc = lrc;
    169 				}
    170 			}
    171 		}
    172 	} else {
    173 		rc = RF_PARITY_COULD_NOT_VERIFY;
    174 	}
    175 	return (rc);
    176 }
    177 
    178 int
    179 rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
    180 	RF_Raid_t *raidPtr;
    181 	RF_RaidAddr_t raidAddr;
    182 	RF_PhysDiskAddr_t *parityPDA;
    183 	int     correct_it;
    184 	RF_RaidAccessFlags_t flags;
    185 {
    186 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    187 	RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    188 								     raidAddr);
    189 	RF_SectorCount_t numsector = parityPDA->numSector;
    190 	int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
    191 	int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
    192 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;	/* read, write dag */
    193 	RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
    194 	RF_AccessStripeMapHeader_t *asm_h;
    195 	RF_AccessStripeMap_t *asmap;
    196 	RF_AllocListElem_t *alloclist;
    197 	RF_PhysDiskAddr_t *pda;
    198 	char   *pbuf, *buf, *end_p, *p;
    199 	int     i, retcode;
    200 	RF_ReconUnitNum_t which_ru;
    201 	RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
    202 							     raidAddr,
    203 							     &which_ru);
    204 	int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    205 	RF_AccTraceEntry_t tracerec;
    206 	RF_MCPair_t *mcpair;
    207 
    208 	retcode = RF_PARITY_OKAY;
    209 
    210 	mcpair = rf_AllocMCPair();
    211 	rf_MakeAllocList(alloclist);
    212 	RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
    213 	RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist);	/* use calloc to make
    214 									 * sure buffer is zeroed */
    215 	end_p = buf + bytesPerStripe;
    216 
    217 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    218 	    "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
    219 	blockNode = rd_dag_h->succedents[0];
    220 	unblockNode = blockNode->succedents[0]->succedents[0];
    221 
    222 	/* map the stripe and fill in the PDAs in the dag */
    223 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
    224 	asmap = asm_h->stripeMap;
    225 
    226 	for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    227 		RF_ASSERT(pda);
    228 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    229 		RF_ASSERT(pda->numSector != 0);
    230 		if (rf_TryToRedirectPDA(raidPtr, pda, 0))
    231 			goto out;	/* no way to verify parity if disk is
    232 					 * dead.  return w/ good status */
    233 		blockNode->succedents[i]->params[0].p = pda;
    234 		blockNode->succedents[i]->params[2].v = psID;
    235 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    236 	}
    237 
    238 	RF_ASSERT(!asmap->parityInfo->next);
    239 	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
    240 	RF_ASSERT(asmap->parityInfo->numSector != 0);
    241 	if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
    242 		goto out;
    243 	blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
    244 
    245 	/* fire off the DAG */
    246 	bzero((char *) &tracerec, sizeof(tracerec));
    247 	rd_dag_h->tracerec = &tracerec;
    248 
    249 	if (rf_verifyParityDebug) {
    250 		printf("Parity verify read dag:\n");
    251 		rf_PrintDAGList(rd_dag_h);
    252 	}
    253 	RF_LOCK_MUTEX(mcpair->mutex);
    254 	mcpair->flag = 0;
    255 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    256 	    (void *) mcpair);
    257 	while (!mcpair->flag)
    258 		RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    259 	RF_UNLOCK_MUTEX(mcpair->mutex);
    260 	if (rd_dag_h->status != rf_enable) {
    261 		RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
    262 		retcode = RF_PARITY_COULD_NOT_VERIFY;
    263 		goto out;
    264 	}
    265 	for (p = buf; p < end_p; p += numbytes) {
    266 		rf_bxor(p, pbuf, numbytes, NULL);
    267 	}
    268 	for (i = 0; i < numbytes; i++) {
    269 #if 0
    270 		if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) {
    271 			printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]);
    272 		}
    273 #endif
    274 		if (pbuf[i] != buf[bytesPerStripe + i]) {
    275 			if (!correct_it)
    276 				RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
    277 				    i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
    278 			retcode = RF_PARITY_BAD;
    279 			break;
    280 		}
    281 	}
    282 
    283 	if (retcode && correct_it) {
    284 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    285 		    "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
    286 		wrBlock = wr_dag_h->succedents[0];
    287 		wrUnblock = wrBlock->succedents[0]->succedents[0];
    288 		wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
    289 		wrBlock->succedents[0]->params[2].v = psID;
    290 		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    291 		bzero((char *) &tracerec, sizeof(tracerec));
    292 		wr_dag_h->tracerec = &tracerec;
    293 		if (rf_verifyParityDebug) {
    294 			printf("Parity verify write dag:\n");
    295 			rf_PrintDAGList(wr_dag_h);
    296 		}
    297 		RF_LOCK_MUTEX(mcpair->mutex);
    298 		mcpair->flag = 0;
    299 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    300 		    (void *) mcpair);
    301 		while (!mcpair->flag)
    302 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    303 		RF_UNLOCK_MUTEX(mcpair->mutex);
    304 		if (wr_dag_h->status != rf_enable) {
    305 			RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
    306 			retcode = RF_PARITY_COULD_NOT_CORRECT;
    307 		}
    308 		rf_FreeDAG(wr_dag_h);
    309 		if (retcode == RF_PARITY_BAD)
    310 			retcode = RF_PARITY_CORRECTED;
    311 	}
    312 out:
    313 	rf_FreeAccessStripeMap(asm_h);
    314 	rf_FreeAllocList(alloclist);
    315 	rf_FreeDAG(rd_dag_h);
    316 	rf_FreeMCPair(mcpair);
    317 	return (retcode);
    318 }
    319 
    320 int
    321 rf_TryToRedirectPDA(raidPtr, pda, parity)
    322 	RF_Raid_t *raidPtr;
    323 	RF_PhysDiskAddr_t *pda;
    324 	int     parity;
    325 {
    326 	if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
    327 		if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
    328 			if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    329 				RF_RowCol_t or = pda->row, oc = pda->col;
    330 				RF_SectorNum_t os = pda->startSector;
    331 				if (parity) {
    332 					(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    333 					if (rf_verifyParityDebug)
    334 						printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
    335 						    or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
    336 				} else {
    337 					(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    338 					if (rf_verifyParityDebug)
    339 						printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
    340 						    or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
    341 				}
    342 			} else {
    343 				RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
    344 				RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
    345 				pda->row = spRow;
    346 				pda->col = spCol;
    347 			}
    348 		}
    349 	}
    350 	if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status))
    351 		return (1);
    352 	return (0);
    353 }
    354 /*****************************************************************************************
    355  *
    356  * currently a stub.
    357  *
    358  * takes as input an ASM describing a write operation and containing one failure, and
    359  * verifies that the parity was correctly updated to reflect the write.
    360  *
    361  * if it's a data unit that's failed, we read the other data units in the stripe and
    362  * the parity unit, XOR them together, and verify that we get the data intended for
    363  * the failed disk.  Since it's easy, we also validate that the right data got written
    364  * to the surviving data disks.
    365  *
    366  * If it's the parity that failed, there's really no validation we can do except the
    367  * above verification that the right data got written to all disks.  This is because
    368  * the new data intended for the failed disk is supplied in the ASM, but this is of
    369  * course not the case for the new parity.
    370  *
    371  ****************************************************************************************/
    372 int
    373 rf_VerifyDegrModeWrite(raidPtr, asmh)
    374 	RF_Raid_t *raidPtr;
    375 	RF_AccessStripeMapHeader_t *asmh;
    376 {
    377 	return (0);
    378 }
    379 /* creates a simple DAG with a header, a block-recon node at level 1,
    380  * nNodes nodes at level 2, an unblock-recon node at level 3, and
    381  * a terminator node at level 4.  The stripe address field in
    382  * the block and unblock nodes are not touched, nor are the pda
    383  * fields in the second-level nodes, so they must be filled in later.
    384  *
    385  * commit point is established at unblock node - this means that any
    386  * failure during dag execution causes the dag to fail
    387  */
    388 RF_DagHeader_t *
    389 rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
    390 	RF_Raid_t *raidPtr;
    391 	int     nNodes;
    392 	int     bytesPerSU;
    393 	char   *databuf;
    394 	int     (*doFunc) (RF_DagNode_t * node);
    395 	int     (*undoFunc) (RF_DagNode_t * node);
    396 	char   *name;		/* node names at the second level */
    397 	RF_AllocListElem_t *alloclist;
    398 	RF_RaidAccessFlags_t flags;
    399 	int     priority;
    400 {
    401 	RF_DagHeader_t *dag_h;
    402 	RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
    403 	int     i;
    404 
    405 	/* create the nodes, the block & unblock nodes, and the terminator
    406 	 * node */
    407 	RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
    408 	blockNode = &nodes[nNodes];
    409 	unblockNode = blockNode + 1;
    410 	termNode = unblockNode + 1;
    411 
    412 	dag_h = rf_AllocDAGHeader();
    413 	dag_h->raidPtr = (void *) raidPtr;
    414 	dag_h->allocList = NULL;/* we won't use this alloc list */
    415 	dag_h->status = rf_enable;
    416 	dag_h->numSuccedents = 1;
    417 	dag_h->creator = "SimpleDAG";
    418 
    419 	/* this dag can not commit until the unblock node is reached errors
    420 	 * prior to the commit point imply the dag has failed */
    421 	dag_h->numCommitNodes = 1;
    422 	dag_h->numCommits = 0;
    423 
    424 	dag_h->succedents[0] = blockNode;
    425 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
    426 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
    427 	unblockNode->succedents[0] = termNode;
    428 	for (i = 0; i < nNodes; i++) {
    429 		blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
    430 		unblockNode->antType[i] = rf_control;
    431 		rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
    432 		nodes[i].succedents[0] = unblockNode;
    433 		nodes[i].antecedents[0] = blockNode;
    434 		nodes[i].antType[0] = rf_control;
    435 		nodes[i].params[1].p = (databuf + (i * bytesPerSU));
    436 	}
    437 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
    438 	termNode->antecedents[0] = unblockNode;
    439 	termNode->antType[0] = rf_control;
    440 	return (dag_h);
    441 }
    442