rf_pq.c revision 1.10 1 1.10 oster /* $NetBSD: rf_pq.c,v 1.10 2001/10/04 15:58:55 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Daniel Stodolsky
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * Code for RAID level 6 (P + Q) disk array architecture.
31 1.1 oster */
32 1.1 oster
33 1.1 oster #include "rf_archs.h"
34 1.8 oster
35 1.8 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
36 1.8 oster
37 1.10 oster #include <dev/raidframe/raidframevar.h>
38 1.10 oster
39 1.1 oster #include "rf_raid.h"
40 1.1 oster #include "rf_dag.h"
41 1.1 oster #include "rf_dagffrd.h"
42 1.1 oster #include "rf_dagffwr.h"
43 1.1 oster #include "rf_dagdegrd.h"
44 1.1 oster #include "rf_dagdegwr.h"
45 1.1 oster #include "rf_dagutils.h"
46 1.1 oster #include "rf_dagfuncs.h"
47 1.1 oster #include "rf_etimer.h"
48 1.1 oster #include "rf_pqdeg.h"
49 1.1 oster #include "rf_general.h"
50 1.1 oster #include "rf_map.h"
51 1.1 oster #include "rf_pq.h"
52 1.1 oster
53 1.3 oster RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"};
54 1.3 oster RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"};
55 1.1 oster
56 1.3 oster int
57 1.3 oster rf_RegularONPFunc(node)
58 1.3 oster RF_DagNode_t *node;
59 1.1 oster {
60 1.3 oster return (rf_RegularXorFunc(node));
61 1.1 oster }
62 1.1 oster /*
63 1.3 oster same as simpleONQ func, but the coefficient is always 1
64 1.1 oster */
65 1.1 oster
66 1.3 oster int
67 1.3 oster rf_SimpleONPFunc(node)
68 1.3 oster RF_DagNode_t *node;
69 1.1 oster {
70 1.3 oster return (rf_SimpleXorFunc(node));
71 1.1 oster }
72 1.1 oster
73 1.3 oster int
74 1.3 oster rf_RecoveryPFunc(node)
75 1.3 oster RF_DagNode_t *node;
76 1.1 oster {
77 1.3 oster return (rf_RecoveryXorFunc(node));
78 1.1 oster }
79 1.1 oster
80 1.3 oster int
81 1.3 oster rf_RegularPFunc(node)
82 1.3 oster RF_DagNode_t *node;
83 1.1 oster {
84 1.3 oster return (rf_RegularXorFunc(node));
85 1.1 oster }
86 1.8 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
87 1.1 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
88 1.1 oster
89 1.3 oster static void
90 1.3 oster QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
91 1.3 oster unsigned char coeff);
92 1.3 oster static void
93 1.3 oster rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
94 1.3 oster unsigned length, unsigned coeff);
95 1.3 oster
96 1.3 oster RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"};
97 1.3 oster RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"};
98 1.3 oster RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"};
99 1.3 oster
100 1.3 oster void
101 1.3 oster rf_PQDagSelect(
102 1.3 oster RF_Raid_t * raidPtr,
103 1.3 oster RF_IoType_t type,
104 1.3 oster RF_AccessStripeMap_t * asmap,
105 1.3 oster RF_VoidFuncPtr * createFunc)
106 1.3 oster {
107 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
108 1.3 oster unsigned ndfail = asmap->numDataFailed;
109 1.3 oster unsigned npfail = asmap->numParityFailed;
110 1.3 oster unsigned ntfail = npfail + ndfail;
111 1.3 oster
112 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
113 1.3 oster if (ntfail > 2) {
114 1.3 oster RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
115 1.3 oster /* *infoFunc = */ *createFunc = NULL;
116 1.3 oster return;
117 1.3 oster }
118 1.3 oster /* ok, we can do this I/O */
119 1.3 oster if (type == RF_IO_TYPE_READ) {
120 1.3 oster switch (ndfail) {
121 1.3 oster case 0:
122 1.3 oster /* fault free read */
123 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; /* same as raid 5 */
124 1.3 oster break;
125 1.3 oster case 1:
126 1.3 oster /* lost a single data unit */
127 1.3 oster /* two cases: (1) parity is not lost. do a normal raid
128 1.3 oster * 5 reconstruct read. (2) parity is lost. do a
129 1.3 oster * reconstruct read using "q". */
130 1.3 oster if (ntfail == 2) { /* also lost redundancy */
131 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
132 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateReadDAG;
133 1.3 oster else
134 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateReadDAG;
135 1.3 oster } else {
136 1.3 oster /* P and Q are ok. But is there a failure in
137 1.3 oster * some unaccessed data unit? */
138 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
139 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
140 1.3 oster else
141 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateReadDAG;
142 1.3 oster }
143 1.3 oster break;
144 1.3 oster case 2:
145 1.3 oster /* lost two data units */
146 1.3 oster /* *infoFunc = PQOneTwo; */
147 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
148 1.3 oster break;
149 1.3 oster }
150 1.3 oster return;
151 1.3 oster }
152 1.3 oster /* a write */
153 1.3 oster switch (ntfail) {
154 1.3 oster case 0: /* fault free */
155 1.3 oster if (rf_suppressLocksAndLargeWrites ||
156 1.3 oster (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
157 1.3 oster (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
158 1.3 oster
159 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateSmallWriteDAG;
160 1.3 oster } else {
161 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateLargeWriteDAG;
162 1.3 oster }
163 1.3 oster break;
164 1.3 oster
165 1.3 oster case 1: /* single disk fault */
166 1.3 oster if (npfail == 1) {
167 1.3 oster RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
168 1.3 oster if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like
169 1.3 oster * normal mode raid5
170 1.3 oster * write. */
171 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
172 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
173 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateSmallWriteDAG;
174 1.3 oster else
175 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateLargeWriteDAG;
176 1.3 oster } else {/* parity died, small write only updating Q */
177 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
178 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
179 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateSmallWriteDAG;
180 1.3 oster else
181 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateLargeWriteDAG;
182 1.3 oster }
183 1.3 oster } else { /* data missing. Do a P reconstruct write if
184 1.3 oster * only a single data unit is lost in the
185 1.3 oster * stripe, otherwise a PQ reconstruct write. */
186 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
187 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
188 1.3 oster else
189 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateWriteDAG;
190 1.3 oster }
191 1.3 oster break;
192 1.3 oster
193 1.3 oster case 2: /* two disk faults */
194 1.3 oster switch (npfail) {
195 1.3 oster case 2: /* both p and q dead */
196 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_011_CreateWriteDAG;
197 1.3 oster break;
198 1.3 oster case 1: /* either p or q and dead data */
199 1.3 oster RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
200 1.3 oster RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
201 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
202 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateWriteDAG;
203 1.3 oster else
204 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateWriteDAG;
205 1.3 oster break;
206 1.3 oster case 0: /* double data loss */
207 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
208 1.3 oster break;
209 1.3 oster }
210 1.3 oster break;
211 1.3 oster
212 1.3 oster default: /* more than 2 disk faults */
213 1.3 oster *createFunc = NULL;
214 1.3 oster RF_PANIC();
215 1.3 oster }
216 1.3 oster return;
217 1.3 oster }
218 1.3 oster /*
219 1.3 oster Used as a stop gap info function
220 1.3 oster */
221 1.5 oster #if 0
222 1.3 oster static void
223 1.3 oster PQOne(raidPtr, nSucc, nAnte, asmap)
224 1.3 oster RF_Raid_t *raidPtr;
225 1.3 oster int *nSucc;
226 1.3 oster int *nAnte;
227 1.3 oster RF_AccessStripeMap_t *asmap;
228 1.1 oster {
229 1.3 oster *nSucc = *nAnte = 1;
230 1.1 oster }
231 1.1 oster
232 1.3 oster static void
233 1.3 oster PQOneTwo(raidPtr, nSucc, nAnte, asmap)
234 1.3 oster RF_Raid_t *raidPtr;
235 1.3 oster int *nSucc;
236 1.3 oster int *nAnte;
237 1.3 oster RF_AccessStripeMap_t *asmap;
238 1.3 oster {
239 1.3 oster *nSucc = 1;
240 1.3 oster *nAnte = 2;
241 1.3 oster }
242 1.5 oster #endif
243 1.5 oster
244 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
245 1.1 oster {
246 1.3 oster rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
247 1.3 oster rf_RegularPQFunc, RF_FALSE);
248 1.1 oster }
249 1.1 oster
250 1.3 oster int
251 1.3 oster rf_RegularONQFunc(node)
252 1.3 oster RF_DagNode_t *node;
253 1.3 oster {
254 1.3 oster int np = node->numParams;
255 1.3 oster int d;
256 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
257 1.3 oster int i;
258 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
259 1.3 oster RF_Etimer_t timer;
260 1.3 oster char *qbuf, *qpbuf;
261 1.3 oster char *obuf, *nbuf;
262 1.3 oster RF_PhysDiskAddr_t *old, *new;
263 1.3 oster unsigned long coeff;
264 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
265 1.3 oster
266 1.3 oster RF_ETIMER_START(timer);
267 1.3 oster
268 1.3 oster d = (np - 3) / 4;
269 1.3 oster RF_ASSERT(4 * d + 3 == np);
270 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
271 1.3 oster for (i = 0; i < d; i++) {
272 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
273 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
274 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
275 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
276 1.3 oster RF_ASSERT(new->numSector == old->numSector);
277 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
278 1.3 oster /* the stripe unit within the stripe tells us the coefficient
279 1.3 oster * to use for the multiply. */
280 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
281 1.3 oster /* compute the data unit offset within the column, then add
282 1.3 oster * one */
283 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
284 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
285 1.3 oster QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
286 1.3 oster }
287 1.3 oster
288 1.3 oster RF_ETIMER_STOP(timer);
289 1.3 oster RF_ETIMER_EVAL(timer);
290 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
291 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
292 1.3 oster * I/O in this node */
293 1.3 oster return (0);
294 1.1 oster }
295 1.1 oster /*
296 1.1 oster See the SimpleXORFunc for the difference between a simple and regular func.
297 1.3 oster These Q functions should be used for
298 1.3 oster
299 1.3 oster new q = Q(data,old data,old q)
300 1.1 oster
301 1.3 oster style updates and not for
302 1.1 oster
303 1.1 oster q = ( new data, new data, .... )
304 1.1 oster
305 1.1 oster computations.
306 1.1 oster
307 1.1 oster The simple q takes 2(2d+1)+1 params, where d is the number
308 1.1 oster of stripes written. The order of params is
309 1.1 oster old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
310 1.1 oster [2d] old q pda_0, old q buffer
311 1.1 oster [2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d
312 1.1 oster raidPtr
313 1.1 oster */
314 1.1 oster
315 1.3 oster int
316 1.3 oster rf_SimpleONQFunc(node)
317 1.3 oster RF_DagNode_t *node;
318 1.3 oster {
319 1.3 oster int np = node->numParams;
320 1.3 oster int d;
321 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
322 1.3 oster int i;
323 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
324 1.3 oster RF_Etimer_t timer;
325 1.3 oster char *qbuf;
326 1.3 oster char *obuf, *nbuf;
327 1.3 oster RF_PhysDiskAddr_t *old, *new;
328 1.3 oster unsigned long coeff;
329 1.3 oster
330 1.3 oster RF_ETIMER_START(timer);
331 1.3 oster
332 1.3 oster d = (np - 3) / 4;
333 1.3 oster RF_ASSERT(4 * d + 3 == np);
334 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
335 1.3 oster for (i = 0; i < d; i++) {
336 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
337 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
338 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
339 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
340 1.3 oster RF_ASSERT(new->numSector == old->numSector);
341 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
342 1.3 oster /* the stripe unit within the stripe tells us the coefficient
343 1.3 oster * to use for the multiply. */
344 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
345 1.3 oster /* compute the data unit offset within the column, then add
346 1.3 oster * one */
347 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
348 1.3 oster QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
349 1.3 oster }
350 1.3 oster
351 1.3 oster RF_ETIMER_STOP(timer);
352 1.3 oster RF_ETIMER_EVAL(timer);
353 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
354 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
355 1.3 oster * I/O in this node */
356 1.3 oster return (0);
357 1.1 oster }
358 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
359 1.1 oster {
360 1.3 oster rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
361 1.1 oster }
362 1.1 oster
363 1.5 oster static void RegularQSubr(RF_DagNode_t *node, char *qbuf);
364 1.5 oster
365 1.3 oster static void
366 1.3 oster RegularQSubr(node, qbuf)
367 1.3 oster RF_DagNode_t *node;
368 1.3 oster char *qbuf;
369 1.3 oster {
370 1.3 oster int np = node->numParams;
371 1.3 oster int d;
372 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
373 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
374 1.3 oster int i;
375 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
376 1.3 oster RF_Etimer_t timer;
377 1.3 oster char *obuf, *qpbuf;
378 1.3 oster RF_PhysDiskAddr_t *old;
379 1.3 oster unsigned long coeff;
380 1.3 oster
381 1.3 oster RF_ETIMER_START(timer);
382 1.3 oster
383 1.3 oster d = (np - 1) / 2;
384 1.3 oster RF_ASSERT(2 * d + 1 == np);
385 1.3 oster for (i = 0; i < d; i++) {
386 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
387 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
388 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
389 1.3 oster /* compute the data unit offset within the column, then add
390 1.3 oster * one */
391 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
392 1.3 oster /* the input buffers may not all be aligned with the start of
393 1.3 oster * the stripe. so shift by their sector offset within the
394 1.3 oster * stripe unit */
395 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
396 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
397 1.3 oster }
398 1.3 oster
399 1.3 oster RF_ETIMER_STOP(timer);
400 1.3 oster RF_ETIMER_EVAL(timer);
401 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
402 1.1 oster }
403 1.1 oster /*
404 1.1 oster used in degraded writes.
405 1.1 oster */
406 1.1 oster
407 1.5 oster static void DegrQSubr(RF_DagNode_t *node);
408 1.5 oster
409 1.3 oster static void
410 1.3 oster DegrQSubr(node)
411 1.3 oster RF_DagNode_t *node;
412 1.3 oster {
413 1.3 oster int np = node->numParams;
414 1.3 oster int d;
415 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
416 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
417 1.3 oster int i;
418 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
419 1.3 oster RF_Etimer_t timer;
420 1.3 oster char *qbuf = node->results[1];
421 1.3 oster char *obuf, *qpbuf;
422 1.3 oster RF_PhysDiskAddr_t *old;
423 1.3 oster unsigned long coeff;
424 1.3 oster unsigned fail_start;
425 1.3 oster int j;
426 1.3 oster
427 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
428 1.3 oster fail_start = old->startSector % secPerSU;
429 1.3 oster
430 1.3 oster RF_ETIMER_START(timer);
431 1.3 oster
432 1.3 oster d = (np - 2) / 2;
433 1.3 oster RF_ASSERT(2 * d + 2 == np);
434 1.3 oster for (i = 0; i < d; i++) {
435 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
436 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
437 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
438 1.3 oster /* compute the data unit offset within the column, then add
439 1.3 oster * one */
440 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
441 1.3 oster /* the input buffers may not all be aligned with the start of
442 1.3 oster * the stripe. so shift by their sector offset within the
443 1.3 oster * stripe unit */
444 1.3 oster j = old->startSector % secPerSU;
445 1.3 oster RF_ASSERT(j >= fail_start);
446 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
447 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
448 1.3 oster }
449 1.3 oster
450 1.3 oster RF_ETIMER_STOP(timer);
451 1.3 oster RF_ETIMER_EVAL(timer);
452 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
453 1.1 oster }
454 1.1 oster /*
455 1.1 oster Called by large write code to compute the new parity and the new q.
456 1.3 oster
457 1.1 oster structure of the params:
458 1.1 oster
459 1.1 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
460 1.3 oster raidPtr
461 1.1 oster
462 1.1 oster for a total of 2d+1 arguments.
463 1.1 oster The result buffers results[0], results[1] are the buffers for the p and q,
464 1.1 oster respectively.
465 1.1 oster
466 1.1 oster We compute Q first, then compute P. The P calculation may try to reuse
467 1.1 oster one of the input buffers for its output, so if we computed P first, we would
468 1.1 oster corrupt the input for the q calculation.
469 1.1 oster */
470 1.1 oster
471 1.3 oster int
472 1.3 oster rf_RegularPQFunc(node)
473 1.3 oster RF_DagNode_t *node;
474 1.3 oster {
475 1.3 oster RegularQSubr(node, node->results[1]);
476 1.3 oster return (rf_RegularXorFunc(node)); /* does the wakeup */
477 1.3 oster }
478 1.3 oster
479 1.3 oster int
480 1.3 oster rf_RegularQFunc(node)
481 1.3 oster RF_DagNode_t *node;
482 1.3 oster {
483 1.3 oster /* Almost ... adjust Qsubr args */
484 1.3 oster RegularQSubr(node, node->results[0]);
485 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
486 1.3 oster * I/O in this node */
487 1.3 oster return (0);
488 1.1 oster }
489 1.1 oster /*
490 1.1 oster Called by singly degraded write code to compute the new parity and the new q.
491 1.3 oster
492 1.1 oster structure of the params:
493 1.1 oster
494 1.3 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
495 1.3 oster failedPDA raidPtr
496 1.1 oster
497 1.1 oster for a total of 2d+2 arguments.
498 1.1 oster The result buffers results[0], results[1] are the buffers for the parity and q,
499 1.1 oster respectively.
500 1.1 oster
501 1.1 oster We compute Q first, then compute parity. The parity calculation may try to reuse
502 1.1 oster one of the input buffers for its output, so if we computed parity first, we would
503 1.1 oster corrupt the input for the q calculation.
504 1.1 oster
505 1.1 oster We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
506 1.1 oster */
507 1.1 oster
508 1.3 oster void
509 1.3 oster rf_Degraded_100_PQFunc(node)
510 1.3 oster RF_DagNode_t *node;
511 1.3 oster {
512 1.3 oster int np = node->numParams;
513 1.3 oster
514 1.3 oster RF_ASSERT(np >= 2);
515 1.3 oster DegrQSubr(node);
516 1.3 oster rf_RecoveryXorFunc(node);
517 1.1 oster }
518 1.1 oster
519 1.1 oster
520 1.1 oster /*
521 1.1 oster The two below are used when reading a stripe with a single lost data unit.
522 1.1 oster The parameters are
523 1.1 oster
524 1.1 oster pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
525 1.1 oster
526 1.1 oster and results[0] contains the data buffer. Which is originally zero-filled.
527 1.3 oster
528 1.1 oster */
529 1.1 oster
530 1.1 oster /* this Q func is used by the degraded-mode dag functions to recover lost data.
531 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
532 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
533 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
534 1.1 oster * the other PDAs in the parameter list to determine where within the target
535 1.1 oster * buffer the corresponding data should be xored.
536 1.1 oster *
537 1.3 oster * Recall the basic equation is
538 1.3 oster *
539 1.1 oster * Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256
540 1.1 oster *
541 1.1 oster * so to recover data_j we need
542 1.1 oster *
543 1.1 oster * J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
544 1.1 oster *
545 1.1 oster * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
546 1.1 oster * copying Q into it. Then we need to do a table lookup to convert to solve
547 1.1 oster * data_j /= J
548 1.3 oster *
549 1.3 oster *
550 1.1 oster */
551 1.3 oster int
552 1.3 oster rf_RecoveryQFunc(node)
553 1.3 oster RF_DagNode_t *node;
554 1.3 oster {
555 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
556 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
557 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
558 1.3 oster int i;
559 1.3 oster RF_PhysDiskAddr_t *pda;
560 1.3 oster RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
561 1.3 oster char *srcbuf, *destbuf;
562 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
563 1.3 oster RF_Etimer_t timer;
564 1.3 oster unsigned long coeff;
565 1.3 oster
566 1.3 oster RF_ETIMER_START(timer);
567 1.3 oster /* start by copying Q into the buffer */
568 1.3 oster bcopy(node->params[node->numParams - 3].p, node->results[0],
569 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
570 1.3 oster for (i = 0; i < node->numParams - 4; i += 2) {
571 1.3 oster RF_ASSERT(node->params[i + 1].p != node->results[0]);
572 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
573 1.3 oster srcbuf = (char *) node->params[i + 1].p;
574 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
575 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
576 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
577 1.3 oster /* compute the data unit offset within the column */
578 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
579 1.3 oster rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
580 1.3 oster }
581 1.3 oster /* Do the nasty inversion now */
582 1.3 oster coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol);
583 1.3 oster rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
584 1.3 oster RF_ETIMER_STOP(timer);
585 1.3 oster RF_ETIMER_EVAL(timer);
586 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
587 1.3 oster rf_GenericWakeupFunc(node, 0);
588 1.3 oster return (0);
589 1.3 oster }
590 1.3 oster
591 1.3 oster int
592 1.3 oster rf_RecoveryPQFunc(node)
593 1.3 oster RF_DagNode_t *node;
594 1.1 oster {
595 1.6 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
596 1.6 oster printf("raid%d: Recovery from PQ not implemented.\n",raidPtr->raidid);
597 1.3 oster return (1);
598 1.1 oster }
599 1.1 oster /*
600 1.3 oster Degraded write Q subroutine.
601 1.1 oster Used when P is dead.
602 1.3 oster Large-write style Q computation.
603 1.1 oster Parameters
604 1.1 oster
605 1.1 oster (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
606 1.1 oster
607 1.1 oster We ignore failedPDA.
608 1.1 oster
609 1.1 oster This is a "simple style" recovery func.
610 1.1 oster */
611 1.1 oster
612 1.3 oster void
613 1.3 oster rf_PQ_DegradedWriteQFunc(node)
614 1.3 oster RF_DagNode_t *node;
615 1.3 oster {
616 1.3 oster int np = node->numParams;
617 1.3 oster int d;
618 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
619 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
620 1.3 oster int i;
621 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
622 1.3 oster RF_Etimer_t timer;
623 1.3 oster char *qbuf = node->results[0];
624 1.3 oster char *obuf, *qpbuf;
625 1.3 oster RF_PhysDiskAddr_t *old;
626 1.3 oster unsigned long coeff;
627 1.3 oster int fail_start, j;
628 1.3 oster
629 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
630 1.3 oster fail_start = old->startSector % secPerSU;
631 1.3 oster
632 1.3 oster RF_ETIMER_START(timer);
633 1.3 oster
634 1.3 oster d = (np - 2) / 2;
635 1.3 oster RF_ASSERT(2 * d + 2 == np);
636 1.3 oster
637 1.3 oster for (i = 0; i < d; i++) {
638 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
639 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
640 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
641 1.3 oster /* compute the data unit offset within the column, then add
642 1.3 oster * one */
643 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
644 1.3 oster j = old->startSector % secPerSU;
645 1.3 oster RF_ASSERT(j >= fail_start);
646 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
647 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
648 1.3 oster }
649 1.3 oster
650 1.3 oster RF_ETIMER_STOP(timer);
651 1.3 oster RF_ETIMER_EVAL(timer);
652 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
653 1.3 oster rf_GenericWakeupFunc(node, 0);
654 1.1 oster }
655 1.1 oster
656 1.1 oster
657 1.1 oster
658 1.1 oster
659 1.1 oster /* Q computations */
660 1.1 oster
661 1.1 oster /*
662 1.1 oster coeff - colummn;
663 1.1 oster
664 1.1 oster compute dest ^= qfor[28-coeff][rn[coeff+1] a]
665 1.1 oster
666 1.1 oster on 5-bit basis;
667 1.1 oster length in bytes;
668 1.1 oster */
669 1.1 oster
670 1.3 oster void
671 1.3 oster rf_IncQ(dest, buf, length, coeff)
672 1.3 oster unsigned long *dest;
673 1.3 oster unsigned long *buf;
674 1.3 oster unsigned length;
675 1.3 oster unsigned coeff;
676 1.3 oster {
677 1.3 oster unsigned long a, d, new;
678 1.3 oster unsigned long a1, a2;
679 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
680 1.3 oster unsigned r = rf_rn[coeff + 1];
681 1.1 oster
682 1.1 oster #define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
683 1.1 oster #define INSERT(a,i) (a << (5L*i))
684 1.1 oster
685 1.3 oster length /= 8;
686 1.3 oster /* 13 5 bit quants in a 64 bit word */
687 1.3 oster while (length) {
688 1.3 oster a = *buf++;
689 1.3 oster d = *dest;
690 1.3 oster a1 = EXTRACT(a, 0) ^ r;
691 1.3 oster a2 = EXTRACT(a, 1) ^ r;
692 1.3 oster new = INSERT(a2, 1) | a1;
693 1.3 oster a1 = EXTRACT(a, 2) ^ r;
694 1.3 oster a2 = EXTRACT(a, 3) ^ r;
695 1.3 oster a1 = q[a1];
696 1.3 oster a2 = q[a2];
697 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
698 1.3 oster a1 = EXTRACT(a, 4) ^ r;
699 1.3 oster a2 = EXTRACT(a, 5) ^ r;
700 1.3 oster a1 = q[a1];
701 1.3 oster a2 = q[a2];
702 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
703 1.3 oster a1 = EXTRACT(a, 5) ^ r;
704 1.3 oster a2 = EXTRACT(a, 6) ^ r;
705 1.3 oster a1 = q[a1];
706 1.3 oster a2 = q[a2];
707 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
708 1.1 oster #if RF_LONGSHIFT > 2
709 1.3 oster a1 = EXTRACT(a, 7) ^ r;
710 1.3 oster a2 = EXTRACT(a, 8) ^ r;
711 1.3 oster a1 = q[a1];
712 1.3 oster a2 = q[a2];
713 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
714 1.3 oster a1 = EXTRACT(a, 9) ^ r;
715 1.3 oster a2 = EXTRACT(a, 10) ^ r;
716 1.3 oster a1 = q[a1];
717 1.3 oster a2 = q[a2];
718 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
719 1.3 oster a1 = EXTRACT(a, 11) ^ r;
720 1.3 oster a2 = EXTRACT(a, 12) ^ r;
721 1.3 oster a1 = q[a1];
722 1.3 oster a2 = q[a2];
723 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
724 1.3 oster #endif /* RF_LONGSHIFT > 2 */
725 1.3 oster d ^= new;
726 1.3 oster *dest++ = d;
727 1.3 oster length--;
728 1.3 oster }
729 1.1 oster }
730 1.3 oster /*
731 1.3 oster compute
732 1.1 oster
733 1.1 oster dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
734 1.1 oster
735 1.1 oster on a five bit basis.
736 1.1 oster optimization: compute old ^ new on 64 bit basis.
737 1.1 oster
738 1.1 oster length in bytes.
739 1.1 oster */
740 1.1 oster
741 1.3 oster static void
742 1.3 oster QDelta(
743 1.3 oster char *dest,
744 1.3 oster char *obuf,
745 1.3 oster char *nbuf,
746 1.3 oster unsigned length,
747 1.3 oster unsigned char coeff)
748 1.3 oster {
749 1.3 oster unsigned long a, d, new;
750 1.3 oster unsigned long a1, a2;
751 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
752 1.5 oster unsigned int r = rf_rn[coeff + 1];
753 1.5 oster
754 1.5 oster r = a1 = a2 = new = d = a = 0; /* XXX for now... */
755 1.5 oster q = NULL; /* XXX for now */
756 1.1 oster
757 1.2 oster #ifdef _KERNEL
758 1.3 oster /* PQ in kernel currently not supported because the encoding/decoding
759 1.3 oster * table is not present */
760 1.9 thorpej memset(dest, 0, length);
761 1.3 oster #else /* KERNEL */
762 1.3 oster /* this code probably doesn't work and should be rewritten -wvcii */
763 1.3 oster /* 13 5 bit quants in a 64 bit word */
764 1.3 oster length /= 8;
765 1.3 oster while (length) {
766 1.3 oster a = *obuf++; /* XXX need to reorg to avoid cache conflicts */
767 1.3 oster a ^= *nbuf++;
768 1.3 oster d = *dest;
769 1.3 oster a1 = EXTRACT(a, 0) ^ r;
770 1.3 oster a2 = EXTRACT(a, 1) ^ r;
771 1.3 oster a1 = q[a1];
772 1.3 oster a2 = q[a2];
773 1.3 oster new = INSERT(a2, 1) | a1;
774 1.3 oster a1 = EXTRACT(a, 2) ^ r;
775 1.3 oster a2 = EXTRACT(a, 3) ^ r;
776 1.3 oster a1 = q[a1];
777 1.3 oster a2 = q[a2];
778 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
779 1.3 oster a1 = EXTRACT(a, 4) ^ r;
780 1.3 oster a2 = EXTRACT(a, 5) ^ r;
781 1.3 oster a1 = q[a1];
782 1.3 oster a2 = q[a2];
783 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
784 1.3 oster a1 = EXTRACT(a, 5) ^ r;
785 1.3 oster a2 = EXTRACT(a, 6) ^ r;
786 1.3 oster a1 = q[a1];
787 1.3 oster a2 = q[a2];
788 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
789 1.1 oster #if RF_LONGSHIFT > 2
790 1.3 oster a1 = EXTRACT(a, 7) ^ r;
791 1.3 oster a2 = EXTRACT(a, 8) ^ r;
792 1.3 oster a1 = q[a1];
793 1.3 oster a2 = q[a2];
794 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
795 1.3 oster a1 = EXTRACT(a, 9) ^ r;
796 1.3 oster a2 = EXTRACT(a, 10) ^ r;
797 1.3 oster a1 = q[a1];
798 1.3 oster a2 = q[a2];
799 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
800 1.3 oster a1 = EXTRACT(a, 11) ^ r;
801 1.3 oster a2 = EXTRACT(a, 12) ^ r;
802 1.3 oster a1 = q[a1];
803 1.3 oster a2 = q[a2];
804 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
805 1.3 oster #endif /* RF_LONGSHIFT > 2 */
806 1.3 oster d ^= new;
807 1.3 oster *dest++ = d;
808 1.3 oster length--;
809 1.3 oster }
810 1.3 oster #endif /* _KERNEL */
811 1.1 oster }
812 1.1 oster /*
813 1.1 oster recover columns a and b from the given p and q into
814 1.1 oster bufs abuf and bbuf. All bufs are word aligned.
815 1.1 oster Length is in bytes.
816 1.1 oster */
817 1.3 oster
818 1.1 oster
819 1.1 oster /*
820 1.1 oster * XXX
821 1.1 oster *
822 1.1 oster * Everything about this seems wrong.
823 1.1 oster */
824 1.3 oster void
825 1.3 oster rf_PQ_recover(pbuf, qbuf, abuf, bbuf, length, coeff_a, coeff_b)
826 1.3 oster unsigned long *pbuf;
827 1.3 oster unsigned long *qbuf;
828 1.3 oster unsigned long *abuf;
829 1.3 oster unsigned long *bbuf;
830 1.3 oster unsigned length;
831 1.3 oster unsigned coeff_a;
832 1.3 oster unsigned coeff_b;
833 1.3 oster {
834 1.3 oster unsigned long p, q, a, a0, a1;
835 1.3 oster int col = (29 * coeff_a) + coeff_b;
836 1.3 oster unsigned char *q0 = &(rf_qinv[col][0]);
837 1.3 oster
838 1.3 oster length /= 8;
839 1.3 oster while (length) {
840 1.3 oster p = *pbuf++;
841 1.3 oster q = *qbuf++;
842 1.3 oster a0 = EXTRACT(p, 0);
843 1.3 oster a1 = EXTRACT(q, 0);
844 1.3 oster a = q0[a0 << 5 | a1];
845 1.1 oster #define MF(i) \
846 1.1 oster a0 = EXTRACT(p,i); \
847 1.1 oster a1 = EXTRACT(q,i); \
848 1.1 oster a = a | INSERT(q0[a0<<5 | a1],i)
849 1.1 oster
850 1.3 oster MF(1);
851 1.3 oster MF(2);
852 1.3 oster MF(3);
853 1.3 oster MF(4);
854 1.3 oster MF(5);
855 1.3 oster MF(6);
856 1.1 oster #if 0
857 1.3 oster MF(7);
858 1.3 oster MF(8);
859 1.3 oster MF(9);
860 1.3 oster MF(10);
861 1.3 oster MF(11);
862 1.3 oster MF(12);
863 1.3 oster #endif /* 0 */
864 1.3 oster *abuf++ = a;
865 1.3 oster *bbuf++ = a ^ p;
866 1.3 oster length--;
867 1.3 oster }
868 1.1 oster }
869 1.3 oster /*
870 1.1 oster Lost parity and a data column. Recover that data column.
871 1.1 oster Assume col coeff is lost. Let q the contents of Q after
872 1.1 oster all surviving data columns have been q-xored out of it.
873 1.1 oster Then we have the equation
874 1.1 oster
875 1.1 oster q[28-coeff][a_i ^ r_i+1] = q
876 1.1 oster
877 1.3 oster but q is cyclic with period 31.
878 1.1 oster So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
879 1.1 oster q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
880 1.1 oster
881 1.1 oster so a_i = r_{coeff+1} ^ q[3+coeff][q]
882 1.1 oster
883 1.1 oster The routine is passed q buffer and the buffer
884 1.1 oster the data is to be recoverd into. They can be the same.
885 1.1 oster */
886 1.1 oster
887 1.1 oster
888 1.3 oster
889 1.3 oster static void
890 1.3 oster rf_InvertQ(
891 1.3 oster unsigned long *qbuf,
892 1.3 oster unsigned long *abuf,
893 1.3 oster unsigned length,
894 1.3 oster unsigned coeff)
895 1.3 oster {
896 1.3 oster unsigned long a, new;
897 1.3 oster unsigned long a1, a2;
898 1.3 oster unsigned int *q = &(rf_qfor[3 + coeff][0]);
899 1.3 oster unsigned r = rf_rn[coeff + 1];
900 1.3 oster
901 1.3 oster /* 13 5 bit quants in a 64 bit word */
902 1.3 oster length /= 8;
903 1.3 oster while (length) {
904 1.3 oster a = *qbuf++;
905 1.3 oster a1 = EXTRACT(a, 0);
906 1.3 oster a2 = EXTRACT(a, 1);
907 1.3 oster a1 = r ^ q[a1];
908 1.3 oster a2 = r ^ q[a2];
909 1.3 oster new = INSERT(a2, 1) | a1;
910 1.1 oster #define M(i,j) \
911 1.1 oster a1 = EXTRACT(a,i); \
912 1.1 oster a2 = EXTRACT(a,j); \
913 1.1 oster a1 = r ^ q[a1]; \
914 1.1 oster a2 = r ^ q[a2]; \
915 1.1 oster new = new | INSERT(a1,i) | INSERT(a2,j)
916 1.1 oster
917 1.3 oster M(2, 3);
918 1.3 oster M(4, 5);
919 1.3 oster M(5, 6);
920 1.1 oster #if RF_LONGSHIFT > 2
921 1.3 oster M(7, 8);
922 1.3 oster M(9, 10);
923 1.3 oster M(11, 12);
924 1.3 oster #endif /* RF_LONGSHIFT > 2 */
925 1.3 oster *abuf++ = new;
926 1.3 oster length--;
927 1.3 oster }
928 1.1 oster }
929 1.3 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) ||
930 1.3 oster * (RF_INCLUDE_RAID6 > 0) */
931