rf_pq.c revision 1.13 1 1.13 oster /* $NetBSD: rf_pq.c,v 1.13 2003/11/16 20:32:05 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Daniel Stodolsky
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * Code for RAID level 6 (P + Q) disk array architecture.
31 1.1 oster */
32 1.11 lukem
33 1.11 lukem #include <sys/cdefs.h>
34 1.13 oster __KERNEL_RCSID(0, "$NetBSD: rf_pq.c,v 1.13 2003/11/16 20:32:05 oster Exp $");
35 1.1 oster
36 1.1 oster #include "rf_archs.h"
37 1.8 oster
38 1.8 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
39 1.8 oster
40 1.10 oster #include <dev/raidframe/raidframevar.h>
41 1.10 oster
42 1.1 oster #include "rf_raid.h"
43 1.1 oster #include "rf_dag.h"
44 1.1 oster #include "rf_dagffrd.h"
45 1.1 oster #include "rf_dagffwr.h"
46 1.1 oster #include "rf_dagdegrd.h"
47 1.1 oster #include "rf_dagdegwr.h"
48 1.1 oster #include "rf_dagutils.h"
49 1.1 oster #include "rf_dagfuncs.h"
50 1.1 oster #include "rf_etimer.h"
51 1.1 oster #include "rf_pqdeg.h"
52 1.1 oster #include "rf_general.h"
53 1.1 oster #include "rf_map.h"
54 1.1 oster #include "rf_pq.h"
55 1.1 oster
56 1.3 oster RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"};
57 1.3 oster RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"};
58 1.1 oster
59 1.3 oster int
60 1.3 oster rf_RegularONPFunc(node)
61 1.3 oster RF_DagNode_t *node;
62 1.1 oster {
63 1.3 oster return (rf_RegularXorFunc(node));
64 1.1 oster }
65 1.1 oster /*
66 1.3 oster same as simpleONQ func, but the coefficient is always 1
67 1.1 oster */
68 1.1 oster
69 1.3 oster int
70 1.3 oster rf_SimpleONPFunc(node)
71 1.3 oster RF_DagNode_t *node;
72 1.1 oster {
73 1.3 oster return (rf_SimpleXorFunc(node));
74 1.1 oster }
75 1.1 oster
76 1.3 oster int
77 1.3 oster rf_RecoveryPFunc(node)
78 1.3 oster RF_DagNode_t *node;
79 1.1 oster {
80 1.3 oster return (rf_RecoveryXorFunc(node));
81 1.1 oster }
82 1.1 oster
83 1.3 oster int
84 1.3 oster rf_RegularPFunc(node)
85 1.3 oster RF_DagNode_t *node;
86 1.1 oster {
87 1.3 oster return (rf_RegularXorFunc(node));
88 1.1 oster }
89 1.8 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
90 1.1 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
91 1.1 oster
92 1.3 oster static void
93 1.3 oster QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
94 1.3 oster unsigned char coeff);
95 1.3 oster static void
96 1.3 oster rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
97 1.3 oster unsigned length, unsigned coeff);
98 1.3 oster
99 1.3 oster RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"};
100 1.3 oster RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"};
101 1.3 oster RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"};
102 1.3 oster
103 1.3 oster void
104 1.3 oster rf_PQDagSelect(
105 1.3 oster RF_Raid_t * raidPtr,
106 1.3 oster RF_IoType_t type,
107 1.3 oster RF_AccessStripeMap_t * asmap,
108 1.3 oster RF_VoidFuncPtr * createFunc)
109 1.3 oster {
110 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
111 1.3 oster unsigned ndfail = asmap->numDataFailed;
112 1.3 oster unsigned npfail = asmap->numParityFailed;
113 1.3 oster unsigned ntfail = npfail + ndfail;
114 1.3 oster
115 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
116 1.3 oster if (ntfail > 2) {
117 1.3 oster RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
118 1.13 oster *createFunc = NULL;
119 1.3 oster return;
120 1.3 oster }
121 1.3 oster /* ok, we can do this I/O */
122 1.3 oster if (type == RF_IO_TYPE_READ) {
123 1.3 oster switch (ndfail) {
124 1.3 oster case 0:
125 1.3 oster /* fault free read */
126 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; /* same as raid 5 */
127 1.3 oster break;
128 1.3 oster case 1:
129 1.3 oster /* lost a single data unit */
130 1.3 oster /* two cases: (1) parity is not lost. do a normal raid
131 1.3 oster * 5 reconstruct read. (2) parity is lost. do a
132 1.3 oster * reconstruct read using "q". */
133 1.3 oster if (ntfail == 2) { /* also lost redundancy */
134 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
135 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateReadDAG;
136 1.3 oster else
137 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateReadDAG;
138 1.3 oster } else {
139 1.3 oster /* P and Q are ok. But is there a failure in
140 1.3 oster * some unaccessed data unit? */
141 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
142 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
143 1.3 oster else
144 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateReadDAG;
145 1.3 oster }
146 1.3 oster break;
147 1.3 oster case 2:
148 1.3 oster /* lost two data units */
149 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
150 1.3 oster break;
151 1.3 oster }
152 1.3 oster return;
153 1.3 oster }
154 1.3 oster /* a write */
155 1.3 oster switch (ntfail) {
156 1.3 oster case 0: /* fault free */
157 1.3 oster if (rf_suppressLocksAndLargeWrites ||
158 1.3 oster (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
159 1.3 oster (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
160 1.3 oster
161 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateSmallWriteDAG;
162 1.3 oster } else {
163 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateLargeWriteDAG;
164 1.3 oster }
165 1.3 oster break;
166 1.3 oster
167 1.3 oster case 1: /* single disk fault */
168 1.3 oster if (npfail == 1) {
169 1.3 oster RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
170 1.3 oster if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like
171 1.3 oster * normal mode raid5
172 1.3 oster * write. */
173 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
174 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
175 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateSmallWriteDAG;
176 1.3 oster else
177 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateLargeWriteDAG;
178 1.3 oster } else {/* parity died, small write only updating Q */
179 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
180 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
181 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateSmallWriteDAG;
182 1.3 oster else
183 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateLargeWriteDAG;
184 1.3 oster }
185 1.3 oster } else { /* data missing. Do a P reconstruct write if
186 1.3 oster * only a single data unit is lost in the
187 1.3 oster * stripe, otherwise a PQ reconstruct write. */
188 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
189 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
190 1.3 oster else
191 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateWriteDAG;
192 1.3 oster }
193 1.3 oster break;
194 1.3 oster
195 1.3 oster case 2: /* two disk faults */
196 1.3 oster switch (npfail) {
197 1.3 oster case 2: /* both p and q dead */
198 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_011_CreateWriteDAG;
199 1.3 oster break;
200 1.3 oster case 1: /* either p or q and dead data */
201 1.3 oster RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
202 1.3 oster RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
203 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
204 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateWriteDAG;
205 1.3 oster else
206 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateWriteDAG;
207 1.3 oster break;
208 1.3 oster case 0: /* double data loss */
209 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
210 1.3 oster break;
211 1.3 oster }
212 1.3 oster break;
213 1.3 oster
214 1.3 oster default: /* more than 2 disk faults */
215 1.3 oster *createFunc = NULL;
216 1.3 oster RF_PANIC();
217 1.3 oster }
218 1.3 oster return;
219 1.3 oster }
220 1.3 oster /*
221 1.3 oster Used as a stop gap info function
222 1.3 oster */
223 1.5 oster #if 0
224 1.3 oster static void
225 1.3 oster PQOne(raidPtr, nSucc, nAnte, asmap)
226 1.3 oster RF_Raid_t *raidPtr;
227 1.3 oster int *nSucc;
228 1.3 oster int *nAnte;
229 1.3 oster RF_AccessStripeMap_t *asmap;
230 1.1 oster {
231 1.3 oster *nSucc = *nAnte = 1;
232 1.1 oster }
233 1.1 oster
234 1.3 oster static void
235 1.3 oster PQOneTwo(raidPtr, nSucc, nAnte, asmap)
236 1.3 oster RF_Raid_t *raidPtr;
237 1.3 oster int *nSucc;
238 1.3 oster int *nAnte;
239 1.3 oster RF_AccessStripeMap_t *asmap;
240 1.3 oster {
241 1.3 oster *nSucc = 1;
242 1.3 oster *nAnte = 2;
243 1.3 oster }
244 1.5 oster #endif
245 1.5 oster
246 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
247 1.1 oster {
248 1.3 oster rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
249 1.3 oster rf_RegularPQFunc, RF_FALSE);
250 1.1 oster }
251 1.1 oster
252 1.3 oster int
253 1.3 oster rf_RegularONQFunc(node)
254 1.3 oster RF_DagNode_t *node;
255 1.3 oster {
256 1.3 oster int np = node->numParams;
257 1.3 oster int d;
258 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
259 1.3 oster int i;
260 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
261 1.3 oster RF_Etimer_t timer;
262 1.3 oster char *qbuf, *qpbuf;
263 1.3 oster char *obuf, *nbuf;
264 1.3 oster RF_PhysDiskAddr_t *old, *new;
265 1.3 oster unsigned long coeff;
266 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
267 1.3 oster
268 1.3 oster RF_ETIMER_START(timer);
269 1.3 oster
270 1.3 oster d = (np - 3) / 4;
271 1.3 oster RF_ASSERT(4 * d + 3 == np);
272 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
273 1.3 oster for (i = 0; i < d; i++) {
274 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
275 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
276 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
277 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
278 1.3 oster RF_ASSERT(new->numSector == old->numSector);
279 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
280 1.3 oster /* the stripe unit within the stripe tells us the coefficient
281 1.3 oster * to use for the multiply. */
282 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
283 1.3 oster /* compute the data unit offset within the column, then add
284 1.3 oster * one */
285 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
286 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
287 1.3 oster QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
288 1.3 oster }
289 1.3 oster
290 1.3 oster RF_ETIMER_STOP(timer);
291 1.3 oster RF_ETIMER_EVAL(timer);
292 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
293 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
294 1.3 oster * I/O in this node */
295 1.3 oster return (0);
296 1.1 oster }
297 1.1 oster /*
298 1.1 oster See the SimpleXORFunc for the difference between a simple and regular func.
299 1.3 oster These Q functions should be used for
300 1.3 oster
301 1.3 oster new q = Q(data,old data,old q)
302 1.1 oster
303 1.3 oster style updates and not for
304 1.1 oster
305 1.1 oster q = ( new data, new data, .... )
306 1.1 oster
307 1.1 oster computations.
308 1.1 oster
309 1.1 oster The simple q takes 2(2d+1)+1 params, where d is the number
310 1.1 oster of stripes written. The order of params is
311 1.1 oster old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
312 1.1 oster [2d] old q pda_0, old q buffer
313 1.1 oster [2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d
314 1.1 oster raidPtr
315 1.1 oster */
316 1.1 oster
317 1.3 oster int
318 1.3 oster rf_SimpleONQFunc(node)
319 1.3 oster RF_DagNode_t *node;
320 1.3 oster {
321 1.3 oster int np = node->numParams;
322 1.3 oster int d;
323 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
324 1.3 oster int i;
325 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
326 1.3 oster RF_Etimer_t timer;
327 1.3 oster char *qbuf;
328 1.3 oster char *obuf, *nbuf;
329 1.3 oster RF_PhysDiskAddr_t *old, *new;
330 1.3 oster unsigned long coeff;
331 1.3 oster
332 1.3 oster RF_ETIMER_START(timer);
333 1.3 oster
334 1.3 oster d = (np - 3) / 4;
335 1.3 oster RF_ASSERT(4 * d + 3 == np);
336 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
337 1.3 oster for (i = 0; i < d; i++) {
338 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
339 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
340 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
341 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
342 1.3 oster RF_ASSERT(new->numSector == old->numSector);
343 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
344 1.3 oster /* the stripe unit within the stripe tells us the coefficient
345 1.3 oster * to use for the multiply. */
346 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
347 1.3 oster /* compute the data unit offset within the column, then add
348 1.3 oster * one */
349 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
350 1.3 oster QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
351 1.3 oster }
352 1.3 oster
353 1.3 oster RF_ETIMER_STOP(timer);
354 1.3 oster RF_ETIMER_EVAL(timer);
355 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
356 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
357 1.3 oster * I/O in this node */
358 1.3 oster return (0);
359 1.1 oster }
360 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
361 1.1 oster {
362 1.3 oster rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
363 1.1 oster }
364 1.1 oster
365 1.5 oster static void RegularQSubr(RF_DagNode_t *node, char *qbuf);
366 1.5 oster
367 1.3 oster static void
368 1.3 oster RegularQSubr(node, qbuf)
369 1.3 oster RF_DagNode_t *node;
370 1.3 oster char *qbuf;
371 1.3 oster {
372 1.3 oster int np = node->numParams;
373 1.3 oster int d;
374 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
375 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
376 1.3 oster int i;
377 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
378 1.3 oster RF_Etimer_t timer;
379 1.3 oster char *obuf, *qpbuf;
380 1.3 oster RF_PhysDiskAddr_t *old;
381 1.3 oster unsigned long coeff;
382 1.3 oster
383 1.3 oster RF_ETIMER_START(timer);
384 1.3 oster
385 1.3 oster d = (np - 1) / 2;
386 1.3 oster RF_ASSERT(2 * d + 1 == np);
387 1.3 oster for (i = 0; i < d; i++) {
388 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
389 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
390 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
391 1.3 oster /* compute the data unit offset within the column, then add
392 1.3 oster * one */
393 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
394 1.3 oster /* the input buffers may not all be aligned with the start of
395 1.3 oster * the stripe. so shift by their sector offset within the
396 1.3 oster * stripe unit */
397 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
398 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
399 1.3 oster }
400 1.3 oster
401 1.3 oster RF_ETIMER_STOP(timer);
402 1.3 oster RF_ETIMER_EVAL(timer);
403 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
404 1.1 oster }
405 1.1 oster /*
406 1.1 oster used in degraded writes.
407 1.1 oster */
408 1.1 oster
409 1.5 oster static void DegrQSubr(RF_DagNode_t *node);
410 1.5 oster
411 1.3 oster static void
412 1.3 oster DegrQSubr(node)
413 1.3 oster RF_DagNode_t *node;
414 1.3 oster {
415 1.3 oster int np = node->numParams;
416 1.3 oster int d;
417 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
418 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
419 1.3 oster int i;
420 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
421 1.3 oster RF_Etimer_t timer;
422 1.3 oster char *qbuf = node->results[1];
423 1.3 oster char *obuf, *qpbuf;
424 1.3 oster RF_PhysDiskAddr_t *old;
425 1.3 oster unsigned long coeff;
426 1.3 oster unsigned fail_start;
427 1.3 oster int j;
428 1.3 oster
429 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
430 1.3 oster fail_start = old->startSector % secPerSU;
431 1.3 oster
432 1.3 oster RF_ETIMER_START(timer);
433 1.3 oster
434 1.3 oster d = (np - 2) / 2;
435 1.3 oster RF_ASSERT(2 * d + 2 == np);
436 1.3 oster for (i = 0; i < d; i++) {
437 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
438 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
439 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
440 1.3 oster /* compute the data unit offset within the column, then add
441 1.3 oster * one */
442 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
443 1.3 oster /* the input buffers may not all be aligned with the start of
444 1.3 oster * the stripe. so shift by their sector offset within the
445 1.3 oster * stripe unit */
446 1.3 oster j = old->startSector % secPerSU;
447 1.3 oster RF_ASSERT(j >= fail_start);
448 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
449 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
450 1.3 oster }
451 1.3 oster
452 1.3 oster RF_ETIMER_STOP(timer);
453 1.3 oster RF_ETIMER_EVAL(timer);
454 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
455 1.1 oster }
456 1.1 oster /*
457 1.1 oster Called by large write code to compute the new parity and the new q.
458 1.3 oster
459 1.1 oster structure of the params:
460 1.1 oster
461 1.1 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
462 1.3 oster raidPtr
463 1.1 oster
464 1.1 oster for a total of 2d+1 arguments.
465 1.1 oster The result buffers results[0], results[1] are the buffers for the p and q,
466 1.1 oster respectively.
467 1.1 oster
468 1.1 oster We compute Q first, then compute P. The P calculation may try to reuse
469 1.1 oster one of the input buffers for its output, so if we computed P first, we would
470 1.1 oster corrupt the input for the q calculation.
471 1.1 oster */
472 1.1 oster
473 1.3 oster int
474 1.3 oster rf_RegularPQFunc(node)
475 1.3 oster RF_DagNode_t *node;
476 1.3 oster {
477 1.3 oster RegularQSubr(node, node->results[1]);
478 1.3 oster return (rf_RegularXorFunc(node)); /* does the wakeup */
479 1.3 oster }
480 1.3 oster
481 1.3 oster int
482 1.3 oster rf_RegularQFunc(node)
483 1.3 oster RF_DagNode_t *node;
484 1.3 oster {
485 1.3 oster /* Almost ... adjust Qsubr args */
486 1.3 oster RegularQSubr(node, node->results[0]);
487 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
488 1.3 oster * I/O in this node */
489 1.3 oster return (0);
490 1.1 oster }
491 1.1 oster /*
492 1.1 oster Called by singly degraded write code to compute the new parity and the new q.
493 1.3 oster
494 1.1 oster structure of the params:
495 1.1 oster
496 1.3 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
497 1.3 oster failedPDA raidPtr
498 1.1 oster
499 1.1 oster for a total of 2d+2 arguments.
500 1.1 oster The result buffers results[0], results[1] are the buffers for the parity and q,
501 1.1 oster respectively.
502 1.1 oster
503 1.1 oster We compute Q first, then compute parity. The parity calculation may try to reuse
504 1.1 oster one of the input buffers for its output, so if we computed parity first, we would
505 1.1 oster corrupt the input for the q calculation.
506 1.1 oster
507 1.1 oster We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
508 1.1 oster */
509 1.1 oster
510 1.3 oster void
511 1.3 oster rf_Degraded_100_PQFunc(node)
512 1.3 oster RF_DagNode_t *node;
513 1.3 oster {
514 1.3 oster int np = node->numParams;
515 1.3 oster
516 1.3 oster RF_ASSERT(np >= 2);
517 1.3 oster DegrQSubr(node);
518 1.3 oster rf_RecoveryXorFunc(node);
519 1.1 oster }
520 1.1 oster
521 1.1 oster
522 1.1 oster /*
523 1.1 oster The two below are used when reading a stripe with a single lost data unit.
524 1.1 oster The parameters are
525 1.1 oster
526 1.1 oster pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
527 1.1 oster
528 1.1 oster and results[0] contains the data buffer. Which is originally zero-filled.
529 1.3 oster
530 1.1 oster */
531 1.1 oster
532 1.1 oster /* this Q func is used by the degraded-mode dag functions to recover lost data.
533 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
534 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
535 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
536 1.1 oster * the other PDAs in the parameter list to determine where within the target
537 1.1 oster * buffer the corresponding data should be xored.
538 1.1 oster *
539 1.3 oster * Recall the basic equation is
540 1.3 oster *
541 1.1 oster * Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256
542 1.1 oster *
543 1.1 oster * so to recover data_j we need
544 1.1 oster *
545 1.1 oster * J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
546 1.1 oster *
547 1.1 oster * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
548 1.1 oster * copying Q into it. Then we need to do a table lookup to convert to solve
549 1.1 oster * data_j /= J
550 1.3 oster *
551 1.3 oster *
552 1.1 oster */
553 1.3 oster int
554 1.3 oster rf_RecoveryQFunc(node)
555 1.3 oster RF_DagNode_t *node;
556 1.3 oster {
557 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
558 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
559 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
560 1.3 oster int i;
561 1.3 oster RF_PhysDiskAddr_t *pda;
562 1.3 oster RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
563 1.3 oster char *srcbuf, *destbuf;
564 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
565 1.3 oster RF_Etimer_t timer;
566 1.3 oster unsigned long coeff;
567 1.3 oster
568 1.3 oster RF_ETIMER_START(timer);
569 1.3 oster /* start by copying Q into the buffer */
570 1.12 wiz memcpy(node->results[0], node->params[node->numParams - 3].p,
571 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
572 1.3 oster for (i = 0; i < node->numParams - 4; i += 2) {
573 1.3 oster RF_ASSERT(node->params[i + 1].p != node->results[0]);
574 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
575 1.3 oster srcbuf = (char *) node->params[i + 1].p;
576 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
577 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
578 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
579 1.3 oster /* compute the data unit offset within the column */
580 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
581 1.3 oster rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
582 1.3 oster }
583 1.3 oster /* Do the nasty inversion now */
584 1.3 oster coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol);
585 1.3 oster rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
586 1.3 oster RF_ETIMER_STOP(timer);
587 1.3 oster RF_ETIMER_EVAL(timer);
588 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
589 1.3 oster rf_GenericWakeupFunc(node, 0);
590 1.3 oster return (0);
591 1.3 oster }
592 1.3 oster
593 1.3 oster int
594 1.3 oster rf_RecoveryPQFunc(node)
595 1.3 oster RF_DagNode_t *node;
596 1.1 oster {
597 1.6 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
598 1.6 oster printf("raid%d: Recovery from PQ not implemented.\n",raidPtr->raidid);
599 1.3 oster return (1);
600 1.1 oster }
601 1.1 oster /*
602 1.3 oster Degraded write Q subroutine.
603 1.1 oster Used when P is dead.
604 1.3 oster Large-write style Q computation.
605 1.1 oster Parameters
606 1.1 oster
607 1.1 oster (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
608 1.1 oster
609 1.1 oster We ignore failedPDA.
610 1.1 oster
611 1.1 oster This is a "simple style" recovery func.
612 1.1 oster */
613 1.1 oster
614 1.3 oster void
615 1.3 oster rf_PQ_DegradedWriteQFunc(node)
616 1.3 oster RF_DagNode_t *node;
617 1.3 oster {
618 1.3 oster int np = node->numParams;
619 1.3 oster int d;
620 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
621 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
622 1.3 oster int i;
623 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
624 1.3 oster RF_Etimer_t timer;
625 1.3 oster char *qbuf = node->results[0];
626 1.3 oster char *obuf, *qpbuf;
627 1.3 oster RF_PhysDiskAddr_t *old;
628 1.3 oster unsigned long coeff;
629 1.3 oster int fail_start, j;
630 1.3 oster
631 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
632 1.3 oster fail_start = old->startSector % secPerSU;
633 1.3 oster
634 1.3 oster RF_ETIMER_START(timer);
635 1.3 oster
636 1.3 oster d = (np - 2) / 2;
637 1.3 oster RF_ASSERT(2 * d + 2 == np);
638 1.3 oster
639 1.3 oster for (i = 0; i < d; i++) {
640 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
641 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
642 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
643 1.3 oster /* compute the data unit offset within the column, then add
644 1.3 oster * one */
645 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
646 1.3 oster j = old->startSector % secPerSU;
647 1.3 oster RF_ASSERT(j >= fail_start);
648 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
649 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
650 1.3 oster }
651 1.3 oster
652 1.3 oster RF_ETIMER_STOP(timer);
653 1.3 oster RF_ETIMER_EVAL(timer);
654 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
655 1.3 oster rf_GenericWakeupFunc(node, 0);
656 1.1 oster }
657 1.1 oster
658 1.1 oster
659 1.1 oster
660 1.1 oster
661 1.1 oster /* Q computations */
662 1.1 oster
663 1.1 oster /*
664 1.1 oster coeff - colummn;
665 1.1 oster
666 1.1 oster compute dest ^= qfor[28-coeff][rn[coeff+1] a]
667 1.1 oster
668 1.1 oster on 5-bit basis;
669 1.1 oster length in bytes;
670 1.1 oster */
671 1.1 oster
672 1.3 oster void
673 1.3 oster rf_IncQ(dest, buf, length, coeff)
674 1.3 oster unsigned long *dest;
675 1.3 oster unsigned long *buf;
676 1.3 oster unsigned length;
677 1.3 oster unsigned coeff;
678 1.3 oster {
679 1.3 oster unsigned long a, d, new;
680 1.3 oster unsigned long a1, a2;
681 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
682 1.3 oster unsigned r = rf_rn[coeff + 1];
683 1.1 oster
684 1.1 oster #define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
685 1.1 oster #define INSERT(a,i) (a << (5L*i))
686 1.1 oster
687 1.3 oster length /= 8;
688 1.3 oster /* 13 5 bit quants in a 64 bit word */
689 1.3 oster while (length) {
690 1.3 oster a = *buf++;
691 1.3 oster d = *dest;
692 1.3 oster a1 = EXTRACT(a, 0) ^ r;
693 1.3 oster a2 = EXTRACT(a, 1) ^ r;
694 1.3 oster new = INSERT(a2, 1) | a1;
695 1.3 oster a1 = EXTRACT(a, 2) ^ r;
696 1.3 oster a2 = EXTRACT(a, 3) ^ r;
697 1.3 oster a1 = q[a1];
698 1.3 oster a2 = q[a2];
699 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
700 1.3 oster a1 = EXTRACT(a, 4) ^ r;
701 1.3 oster a2 = EXTRACT(a, 5) ^ r;
702 1.3 oster a1 = q[a1];
703 1.3 oster a2 = q[a2];
704 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
705 1.3 oster a1 = EXTRACT(a, 5) ^ r;
706 1.3 oster a2 = EXTRACT(a, 6) ^ r;
707 1.3 oster a1 = q[a1];
708 1.3 oster a2 = q[a2];
709 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
710 1.1 oster #if RF_LONGSHIFT > 2
711 1.3 oster a1 = EXTRACT(a, 7) ^ r;
712 1.3 oster a2 = EXTRACT(a, 8) ^ r;
713 1.3 oster a1 = q[a1];
714 1.3 oster a2 = q[a2];
715 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
716 1.3 oster a1 = EXTRACT(a, 9) ^ r;
717 1.3 oster a2 = EXTRACT(a, 10) ^ r;
718 1.3 oster a1 = q[a1];
719 1.3 oster a2 = q[a2];
720 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
721 1.3 oster a1 = EXTRACT(a, 11) ^ r;
722 1.3 oster a2 = EXTRACT(a, 12) ^ r;
723 1.3 oster a1 = q[a1];
724 1.3 oster a2 = q[a2];
725 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
726 1.3 oster #endif /* RF_LONGSHIFT > 2 */
727 1.3 oster d ^= new;
728 1.3 oster *dest++ = d;
729 1.3 oster length--;
730 1.3 oster }
731 1.1 oster }
732 1.3 oster /*
733 1.3 oster compute
734 1.1 oster
735 1.1 oster dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
736 1.1 oster
737 1.1 oster on a five bit basis.
738 1.1 oster optimization: compute old ^ new on 64 bit basis.
739 1.1 oster
740 1.1 oster length in bytes.
741 1.1 oster */
742 1.1 oster
743 1.3 oster static void
744 1.3 oster QDelta(
745 1.3 oster char *dest,
746 1.3 oster char *obuf,
747 1.3 oster char *nbuf,
748 1.3 oster unsigned length,
749 1.3 oster unsigned char coeff)
750 1.3 oster {
751 1.3 oster unsigned long a, d, new;
752 1.3 oster unsigned long a1, a2;
753 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
754 1.5 oster unsigned int r = rf_rn[coeff + 1];
755 1.5 oster
756 1.5 oster r = a1 = a2 = new = d = a = 0; /* XXX for now... */
757 1.5 oster q = NULL; /* XXX for now */
758 1.1 oster
759 1.2 oster #ifdef _KERNEL
760 1.3 oster /* PQ in kernel currently not supported because the encoding/decoding
761 1.3 oster * table is not present */
762 1.9 thorpej memset(dest, 0, length);
763 1.3 oster #else /* KERNEL */
764 1.3 oster /* this code probably doesn't work and should be rewritten -wvcii */
765 1.3 oster /* 13 5 bit quants in a 64 bit word */
766 1.3 oster length /= 8;
767 1.3 oster while (length) {
768 1.3 oster a = *obuf++; /* XXX need to reorg to avoid cache conflicts */
769 1.3 oster a ^= *nbuf++;
770 1.3 oster d = *dest;
771 1.3 oster a1 = EXTRACT(a, 0) ^ r;
772 1.3 oster a2 = EXTRACT(a, 1) ^ r;
773 1.3 oster a1 = q[a1];
774 1.3 oster a2 = q[a2];
775 1.3 oster new = INSERT(a2, 1) | a1;
776 1.3 oster a1 = EXTRACT(a, 2) ^ r;
777 1.3 oster a2 = EXTRACT(a, 3) ^ r;
778 1.3 oster a1 = q[a1];
779 1.3 oster a2 = q[a2];
780 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
781 1.3 oster a1 = EXTRACT(a, 4) ^ r;
782 1.3 oster a2 = EXTRACT(a, 5) ^ r;
783 1.3 oster a1 = q[a1];
784 1.3 oster a2 = q[a2];
785 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
786 1.3 oster a1 = EXTRACT(a, 5) ^ r;
787 1.3 oster a2 = EXTRACT(a, 6) ^ r;
788 1.3 oster a1 = q[a1];
789 1.3 oster a2 = q[a2];
790 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
791 1.1 oster #if RF_LONGSHIFT > 2
792 1.3 oster a1 = EXTRACT(a, 7) ^ r;
793 1.3 oster a2 = EXTRACT(a, 8) ^ r;
794 1.3 oster a1 = q[a1];
795 1.3 oster a2 = q[a2];
796 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
797 1.3 oster a1 = EXTRACT(a, 9) ^ r;
798 1.3 oster a2 = EXTRACT(a, 10) ^ r;
799 1.3 oster a1 = q[a1];
800 1.3 oster a2 = q[a2];
801 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
802 1.3 oster a1 = EXTRACT(a, 11) ^ r;
803 1.3 oster a2 = EXTRACT(a, 12) ^ r;
804 1.3 oster a1 = q[a1];
805 1.3 oster a2 = q[a2];
806 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
807 1.3 oster #endif /* RF_LONGSHIFT > 2 */
808 1.3 oster d ^= new;
809 1.3 oster *dest++ = d;
810 1.3 oster length--;
811 1.3 oster }
812 1.3 oster #endif /* _KERNEL */
813 1.1 oster }
814 1.1 oster /*
815 1.1 oster recover columns a and b from the given p and q into
816 1.1 oster bufs abuf and bbuf. All bufs are word aligned.
817 1.1 oster Length is in bytes.
818 1.1 oster */
819 1.3 oster
820 1.1 oster
821 1.1 oster /*
822 1.1 oster * XXX
823 1.1 oster *
824 1.1 oster * Everything about this seems wrong.
825 1.1 oster */
826 1.3 oster void
827 1.3 oster rf_PQ_recover(pbuf, qbuf, abuf, bbuf, length, coeff_a, coeff_b)
828 1.3 oster unsigned long *pbuf;
829 1.3 oster unsigned long *qbuf;
830 1.3 oster unsigned long *abuf;
831 1.3 oster unsigned long *bbuf;
832 1.3 oster unsigned length;
833 1.3 oster unsigned coeff_a;
834 1.3 oster unsigned coeff_b;
835 1.3 oster {
836 1.3 oster unsigned long p, q, a, a0, a1;
837 1.3 oster int col = (29 * coeff_a) + coeff_b;
838 1.3 oster unsigned char *q0 = &(rf_qinv[col][0]);
839 1.3 oster
840 1.3 oster length /= 8;
841 1.3 oster while (length) {
842 1.3 oster p = *pbuf++;
843 1.3 oster q = *qbuf++;
844 1.3 oster a0 = EXTRACT(p, 0);
845 1.3 oster a1 = EXTRACT(q, 0);
846 1.3 oster a = q0[a0 << 5 | a1];
847 1.1 oster #define MF(i) \
848 1.1 oster a0 = EXTRACT(p,i); \
849 1.1 oster a1 = EXTRACT(q,i); \
850 1.1 oster a = a | INSERT(q0[a0<<5 | a1],i)
851 1.1 oster
852 1.3 oster MF(1);
853 1.3 oster MF(2);
854 1.3 oster MF(3);
855 1.3 oster MF(4);
856 1.3 oster MF(5);
857 1.3 oster MF(6);
858 1.1 oster #if 0
859 1.3 oster MF(7);
860 1.3 oster MF(8);
861 1.3 oster MF(9);
862 1.3 oster MF(10);
863 1.3 oster MF(11);
864 1.3 oster MF(12);
865 1.3 oster #endif /* 0 */
866 1.3 oster *abuf++ = a;
867 1.3 oster *bbuf++ = a ^ p;
868 1.3 oster length--;
869 1.3 oster }
870 1.1 oster }
871 1.3 oster /*
872 1.1 oster Lost parity and a data column. Recover that data column.
873 1.1 oster Assume col coeff is lost. Let q the contents of Q after
874 1.1 oster all surviving data columns have been q-xored out of it.
875 1.1 oster Then we have the equation
876 1.1 oster
877 1.1 oster q[28-coeff][a_i ^ r_i+1] = q
878 1.1 oster
879 1.3 oster but q is cyclic with period 31.
880 1.1 oster So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
881 1.1 oster q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
882 1.1 oster
883 1.1 oster so a_i = r_{coeff+1} ^ q[3+coeff][q]
884 1.1 oster
885 1.1 oster The routine is passed q buffer and the buffer
886 1.1 oster the data is to be recoverd into. They can be the same.
887 1.1 oster */
888 1.1 oster
889 1.1 oster
890 1.3 oster
891 1.3 oster static void
892 1.3 oster rf_InvertQ(
893 1.3 oster unsigned long *qbuf,
894 1.3 oster unsigned long *abuf,
895 1.3 oster unsigned length,
896 1.3 oster unsigned coeff)
897 1.3 oster {
898 1.3 oster unsigned long a, new;
899 1.3 oster unsigned long a1, a2;
900 1.3 oster unsigned int *q = &(rf_qfor[3 + coeff][0]);
901 1.3 oster unsigned r = rf_rn[coeff + 1];
902 1.3 oster
903 1.3 oster /* 13 5 bit quants in a 64 bit word */
904 1.3 oster length /= 8;
905 1.3 oster while (length) {
906 1.3 oster a = *qbuf++;
907 1.3 oster a1 = EXTRACT(a, 0);
908 1.3 oster a2 = EXTRACT(a, 1);
909 1.3 oster a1 = r ^ q[a1];
910 1.3 oster a2 = r ^ q[a2];
911 1.3 oster new = INSERT(a2, 1) | a1;
912 1.1 oster #define M(i,j) \
913 1.1 oster a1 = EXTRACT(a,i); \
914 1.1 oster a2 = EXTRACT(a,j); \
915 1.1 oster a1 = r ^ q[a1]; \
916 1.1 oster a2 = r ^ q[a2]; \
917 1.1 oster new = new | INSERT(a1,i) | INSERT(a2,j)
918 1.1 oster
919 1.3 oster M(2, 3);
920 1.3 oster M(4, 5);
921 1.3 oster M(5, 6);
922 1.1 oster #if RF_LONGSHIFT > 2
923 1.3 oster M(7, 8);
924 1.3 oster M(9, 10);
925 1.3 oster M(11, 12);
926 1.3 oster #endif /* RF_LONGSHIFT > 2 */
927 1.3 oster *abuf++ = new;
928 1.3 oster length--;
929 1.3 oster }
930 1.1 oster }
931 1.3 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) ||
932 1.3 oster * (RF_INCLUDE_RAID6 > 0) */
933