Home | History | Annotate | Line # | Download | only in raidframe
rf_pq.c revision 1.16
      1  1.16      dsl /*	$NetBSD: rf_pq.c,v 1.16 2009/03/14 15:36:20 dsl Exp $	*/
      2   1.1    oster /*
      3   1.1    oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1    oster  * All rights reserved.
      5   1.1    oster  *
      6   1.1    oster  * Author: Daniel Stodolsky
      7   1.1    oster  *
      8   1.1    oster  * Permission to use, copy, modify and distribute this software and
      9   1.1    oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1    oster  * notice and this permission notice appear in all copies of the
     11   1.1    oster  * software, derivative works or modified versions, and any portions
     12   1.1    oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1    oster  *
     14   1.1    oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1    oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1    oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1    oster  *
     18   1.1    oster  * Carnegie Mellon requests users of this software to return to
     19   1.1    oster  *
     20   1.1    oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1    oster  *  School of Computer Science
     22   1.1    oster  *  Carnegie Mellon University
     23   1.1    oster  *  Pittsburgh PA 15213-3890
     24   1.1    oster  *
     25   1.1    oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1    oster  * rights to redistribute these changes.
     27   1.1    oster  */
     28   1.1    oster 
     29   1.1    oster /*
     30   1.1    oster  * Code for RAID level 6 (P + Q) disk array architecture.
     31   1.1    oster  */
     32  1.11    lukem 
     33  1.11    lukem #include <sys/cdefs.h>
     34  1.16      dsl __KERNEL_RCSID(0, "$NetBSD: rf_pq.c,v 1.16 2009/03/14 15:36:20 dsl Exp $");
     35   1.1    oster 
     36   1.1    oster #include "rf_archs.h"
     37   1.8    oster 
     38   1.8    oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
     39   1.8    oster 
     40  1.10    oster #include <dev/raidframe/raidframevar.h>
     41  1.10    oster 
     42   1.1    oster #include "rf_raid.h"
     43   1.1    oster #include "rf_dag.h"
     44   1.1    oster #include "rf_dagffrd.h"
     45   1.1    oster #include "rf_dagffwr.h"
     46   1.1    oster #include "rf_dagdegrd.h"
     47   1.1    oster #include "rf_dagdegwr.h"
     48   1.1    oster #include "rf_dagutils.h"
     49   1.1    oster #include "rf_dagfuncs.h"
     50   1.1    oster #include "rf_etimer.h"
     51   1.1    oster #include "rf_pqdeg.h"
     52   1.1    oster #include "rf_general.h"
     53   1.1    oster #include "rf_map.h"
     54   1.1    oster #include "rf_pq.h"
     55   1.1    oster 
     56   1.3    oster RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"};
     57   1.3    oster RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"};
     58   1.1    oster 
     59  1.14    perry int
     60  1.16      dsl rf_RegularONPFunc(RF_DagNode_t *node)
     61   1.1    oster {
     62   1.3    oster 	return (rf_RegularXorFunc(node));
     63   1.1    oster }
     64   1.1    oster /*
     65   1.3    oster    same as simpleONQ func, but the coefficient is always 1
     66   1.1    oster */
     67   1.1    oster 
     68  1.14    perry int
     69  1.16      dsl rf_SimpleONPFunc(RF_DagNode_t *node)
     70   1.1    oster {
     71   1.3    oster 	return (rf_SimpleXorFunc(node));
     72   1.1    oster }
     73   1.1    oster 
     74  1.14    perry int
     75  1.16      dsl rf_RecoveryPFunc(RF_DagNode_t *node)
     76   1.1    oster {
     77   1.3    oster 	return (rf_RecoveryXorFunc(node));
     78   1.1    oster }
     79   1.1    oster 
     80  1.14    perry int
     81  1.16      dsl rf_RegularPFunc(RF_DagNode_t *node)
     82   1.1    oster {
     83   1.3    oster 	return (rf_RegularXorFunc(node));
     84   1.1    oster }
     85   1.8    oster #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
     86   1.1    oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
     87   1.1    oster 
     88  1.14    perry static void
     89   1.3    oster QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
     90   1.3    oster     unsigned char coeff);
     91  1.14    perry static void
     92   1.3    oster rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
     93   1.3    oster     unsigned length, unsigned coeff);
     94   1.3    oster 
     95   1.3    oster RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"};
     96   1.3    oster RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"};
     97   1.3    oster RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"};
     98   1.3    oster 
     99  1.14    perry void
    100   1.3    oster rf_PQDagSelect(
    101   1.3    oster     RF_Raid_t * raidPtr,
    102   1.3    oster     RF_IoType_t type,
    103   1.3    oster     RF_AccessStripeMap_t * asmap,
    104   1.3    oster     RF_VoidFuncPtr * createFunc)
    105   1.3    oster {
    106   1.3    oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    107   1.3    oster 	unsigned ndfail = asmap->numDataFailed;
    108   1.3    oster 	unsigned npfail = asmap->numParityFailed;
    109   1.3    oster 	unsigned ntfail = npfail + ndfail;
    110   1.3    oster 
    111   1.3    oster 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    112   1.3    oster 	if (ntfail > 2) {
    113   1.3    oster 		RF_ERRORMSG("more than two disks failed in a single group!  Aborting I/O operation.\n");
    114  1.13    oster 		*createFunc = NULL;
    115   1.3    oster 		return;
    116   1.3    oster 	}
    117   1.3    oster 	/* ok, we can do this I/O */
    118   1.3    oster 	if (type == RF_IO_TYPE_READ) {
    119   1.3    oster 		switch (ndfail) {
    120   1.3    oster 		case 0:
    121   1.3    oster 			/* fault free read */
    122   1.5    oster 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;	/* same as raid 5 */
    123   1.3    oster 			break;
    124   1.3    oster 		case 1:
    125   1.3    oster 			/* lost a single data unit */
    126   1.3    oster 			/* two cases: (1) parity is not lost. do a normal raid
    127   1.3    oster 			 * 5 reconstruct read. (2) parity is lost. do a
    128   1.3    oster 			 * reconstruct read using "q". */
    129   1.3    oster 			if (ntfail == 2) {	/* also lost redundancy */
    130   1.3    oster 				if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
    131   1.5    oster 					*createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateReadDAG;
    132   1.3    oster 				else
    133   1.5    oster 					*createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateReadDAG;
    134   1.3    oster 			} else {
    135   1.3    oster 				/* P and Q are ok. But is there a failure in
    136   1.3    oster 				 * some unaccessed data unit? */
    137   1.3    oster 				if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
    138   1.5    oster 					*createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
    139   1.3    oster 				else
    140   1.5    oster 					*createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateReadDAG;
    141   1.3    oster 			}
    142   1.3    oster 			break;
    143   1.3    oster 		case 2:
    144   1.3    oster 			/* lost two data units */
    145   1.5    oster 			*createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
    146   1.3    oster 			break;
    147   1.3    oster 		}
    148   1.3    oster 		return;
    149   1.3    oster 	}
    150   1.3    oster 	/* a write */
    151   1.3    oster 	switch (ntfail) {
    152   1.3    oster 	case 0:		/* fault free */
    153   1.3    oster 		if (rf_suppressLocksAndLargeWrites ||
    154   1.3    oster 		    (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
    155   1.3    oster 			(asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
    156   1.3    oster 
    157   1.5    oster 			*createFunc = (RF_VoidFuncPtr) rf_PQCreateSmallWriteDAG;
    158   1.3    oster 		} else {
    159   1.5    oster 			*createFunc = (RF_VoidFuncPtr) rf_PQCreateLargeWriteDAG;
    160   1.3    oster 		}
    161   1.3    oster 		break;
    162   1.3    oster 
    163   1.3    oster 	case 1:		/* single disk fault */
    164   1.3    oster 		if (npfail == 1) {
    165   1.3    oster 			RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
    166   1.3    oster 			if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) {	/* q died, treat like
    167   1.3    oster 										 * normal mode raid5
    168   1.3    oster 										 * write. */
    169   1.3    oster 				if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
    170   1.3    oster 				    || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
    171   1.5    oster 					*createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateSmallWriteDAG;
    172   1.3    oster 				else
    173   1.5    oster 					*createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateLargeWriteDAG;
    174   1.3    oster 			} else {/* parity died, small write only updating Q */
    175   1.3    oster 				if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
    176   1.3    oster 				    || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
    177   1.5    oster 					*createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateSmallWriteDAG;
    178   1.3    oster 				else
    179   1.5    oster 					*createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateLargeWriteDAG;
    180   1.3    oster 			}
    181   1.3    oster 		} else {	/* data missing. Do a P reconstruct write if
    182   1.3    oster 				 * only a single data unit is lost in the
    183   1.3    oster 				 * stripe, otherwise a PQ reconstruct write. */
    184   1.3    oster 			if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
    185   1.5    oster 				*createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
    186   1.3    oster 			else
    187   1.5    oster 				*createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateWriteDAG;
    188   1.3    oster 		}
    189   1.3    oster 		break;
    190   1.3    oster 
    191   1.3    oster 	case 2:		/* two disk faults */
    192   1.3    oster 		switch (npfail) {
    193   1.3    oster 		case 2:	/* both p and q dead */
    194   1.5    oster 			*createFunc = (RF_VoidFuncPtr) rf_PQ_011_CreateWriteDAG;
    195   1.3    oster 			break;
    196   1.3    oster 		case 1:	/* either p or q and dead data */
    197   1.3    oster 			RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
    198   1.3    oster 			RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
    199   1.3    oster 			if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
    200   1.5    oster 				*createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateWriteDAG;
    201   1.3    oster 			else
    202   1.5    oster 				*createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateWriteDAG;
    203   1.3    oster 			break;
    204   1.3    oster 		case 0:	/* double data loss */
    205   1.5    oster 			*createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
    206   1.3    oster 			break;
    207   1.3    oster 		}
    208   1.3    oster 		break;
    209   1.3    oster 
    210   1.3    oster 	default:		/* more than 2 disk faults */
    211   1.3    oster 		*createFunc = NULL;
    212   1.3    oster 		RF_PANIC();
    213   1.3    oster 	}
    214   1.3    oster 	return;
    215   1.3    oster }
    216   1.3    oster /*
    217   1.3    oster    Used as a stop gap info function
    218   1.3    oster */
    219   1.5    oster #if 0
    220  1.14    perry static void
    221  1.16      dsl PQOne(RF_Raid_t *raidPtr, int *nSucc, int *nAnte, RF_AccessStripeMap_t *asmap)
    222   1.1    oster {
    223   1.3    oster 	*nSucc = *nAnte = 1;
    224   1.1    oster }
    225   1.1    oster 
    226  1.14    perry static void
    227  1.16      dsl PQOneTwo(RF_Raid_t *raidPtr, int *nSucc, int *nAnte, RF_AccessStripeMap_t *asmap)
    228   1.3    oster {
    229   1.3    oster 	*nSucc = 1;
    230   1.3    oster 	*nAnte = 2;
    231   1.3    oster }
    232   1.5    oster #endif
    233   1.5    oster 
    234   1.1    oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
    235   1.1    oster {
    236   1.3    oster 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
    237   1.3    oster 	    rf_RegularPQFunc, RF_FALSE);
    238   1.1    oster }
    239   1.1    oster 
    240  1.14    perry int
    241  1.16      dsl rf_RegularONQFunc(RF_DagNode_t *node)
    242   1.3    oster {
    243   1.3    oster 	int     np = node->numParams;
    244   1.3    oster 	int     d;
    245   1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    246   1.3    oster 	int     i;
    247   1.3    oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    248   1.3    oster 	RF_Etimer_t timer;
    249   1.3    oster 	char   *qbuf, *qpbuf;
    250   1.3    oster 	char   *obuf, *nbuf;
    251   1.3    oster 	RF_PhysDiskAddr_t *old, *new;
    252   1.3    oster 	unsigned long coeff;
    253   1.3    oster 	unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    254   1.3    oster 
    255   1.3    oster 	RF_ETIMER_START(timer);
    256   1.3    oster 
    257   1.3    oster 	d = (np - 3) / 4;
    258   1.3    oster 	RF_ASSERT(4 * d + 3 == np);
    259   1.3    oster 	qbuf = (char *) node->params[2 * d + 1].p;	/* q buffer */
    260   1.3    oster 	for (i = 0; i < d; i++) {
    261   1.3    oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    262   1.3    oster 		obuf = (char *) node->params[2 * i + 1].p;
    263   1.3    oster 		new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
    264   1.3    oster 		nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
    265   1.3    oster 		RF_ASSERT(new->numSector == old->numSector);
    266   1.3    oster 		RF_ASSERT(new->raidAddress == old->raidAddress);
    267   1.3    oster 		/* the stripe unit within the stripe tells us the coefficient
    268   1.3    oster 		 * to use for the multiply. */
    269   1.3    oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
    270   1.3    oster 		/* compute the data unit offset within the column, then add
    271   1.3    oster 		 * one */
    272   1.3    oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    273   1.3    oster 		qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
    274   1.3    oster 		QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    275   1.3    oster 	}
    276   1.3    oster 
    277   1.3    oster 	RF_ETIMER_STOP(timer);
    278   1.3    oster 	RF_ETIMER_EVAL(timer);
    279   1.3    oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    280   1.3    oster 	rf_GenericWakeupFunc(node, 0);	/* call wake func explicitly since no
    281   1.3    oster 					 * I/O in this node */
    282   1.3    oster 	return (0);
    283   1.1    oster }
    284   1.1    oster /*
    285   1.1    oster    See the SimpleXORFunc for the difference between a simple and regular func.
    286   1.3    oster    These Q functions should be used for
    287   1.3    oster 
    288   1.3    oster          new q = Q(data,old data,old q)
    289   1.1    oster 
    290   1.3    oster    style updates and not for
    291   1.1    oster 
    292   1.1    oster          q = ( new data, new data, .... )
    293   1.1    oster 
    294   1.1    oster    computations.
    295   1.1    oster 
    296   1.1    oster    The simple q takes 2(2d+1)+1 params, where d is the number
    297   1.1    oster    of stripes written. The order of params is
    298   1.1    oster    old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
    299   1.1    oster    [2d] old q pda_0, old q buffer
    300   1.1    oster    [2d_2] new data pda_0, new data buffer_0, ...                                    new data pda_d, new data buffer_d
    301   1.1    oster    raidPtr
    302   1.1    oster */
    303   1.1    oster 
    304  1.14    perry int
    305  1.16      dsl rf_SimpleONQFunc(RF_DagNode_t *node)
    306   1.3    oster {
    307   1.3    oster 	int     np = node->numParams;
    308   1.3    oster 	int     d;
    309   1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    310   1.3    oster 	int     i;
    311   1.3    oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    312   1.3    oster 	RF_Etimer_t timer;
    313   1.3    oster 	char   *qbuf;
    314   1.3    oster 	char   *obuf, *nbuf;
    315   1.3    oster 	RF_PhysDiskAddr_t *old, *new;
    316   1.3    oster 	unsigned long coeff;
    317   1.3    oster 
    318   1.3    oster 	RF_ETIMER_START(timer);
    319   1.3    oster 
    320   1.3    oster 	d = (np - 3) / 4;
    321   1.3    oster 	RF_ASSERT(4 * d + 3 == np);
    322   1.3    oster 	qbuf = (char *) node->params[2 * d + 1].p;	/* q buffer */
    323   1.3    oster 	for (i = 0; i < d; i++) {
    324   1.3    oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    325   1.3    oster 		obuf = (char *) node->params[2 * i + 1].p;
    326   1.3    oster 		new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
    327   1.3    oster 		nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
    328   1.3    oster 		RF_ASSERT(new->numSector == old->numSector);
    329   1.3    oster 		RF_ASSERT(new->raidAddress == old->raidAddress);
    330   1.3    oster 		/* the stripe unit within the stripe tells us the coefficient
    331   1.3    oster 		 * to use for the multiply. */
    332   1.3    oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
    333   1.3    oster 		/* compute the data unit offset within the column, then add
    334   1.3    oster 		 * one */
    335   1.3    oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    336   1.3    oster 		QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    337   1.3    oster 	}
    338   1.3    oster 
    339   1.3    oster 	RF_ETIMER_STOP(timer);
    340   1.3    oster 	RF_ETIMER_EVAL(timer);
    341   1.3    oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    342   1.3    oster 	rf_GenericWakeupFunc(node, 0);	/* call wake func explicitly since no
    343   1.3    oster 					 * I/O in this node */
    344   1.3    oster 	return (0);
    345   1.1    oster }
    346   1.1    oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
    347   1.1    oster {
    348   1.3    oster 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
    349   1.1    oster }
    350   1.1    oster 
    351   1.5    oster static void RegularQSubr(RF_DagNode_t *node, char   *qbuf);
    352   1.5    oster 
    353  1.14    perry static void
    354  1.16      dsl RegularQSubr(RF_DagNode_t *node, char *qbuf)
    355   1.3    oster {
    356   1.3    oster 	int     np = node->numParams;
    357   1.3    oster 	int     d;
    358   1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    359   1.3    oster 	unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    360   1.3    oster 	int     i;
    361   1.3    oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    362   1.3    oster 	RF_Etimer_t timer;
    363   1.3    oster 	char   *obuf, *qpbuf;
    364   1.3    oster 	RF_PhysDiskAddr_t *old;
    365   1.3    oster 	unsigned long coeff;
    366   1.3    oster 
    367   1.3    oster 	RF_ETIMER_START(timer);
    368   1.3    oster 
    369   1.3    oster 	d = (np - 1) / 2;
    370   1.3    oster 	RF_ASSERT(2 * d + 1 == np);
    371   1.3    oster 	for (i = 0; i < d; i++) {
    372   1.3    oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    373   1.3    oster 		obuf = (char *) node->params[2 * i + 1].p;
    374   1.3    oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
    375   1.3    oster 		/* compute the data unit offset within the column, then add
    376   1.3    oster 		 * one */
    377   1.3    oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    378   1.3    oster 		/* the input buffers may not all be aligned with the start of
    379   1.3    oster 		 * the stripe. so shift by their sector offset within the
    380   1.3    oster 		 * stripe unit */
    381   1.3    oster 		qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
    382   1.3    oster 		rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    383   1.3    oster 	}
    384   1.3    oster 
    385   1.3    oster 	RF_ETIMER_STOP(timer);
    386   1.3    oster 	RF_ETIMER_EVAL(timer);
    387   1.3    oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    388   1.1    oster }
    389   1.1    oster /*
    390   1.1    oster    used in degraded writes.
    391   1.1    oster */
    392   1.1    oster 
    393   1.5    oster static void DegrQSubr(RF_DagNode_t *node);
    394   1.5    oster 
    395  1.14    perry static void
    396  1.16      dsl DegrQSubr(RF_DagNode_t *node)
    397   1.3    oster {
    398   1.3    oster 	int     np = node->numParams;
    399   1.3    oster 	int     d;
    400   1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    401   1.3    oster 	unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    402   1.3    oster 	int     i;
    403   1.3    oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    404   1.3    oster 	RF_Etimer_t timer;
    405   1.3    oster 	char   *qbuf = node->results[1];
    406   1.3    oster 	char   *obuf, *qpbuf;
    407   1.3    oster 	RF_PhysDiskAddr_t *old;
    408   1.3    oster 	unsigned long coeff;
    409   1.3    oster 	unsigned fail_start;
    410   1.3    oster 	int     j;
    411   1.3    oster 
    412   1.3    oster 	old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
    413   1.3    oster 	fail_start = old->startSector % secPerSU;
    414   1.3    oster 
    415   1.3    oster 	RF_ETIMER_START(timer);
    416   1.3    oster 
    417   1.3    oster 	d = (np - 2) / 2;
    418   1.3    oster 	RF_ASSERT(2 * d + 2 == np);
    419   1.3    oster 	for (i = 0; i < d; i++) {
    420   1.3    oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    421   1.3    oster 		obuf = (char *) node->params[2 * i + 1].p;
    422   1.3    oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
    423   1.3    oster 		/* compute the data unit offset within the column, then add
    424   1.3    oster 		 * one */
    425   1.3    oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    426   1.3    oster 		/* the input buffers may not all be aligned with the start of
    427   1.3    oster 		 * the stripe. so shift by their sector offset within the
    428   1.3    oster 		 * stripe unit */
    429   1.3    oster 		j = old->startSector % secPerSU;
    430   1.3    oster 		RF_ASSERT(j >= fail_start);
    431   1.3    oster 		qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
    432   1.3    oster 		rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    433   1.3    oster 	}
    434   1.3    oster 
    435   1.3    oster 	RF_ETIMER_STOP(timer);
    436   1.3    oster 	RF_ETIMER_EVAL(timer);
    437   1.3    oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    438   1.1    oster }
    439   1.1    oster /*
    440   1.1    oster    Called by large write code to compute the new parity and the new q.
    441   1.3    oster 
    442   1.1    oster    structure of the params:
    443   1.1    oster 
    444   1.1    oster    pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
    445   1.3    oster    raidPtr
    446   1.1    oster 
    447   1.1    oster    for a total of 2d+1 arguments.
    448   1.1    oster    The result buffers results[0], results[1] are the buffers for the p and q,
    449   1.1    oster    respectively.
    450   1.1    oster 
    451   1.1    oster    We compute Q first, then compute P. The P calculation may try to reuse
    452   1.1    oster    one of the input buffers for its output, so if we computed P first, we would
    453   1.1    oster    corrupt the input for the q calculation.
    454   1.1    oster */
    455   1.1    oster 
    456  1.14    perry int
    457  1.16      dsl rf_RegularPQFunc(RF_DagNode_t *node)
    458   1.3    oster {
    459   1.3    oster 	RegularQSubr(node, node->results[1]);
    460   1.3    oster 	return (rf_RegularXorFunc(node));	/* does the wakeup */
    461   1.3    oster }
    462   1.3    oster 
    463  1.14    perry int
    464  1.16      dsl rf_RegularQFunc(RF_DagNode_t *node)
    465   1.3    oster {
    466   1.3    oster 	/* Almost ... adjust Qsubr args */
    467   1.3    oster 	RegularQSubr(node, node->results[0]);
    468   1.3    oster 	rf_GenericWakeupFunc(node, 0);	/* call wake func explicitly since no
    469   1.3    oster 					 * I/O in this node */
    470   1.3    oster 	return (0);
    471   1.1    oster }
    472   1.1    oster /*
    473   1.1    oster    Called by singly degraded write code to compute the new parity and the new q.
    474   1.3    oster 
    475   1.1    oster    structure of the params:
    476   1.1    oster 
    477   1.3    oster    pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
    478   1.3    oster    failedPDA raidPtr
    479   1.1    oster 
    480   1.1    oster    for a total of 2d+2 arguments.
    481   1.1    oster    The result buffers results[0], results[1] are the buffers for the parity and q,
    482   1.1    oster    respectively.
    483   1.1    oster 
    484   1.1    oster    We compute Q first, then compute parity. The parity calculation may try to reuse
    485   1.1    oster    one of the input buffers for its output, so if we computed parity first, we would
    486   1.1    oster    corrupt the input for the q calculation.
    487   1.1    oster 
    488   1.1    oster    We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
    489   1.1    oster */
    490   1.1    oster 
    491  1.14    perry void
    492  1.16      dsl rf_Degraded_100_PQFunc(RF_DagNode_t *node)
    493   1.3    oster {
    494   1.3    oster 	int     np = node->numParams;
    495   1.3    oster 
    496   1.3    oster 	RF_ASSERT(np >= 2);
    497   1.3    oster 	DegrQSubr(node);
    498   1.3    oster 	rf_RecoveryXorFunc(node);
    499   1.1    oster }
    500   1.1    oster 
    501   1.1    oster 
    502   1.1    oster /*
    503   1.1    oster    The two below are used when reading a stripe with a single lost data unit.
    504   1.1    oster    The parameters are
    505   1.1    oster 
    506   1.1    oster    pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
    507   1.1    oster 
    508   1.1    oster    and results[0] contains the data buffer. Which is originally zero-filled.
    509   1.3    oster 
    510   1.1    oster */
    511   1.1    oster 
    512   1.1    oster /* this Q func is used by the degraded-mode dag functions to recover lost data.
    513   1.1    oster  * the second-to-last parameter is the PDA for the failed portion of the access.
    514   1.1    oster  * the code here looks at this PDA and assumes that the xor target buffer is
    515   1.1    oster  * equal in size to the number of sectors in the failed PDA.  It then uses
    516   1.1    oster  * the other PDAs in the parameter list to determine where within the target
    517   1.1    oster  * buffer the corresponding data should be xored.
    518   1.1    oster  *
    519   1.3    oster  * Recall the basic equation is
    520   1.3    oster  *
    521   1.1    oster  *     Q = ( data_1 + 2 * data_2 ... + k * data_k  ) mod 256
    522   1.1    oster  *
    523   1.1    oster  * so to recover data_j we need
    524   1.1    oster  *
    525   1.1    oster  *    J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
    526   1.1    oster  *
    527   1.1    oster  * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
    528   1.1    oster  * copying Q into it. Then we need to do a table lookup to convert to solve
    529   1.1    oster  *   data_j /= J
    530   1.3    oster  *
    531   1.3    oster  *
    532   1.1    oster  */
    533  1.14    perry int
    534  1.16      dsl rf_RecoveryQFunc(RF_DagNode_t *node)
    535   1.3    oster {
    536   1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    537   1.3    oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    538   1.3    oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    539   1.3    oster 	int     i;
    540   1.3    oster 	RF_PhysDiskAddr_t *pda;
    541   1.3    oster 	RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    542   1.3    oster 	char   *srcbuf, *destbuf;
    543   1.3    oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    544   1.3    oster 	RF_Etimer_t timer;
    545   1.3    oster 	unsigned long coeff;
    546   1.3    oster 
    547   1.3    oster 	RF_ETIMER_START(timer);
    548   1.3    oster 	/* start by copying Q into the buffer */
    549  1.12      wiz 	memcpy(node->results[0], node->params[node->numParams - 3].p,
    550   1.3    oster 	    rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
    551   1.3    oster 	for (i = 0; i < node->numParams - 4; i += 2) {
    552   1.3    oster 		RF_ASSERT(node->params[i + 1].p != node->results[0]);
    553   1.3    oster 		pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    554   1.3    oster 		srcbuf = (char *) node->params[i + 1].p;
    555   1.3    oster 		suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    556   1.3    oster 		destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    557   1.3    oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
    558   1.3    oster 		/* compute the data unit offset within the column */
    559   1.3    oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    560   1.3    oster 		rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
    561   1.3    oster 	}
    562   1.3    oster 	/* Do the nasty inversion now */
    563   1.3    oster 	coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol);
    564   1.3    oster 	rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
    565   1.3    oster 	RF_ETIMER_STOP(timer);
    566   1.3    oster 	RF_ETIMER_EVAL(timer);
    567   1.3    oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    568   1.3    oster 	rf_GenericWakeupFunc(node, 0);
    569   1.3    oster 	return (0);
    570   1.3    oster }
    571   1.3    oster 
    572  1.14    perry int
    573  1.16      dsl rf_RecoveryPQFunc(RF_DagNode_t *node)
    574   1.1    oster {
    575   1.6    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    576   1.6    oster 	printf("raid%d: Recovery from PQ not implemented.\n",raidPtr->raidid);
    577   1.3    oster 	return (1);
    578   1.1    oster }
    579   1.1    oster /*
    580   1.3    oster    Degraded write Q subroutine.
    581   1.1    oster    Used when P is dead.
    582   1.3    oster    Large-write style Q computation.
    583   1.1    oster    Parameters
    584   1.1    oster 
    585   1.1    oster    (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
    586   1.1    oster 
    587   1.1    oster    We ignore failedPDA.
    588   1.1    oster 
    589   1.1    oster    This is a "simple style" recovery func.
    590   1.1    oster */
    591   1.1    oster 
    592  1.14    perry void
    593  1.16      dsl rf_PQ_DegradedWriteQFunc(RF_DagNode_t *node)
    594   1.3    oster {
    595   1.3    oster 	int     np = node->numParams;
    596   1.3    oster 	int     d;
    597   1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    598   1.3    oster 	unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    599   1.3    oster 	int     i;
    600   1.3    oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    601   1.3    oster 	RF_Etimer_t timer;
    602   1.3    oster 	char   *qbuf = node->results[0];
    603   1.3    oster 	char   *obuf, *qpbuf;
    604   1.3    oster 	RF_PhysDiskAddr_t *old;
    605   1.3    oster 	unsigned long coeff;
    606   1.3    oster 	int     fail_start, j;
    607   1.3    oster 
    608   1.3    oster 	old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
    609   1.3    oster 	fail_start = old->startSector % secPerSU;
    610   1.3    oster 
    611   1.3    oster 	RF_ETIMER_START(timer);
    612   1.3    oster 
    613   1.3    oster 	d = (np - 2) / 2;
    614   1.3    oster 	RF_ASSERT(2 * d + 2 == np);
    615   1.3    oster 
    616   1.3    oster 	for (i = 0; i < d; i++) {
    617   1.3    oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    618   1.3    oster 		obuf = (char *) node->params[2 * i + 1].p;
    619   1.3    oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
    620   1.3    oster 		/* compute the data unit offset within the column, then add
    621   1.3    oster 		 * one */
    622   1.3    oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    623   1.3    oster 		j = old->startSector % secPerSU;
    624   1.3    oster 		RF_ASSERT(j >= fail_start);
    625   1.3    oster 		qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
    626   1.3    oster 		rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    627   1.3    oster 	}
    628   1.3    oster 
    629   1.3    oster 	RF_ETIMER_STOP(timer);
    630   1.3    oster 	RF_ETIMER_EVAL(timer);
    631   1.3    oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    632   1.3    oster 	rf_GenericWakeupFunc(node, 0);
    633   1.1    oster }
    634   1.1    oster 
    635   1.1    oster 
    636   1.1    oster 
    637   1.1    oster 
    638   1.1    oster /* Q computations */
    639   1.1    oster 
    640   1.1    oster /*
    641   1.1    oster    coeff - colummn;
    642   1.1    oster 
    643   1.1    oster    compute  dest ^= qfor[28-coeff][rn[coeff+1] a]
    644   1.1    oster 
    645   1.1    oster    on 5-bit basis;
    646   1.1    oster    length in bytes;
    647   1.1    oster */
    648   1.1    oster 
    649  1.14    perry void
    650  1.16      dsl rf_IncQ(unsigned long *dest, unsigned long *buf, unsigned length, unsigned coeff)
    651   1.3    oster {
    652   1.3    oster 	unsigned long a, d, new;
    653   1.3    oster 	unsigned long a1, a2;
    654   1.3    oster 	unsigned int *q = &(rf_qfor[28 - coeff][0]);
    655   1.3    oster 	unsigned r = rf_rn[coeff + 1];
    656   1.1    oster 
    657   1.1    oster #define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
    658   1.1    oster #define INSERT(a,i) (a << (5L*i))
    659   1.1    oster 
    660   1.3    oster 	length /= 8;
    661   1.3    oster 	/* 13 5 bit quants in a 64 bit word */
    662   1.3    oster 	while (length) {
    663   1.3    oster 		a = *buf++;
    664   1.3    oster 		d = *dest;
    665   1.3    oster 		a1 = EXTRACT(a, 0) ^ r;
    666   1.3    oster 		a2 = EXTRACT(a, 1) ^ r;
    667   1.3    oster 		new = INSERT(a2, 1) | a1;
    668   1.3    oster 		a1 = EXTRACT(a, 2) ^ r;
    669   1.3    oster 		a2 = EXTRACT(a, 3) ^ r;
    670   1.3    oster 		a1 = q[a1];
    671   1.3    oster 		a2 = q[a2];
    672   1.3    oster 		new = new | INSERT(a1, 2) | INSERT(a2, 3);
    673   1.3    oster 		a1 = EXTRACT(a, 4) ^ r;
    674   1.3    oster 		a2 = EXTRACT(a, 5) ^ r;
    675   1.3    oster 		a1 = q[a1];
    676   1.3    oster 		a2 = q[a2];
    677   1.3    oster 		new = new | INSERT(a1, 4) | INSERT(a2, 5);
    678   1.3    oster 		a1 = EXTRACT(a, 5) ^ r;
    679   1.3    oster 		a2 = EXTRACT(a, 6) ^ r;
    680   1.3    oster 		a1 = q[a1];
    681   1.3    oster 		a2 = q[a2];
    682   1.3    oster 		new = new | INSERT(a1, 5) | INSERT(a2, 6);
    683   1.1    oster #if RF_LONGSHIFT > 2
    684   1.3    oster 		a1 = EXTRACT(a, 7) ^ r;
    685   1.3    oster 		a2 = EXTRACT(a, 8) ^ r;
    686   1.3    oster 		a1 = q[a1];
    687   1.3    oster 		a2 = q[a2];
    688   1.3    oster 		new = new | INSERT(a1, 7) | INSERT(a2, 8);
    689   1.3    oster 		a1 = EXTRACT(a, 9) ^ r;
    690   1.3    oster 		a2 = EXTRACT(a, 10) ^ r;
    691   1.3    oster 		a1 = q[a1];
    692   1.3    oster 		a2 = q[a2];
    693   1.3    oster 		new = new | INSERT(a1, 9) | INSERT(a2, 10);
    694   1.3    oster 		a1 = EXTRACT(a, 11) ^ r;
    695   1.3    oster 		a2 = EXTRACT(a, 12) ^ r;
    696   1.3    oster 		a1 = q[a1];
    697   1.3    oster 		a2 = q[a2];
    698   1.3    oster 		new = new | INSERT(a1, 11) | INSERT(a2, 12);
    699   1.3    oster #endif				/* RF_LONGSHIFT > 2 */
    700   1.3    oster 		d ^= new;
    701   1.3    oster 		*dest++ = d;
    702   1.3    oster 		length--;
    703   1.3    oster 	}
    704   1.1    oster }
    705   1.3    oster /*
    706   1.3    oster    compute
    707   1.1    oster 
    708   1.1    oster    dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
    709   1.1    oster 
    710   1.1    oster    on a five bit basis.
    711   1.1    oster    optimization: compute old ^ new on 64 bit basis.
    712   1.1    oster 
    713   1.1    oster    length in bytes.
    714   1.1    oster */
    715   1.1    oster 
    716  1.14    perry static void
    717   1.3    oster QDelta(
    718   1.3    oster     char *dest,
    719   1.3    oster     char *obuf,
    720   1.3    oster     char *nbuf,
    721   1.3    oster     unsigned length,
    722   1.3    oster     unsigned char coeff)
    723   1.3    oster {
    724   1.3    oster 	unsigned long a, d, new;
    725   1.3    oster 	unsigned long a1, a2;
    726   1.3    oster 	unsigned int *q = &(rf_qfor[28 - coeff][0]);
    727   1.5    oster 	unsigned int r = rf_rn[coeff + 1];
    728   1.5    oster 
    729   1.5    oster 	r = a1 = a2 = new = d = a = 0; /* XXX for now... */
    730   1.5    oster 	q = NULL; /* XXX for now */
    731   1.1    oster 
    732   1.2    oster #ifdef _KERNEL
    733   1.3    oster 	/* PQ in kernel currently not supported because the encoding/decoding
    734   1.3    oster 	 * table is not present */
    735   1.9  thorpej 	memset(dest, 0, length);
    736   1.3    oster #else				/* KERNEL */
    737   1.3    oster 	/* this code probably doesn't work and should be rewritten  -wvcii */
    738   1.3    oster 	/* 13 5 bit quants in a 64 bit word */
    739   1.3    oster 	length /= 8;
    740   1.3    oster 	while (length) {
    741   1.3    oster 		a = *obuf++;	/* XXX need to reorg to avoid cache conflicts */
    742   1.3    oster 		a ^= *nbuf++;
    743   1.3    oster 		d = *dest;
    744   1.3    oster 		a1 = EXTRACT(a, 0) ^ r;
    745   1.3    oster 		a2 = EXTRACT(a, 1) ^ r;
    746   1.3    oster 		a1 = q[a1];
    747   1.3    oster 		a2 = q[a2];
    748   1.3    oster 		new = INSERT(a2, 1) | a1;
    749   1.3    oster 		a1 = EXTRACT(a, 2) ^ r;
    750   1.3    oster 		a2 = EXTRACT(a, 3) ^ r;
    751   1.3    oster 		a1 = q[a1];
    752   1.3    oster 		a2 = q[a2];
    753   1.3    oster 		new = new | INSERT(a1, 2) | INSERT(a2, 3);
    754   1.3    oster 		a1 = EXTRACT(a, 4) ^ r;
    755   1.3    oster 		a2 = EXTRACT(a, 5) ^ r;
    756   1.3    oster 		a1 = q[a1];
    757   1.3    oster 		a2 = q[a2];
    758   1.3    oster 		new = new | INSERT(a1, 4) | INSERT(a2, 5);
    759   1.3    oster 		a1 = EXTRACT(a, 5) ^ r;
    760   1.3    oster 		a2 = EXTRACT(a, 6) ^ r;
    761   1.3    oster 		a1 = q[a1];
    762   1.3    oster 		a2 = q[a2];
    763   1.3    oster 		new = new | INSERT(a1, 5) | INSERT(a2, 6);
    764   1.1    oster #if RF_LONGSHIFT > 2
    765   1.3    oster 		a1 = EXTRACT(a, 7) ^ r;
    766   1.3    oster 		a2 = EXTRACT(a, 8) ^ r;
    767   1.3    oster 		a1 = q[a1];
    768   1.3    oster 		a2 = q[a2];
    769   1.3    oster 		new = new | INSERT(a1, 7) | INSERT(a2, 8);
    770   1.3    oster 		a1 = EXTRACT(a, 9) ^ r;
    771   1.3    oster 		a2 = EXTRACT(a, 10) ^ r;
    772   1.3    oster 		a1 = q[a1];
    773   1.3    oster 		a2 = q[a2];
    774   1.3    oster 		new = new | INSERT(a1, 9) | INSERT(a2, 10);
    775   1.3    oster 		a1 = EXTRACT(a, 11) ^ r;
    776   1.3    oster 		a2 = EXTRACT(a, 12) ^ r;
    777   1.3    oster 		a1 = q[a1];
    778   1.3    oster 		a2 = q[a2];
    779   1.3    oster 		new = new | INSERT(a1, 11) | INSERT(a2, 12);
    780   1.3    oster #endif				/* RF_LONGSHIFT > 2 */
    781   1.3    oster 		d ^= new;
    782   1.3    oster 		*dest++ = d;
    783   1.3    oster 		length--;
    784   1.3    oster 	}
    785   1.3    oster #endif				/* _KERNEL */
    786   1.1    oster }
    787   1.1    oster /*
    788   1.1    oster    recover columns a and b from the given p and q into
    789   1.1    oster    bufs abuf and bbuf. All bufs are word aligned.
    790   1.1    oster    Length is in bytes.
    791   1.1    oster */
    792   1.3    oster 
    793   1.1    oster 
    794   1.1    oster /*
    795   1.1    oster  * XXX
    796   1.1    oster  *
    797   1.1    oster  * Everything about this seems wrong.
    798   1.1    oster  */
    799  1.14    perry void
    800  1.16      dsl rf_PQ_recover(unsigned long *pbuf, unsigned long *qbuf, unsigned long *abuf, unsigned long *bbuf, unsigned length, unsigned coeff_a, unsigned coeff_b)
    801   1.3    oster {
    802   1.3    oster 	unsigned long p, q, a, a0, a1;
    803   1.3    oster 	int     col = (29 * coeff_a) + coeff_b;
    804   1.3    oster 	unsigned char *q0 = &(rf_qinv[col][0]);
    805   1.3    oster 
    806   1.3    oster 	length /= 8;
    807   1.3    oster 	while (length) {
    808   1.3    oster 		p = *pbuf++;
    809   1.3    oster 		q = *qbuf++;
    810   1.3    oster 		a0 = EXTRACT(p, 0);
    811   1.3    oster 		a1 = EXTRACT(q, 0);
    812   1.3    oster 		a = q0[a0 << 5 | a1];
    813   1.1    oster #define MF(i) \
    814   1.1    oster       a0 = EXTRACT(p,i); \
    815   1.1    oster       a1 = EXTRACT(q,i); \
    816   1.1    oster       a  = a | INSERT(q0[a0<<5 | a1],i)
    817   1.1    oster 
    818   1.3    oster 		MF(1);
    819   1.3    oster 		MF(2);
    820   1.3    oster 		MF(3);
    821   1.3    oster 		MF(4);
    822   1.3    oster 		MF(5);
    823   1.3    oster 		MF(6);
    824   1.1    oster #if 0
    825   1.3    oster 		MF(7);
    826   1.3    oster 		MF(8);
    827   1.3    oster 		MF(9);
    828   1.3    oster 		MF(10);
    829   1.3    oster 		MF(11);
    830   1.3    oster 		MF(12);
    831   1.3    oster #endif				/* 0 */
    832   1.3    oster 		*abuf++ = a;
    833   1.3    oster 		*bbuf++ = a ^ p;
    834   1.3    oster 		length--;
    835   1.3    oster 	}
    836   1.1    oster }
    837   1.3    oster /*
    838   1.1    oster    Lost parity and a data column. Recover that data column.
    839   1.1    oster    Assume col coeff is lost. Let q the contents of Q after
    840   1.1    oster    all surviving data columns have been q-xored out of it.
    841   1.1    oster    Then we have the equation
    842   1.1    oster 
    843   1.1    oster    q[28-coeff][a_i ^ r_i+1] = q
    844   1.1    oster 
    845   1.3    oster    but q is cyclic with period 31.
    846   1.1    oster    So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
    847   1.1    oster       q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
    848   1.1    oster 
    849   1.1    oster    so a_i = r_{coeff+1} ^ q[3+coeff][q]
    850   1.1    oster 
    851   1.1    oster    The routine is passed q buffer and the buffer
    852   1.1    oster    the data is to be recoverd into. They can be the same.
    853   1.1    oster */
    854   1.1    oster 
    855   1.1    oster 
    856   1.3    oster 
    857  1.14    perry static void
    858   1.3    oster rf_InvertQ(
    859   1.3    oster     unsigned long *qbuf,
    860   1.3    oster     unsigned long *abuf,
    861   1.3    oster     unsigned length,
    862   1.3    oster     unsigned coeff)
    863   1.3    oster {
    864   1.3    oster 	unsigned long a, new;
    865   1.3    oster 	unsigned long a1, a2;
    866   1.3    oster 	unsigned int *q = &(rf_qfor[3 + coeff][0]);
    867   1.3    oster 	unsigned r = rf_rn[coeff + 1];
    868   1.3    oster 
    869   1.3    oster 	/* 13 5 bit quants in a 64 bit word */
    870   1.3    oster 	length /= 8;
    871   1.3    oster 	while (length) {
    872   1.3    oster 		a = *qbuf++;
    873   1.3    oster 		a1 = EXTRACT(a, 0);
    874   1.3    oster 		a2 = EXTRACT(a, 1);
    875   1.3    oster 		a1 = r ^ q[a1];
    876   1.3    oster 		a2 = r ^ q[a2];
    877   1.3    oster 		new = INSERT(a2, 1) | a1;
    878   1.1    oster #define M(i,j) \
    879   1.1    oster       a1 = EXTRACT(a,i); \
    880   1.1    oster       a2 = EXTRACT(a,j); \
    881   1.1    oster       a1 = r ^ q[a1]; \
    882   1.1    oster       a2 = r ^ q[a2]; \
    883   1.1    oster       new = new | INSERT(a1,i) | INSERT(a2,j)
    884   1.1    oster 
    885   1.3    oster 		M(2, 3);
    886   1.3    oster 		M(4, 5);
    887   1.3    oster 		M(5, 6);
    888   1.1    oster #if RF_LONGSHIFT > 2
    889   1.3    oster 		M(7, 8);
    890   1.3    oster 		M(9, 10);
    891   1.3    oster 		M(11, 12);
    892   1.3    oster #endif				/* RF_LONGSHIFT > 2 */
    893   1.3    oster 		*abuf++ = new;
    894   1.3    oster 		length--;
    895   1.3    oster 	}
    896   1.1    oster }
    897   1.3    oster #endif				/* (RF_INCLUDE_DECL_PQ > 0) ||
    898   1.3    oster 				 * (RF_INCLUDE_RAID6 > 0) */
    899