rf_pq.c revision 1.2 1 1.2 oster /* $NetBSD: rf_pq.c,v 1.2 1999/01/26 02:34:00 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Daniel Stodolsky
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * Code for RAID level 6 (P + Q) disk array architecture.
31 1.1 oster */
32 1.1 oster
33 1.1 oster #include "rf_archs.h"
34 1.1 oster #include "rf_types.h"
35 1.1 oster #include "rf_raid.h"
36 1.1 oster #include "rf_dag.h"
37 1.1 oster #include "rf_dagffrd.h"
38 1.1 oster #include "rf_dagffwr.h"
39 1.1 oster #include "rf_dagdegrd.h"
40 1.1 oster #include "rf_dagdegwr.h"
41 1.1 oster #include "rf_dagutils.h"
42 1.1 oster #include "rf_dagfuncs.h"
43 1.1 oster #include "rf_threadid.h"
44 1.1 oster #include "rf_etimer.h"
45 1.1 oster #include "rf_pqdeg.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_map.h"
48 1.1 oster #include "rf_pq.h"
49 1.1 oster #include "rf_sys.h"
50 1.1 oster
51 1.1 oster RF_RedFuncs_t rf_pFuncs = { rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P" };
52 1.1 oster RF_RedFuncs_t rf_pRecoveryFuncs = { rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func" };
53 1.1 oster
54 1.1 oster int rf_RegularONPFunc(node)
55 1.1 oster RF_DagNode_t *node;
56 1.1 oster {
57 1.1 oster return(rf_RegularXorFunc(node));
58 1.1 oster }
59 1.1 oster
60 1.1 oster /*
61 1.1 oster same as simpleONQ func, but the coefficient is always 1
62 1.1 oster */
63 1.1 oster
64 1.1 oster int rf_SimpleONPFunc(node)
65 1.1 oster RF_DagNode_t *node;
66 1.1 oster {
67 1.1 oster return(rf_SimpleXorFunc(node));
68 1.1 oster }
69 1.1 oster
70 1.1 oster int rf_RecoveryPFunc(node)
71 1.1 oster RF_DagNode_t *node;
72 1.1 oster {
73 1.1 oster return(rf_RecoveryXorFunc(node));
74 1.1 oster }
75 1.1 oster
76 1.1 oster int rf_RegularPFunc(node)
77 1.1 oster RF_DagNode_t *node;
78 1.1 oster {
79 1.1 oster return(rf_RegularXorFunc(node));
80 1.1 oster }
81 1.1 oster
82 1.1 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
83 1.1 oster
84 1.1 oster static void QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
85 1.1 oster unsigned char coeff);
86 1.1 oster static void rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
87 1.1 oster unsigned length, unsigned coeff);
88 1.1 oster
89 1.1 oster RF_RedFuncs_t rf_qFuncs = { rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q" };
90 1.1 oster RF_RedFuncs_t rf_qRecoveryFuncs = { rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func" };
91 1.1 oster RF_RedFuncs_t rf_pqRecoveryFuncs = { rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func" };
92 1.1 oster
93 1.1 oster void rf_PQDagSelect(
94 1.1 oster RF_Raid_t *raidPtr,
95 1.1 oster RF_IoType_t type,
96 1.1 oster RF_AccessStripeMap_t *asmap,
97 1.1 oster RF_VoidFuncPtr *createFunc)
98 1.1 oster {
99 1.1 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
100 1.1 oster unsigned ndfail = asmap->numDataFailed;
101 1.1 oster unsigned npfail = asmap->numParityFailed;
102 1.1 oster unsigned ntfail = npfail + ndfail;
103 1.1 oster
104 1.1 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
105 1.1 oster if (ntfail > 2)
106 1.1 oster {
107 1.1 oster RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
108 1.1 oster /* *infoFunc = */ *createFunc = NULL;
109 1.1 oster return;
110 1.1 oster }
111 1.1 oster
112 1.1 oster /* ok, we can do this I/O */
113 1.1 oster if (type == RF_IO_TYPE_READ)
114 1.1 oster {
115 1.1 oster switch (ndfail)
116 1.1 oster {
117 1.1 oster case 0:
118 1.1 oster /* fault free read */
119 1.1 oster *createFunc = rf_CreateFaultFreeReadDAG; /* same as raid 5 */
120 1.1 oster break;
121 1.1 oster case 1:
122 1.1 oster /* lost a single data unit */
123 1.1 oster /* two cases:
124 1.1 oster (1) parity is not lost.
125 1.1 oster do a normal raid 5 reconstruct read.
126 1.1 oster (2) parity is lost.
127 1.1 oster do a reconstruct read using "q".
128 1.1 oster */
129 1.1 oster if (ntfail == 2) /* also lost redundancy */
130 1.1 oster {
131 1.1 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
132 1.1 oster *createFunc = rf_PQ_110_CreateReadDAG;
133 1.1 oster else
134 1.1 oster *createFunc = rf_PQ_101_CreateReadDAG;
135 1.1 oster }
136 1.1 oster else
137 1.1 oster {
138 1.1 oster /* P and Q are ok. But is there a failure
139 1.1 oster in some unaccessed data unit?
140 1.1 oster */
141 1.1 oster if (rf_NumFailedDataUnitsInStripe(raidPtr,asmap)==2)
142 1.1 oster *createFunc = rf_PQ_200_CreateReadDAG;
143 1.1 oster else
144 1.1 oster *createFunc = rf_PQ_100_CreateReadDAG;
145 1.1 oster }
146 1.1 oster break;
147 1.1 oster case 2:
148 1.1 oster /* lost two data units */
149 1.1 oster /* *infoFunc = PQOneTwo; */
150 1.1 oster *createFunc = rf_PQ_200_CreateReadDAG;
151 1.1 oster break;
152 1.1 oster }
153 1.1 oster return;
154 1.1 oster }
155 1.1 oster
156 1.1 oster /* a write */
157 1.1 oster switch (ntfail)
158 1.1 oster {
159 1.1 oster case 0: /* fault free */
160 1.1 oster if (rf_suppressLocksAndLargeWrites ||
161 1.1 oster (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
162 1.1 oster (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
163 1.1 oster
164 1.1 oster *createFunc = rf_PQCreateSmallWriteDAG;
165 1.1 oster }
166 1.1 oster else {
167 1.1 oster *createFunc = rf_PQCreateLargeWriteDAG;
168 1.1 oster }
169 1.1 oster break;
170 1.1 oster
171 1.1 oster case 1: /* single disk fault */
172 1.1 oster if (npfail==1)
173 1.1 oster {
174 1.1 oster RF_ASSERT ((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
175 1.1 oster if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q)
176 1.1 oster { /* q died, treat like normal mode raid5 write.*/
177 1.1 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
178 1.1 oster || rf_NumFailedDataUnitsInStripe(raidPtr,asmap))
179 1.1 oster *createFunc = rf_PQ_001_CreateSmallWriteDAG;
180 1.1 oster else
181 1.1 oster *createFunc = rf_PQ_001_CreateLargeWriteDAG;
182 1.1 oster }
183 1.1 oster else
184 1.1 oster { /* parity died, small write only updating Q */
185 1.1 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
186 1.1 oster || rf_NumFailedDataUnitsInStripe(raidPtr,asmap))
187 1.1 oster *createFunc = rf_PQ_010_CreateSmallWriteDAG;
188 1.1 oster else
189 1.1 oster *createFunc = rf_PQ_010_CreateLargeWriteDAG;
190 1.1 oster }
191 1.1 oster }
192 1.1 oster else
193 1.1 oster { /* data missing.
194 1.1 oster Do a P reconstruct write if only a single data unit
195 1.1 oster is lost in the stripe, otherwise a PQ reconstruct
196 1.1 oster write. */
197 1.1 oster if (rf_NumFailedDataUnitsInStripe(raidPtr,asmap)==2)
198 1.1 oster *createFunc = rf_PQ_200_CreateWriteDAG;
199 1.1 oster else
200 1.1 oster *createFunc = rf_PQ_100_CreateWriteDAG;
201 1.1 oster }
202 1.1 oster break;
203 1.1 oster
204 1.1 oster case 2: /* two disk faults */
205 1.1 oster switch (npfail)
206 1.1 oster {
207 1.1 oster case 2: /* both p and q dead */
208 1.1 oster *createFunc = rf_PQ_011_CreateWriteDAG;
209 1.1 oster break;
210 1.1 oster case 1: /* either p or q and dead data */
211 1.1 oster RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
212 1.1 oster RF_ASSERT ((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
213 1.1 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
214 1.1 oster *createFunc = rf_PQ_101_CreateWriteDAG;
215 1.1 oster else
216 1.1 oster *createFunc = rf_PQ_110_CreateWriteDAG;
217 1.1 oster break;
218 1.1 oster case 0: /* double data loss */
219 1.1 oster *createFunc = rf_PQ_200_CreateWriteDAG;
220 1.1 oster break;
221 1.1 oster }
222 1.1 oster break;
223 1.1 oster
224 1.1 oster default: /* more than 2 disk faults */
225 1.1 oster *createFunc = NULL;
226 1.1 oster RF_PANIC();
227 1.1 oster }
228 1.1 oster return;
229 1.1 oster }
230 1.1 oster
231 1.1 oster /*
232 1.1 oster Used as a stop gap info function
233 1.1 oster */
234 1.1 oster static void PQOne(raidPtr, nSucc, nAnte, asmap)
235 1.1 oster RF_Raid_t *raidPtr;
236 1.1 oster int *nSucc;
237 1.1 oster int *nAnte;
238 1.1 oster RF_AccessStripeMap_t *asmap;
239 1.1 oster {
240 1.1 oster *nSucc = *nAnte = 1;
241 1.1 oster }
242 1.1 oster
243 1.1 oster static void PQOneTwo(raidPtr, nSucc, nAnte, asmap)
244 1.1 oster RF_Raid_t *raidPtr;
245 1.1 oster int *nSucc;
246 1.1 oster int *nAnte;
247 1.1 oster RF_AccessStripeMap_t *asmap;
248 1.1 oster {
249 1.1 oster *nSucc = 1;
250 1.1 oster *nAnte = 2;
251 1.1 oster }
252 1.1 oster
253 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
254 1.1 oster {
255 1.1 oster rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
256 1.1 oster rf_RegularPQFunc, RF_FALSE);
257 1.1 oster }
258 1.1 oster
259 1.1 oster int rf_RegularONQFunc(node)
260 1.1 oster RF_DagNode_t *node;
261 1.1 oster {
262 1.1 oster int np = node->numParams;
263 1.1 oster int d;
264 1.1 oster RF_Raid_t *raidPtr = (RF_Raid_t *)node->params[np-1].p;
265 1.1 oster int i;
266 1.1 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
267 1.1 oster RF_Etimer_t timer;
268 1.1 oster char *qbuf, *qpbuf;
269 1.1 oster char *obuf, *nbuf;
270 1.1 oster RF_PhysDiskAddr_t *old, *new;
271 1.1 oster unsigned long coeff;
272 1.1 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
273 1.1 oster
274 1.1 oster RF_ETIMER_START(timer);
275 1.1 oster
276 1.1 oster d = (np-3)/4;
277 1.1 oster RF_ASSERT (4*d+3 == np);
278 1.1 oster qbuf = (char *) node->params[2*d+1].p; /* q buffer*/
279 1.1 oster for (i=0; i < d; i++)
280 1.1 oster {
281 1.1 oster old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
282 1.1 oster obuf = (char *) node->params[2*i+1].p;
283 1.1 oster new = (RF_PhysDiskAddr_t *) node->params[2*(d+1+i)].p;
284 1.1 oster nbuf = (char *) node->params[2*(d+1+i)+1].p;
285 1.1 oster RF_ASSERT (new->numSector == old->numSector);
286 1.1 oster RF_ASSERT (new->raidAddress == old->raidAddress);
287 1.1 oster /* the stripe unit within the stripe tells us the coefficient to use
288 1.1 oster for the multiply. */
289 1.1 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),new->raidAddress);
290 1.1 oster /* compute the data unit offset within the column, then add one */
291 1.1 oster coeff = (coeff % raidPtr->Layout.numDataCol);
292 1.1 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr,old->startSector % secPerSU);
293 1.1 oster QDelta(qpbuf,obuf,nbuf, rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
294 1.1 oster }
295 1.1 oster
296 1.1 oster RF_ETIMER_STOP(timer);
297 1.1 oster RF_ETIMER_EVAL(timer);
298 1.1 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
299 1.1 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no I/O in this node */
300 1.1 oster return(0);
301 1.1 oster }
302 1.1 oster
303 1.1 oster /*
304 1.1 oster See the SimpleXORFunc for the difference between a simple and regular func.
305 1.1 oster These Q functions should be used for
306 1.1 oster
307 1.1 oster new q = Q(data,old data,old q)
308 1.1 oster
309 1.1 oster style updates and not for
310 1.1 oster
311 1.1 oster q = ( new data, new data, .... )
312 1.1 oster
313 1.1 oster computations.
314 1.1 oster
315 1.1 oster The simple q takes 2(2d+1)+1 params, where d is the number
316 1.1 oster of stripes written. The order of params is
317 1.1 oster old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
318 1.1 oster [2d] old q pda_0, old q buffer
319 1.1 oster [2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d
320 1.1 oster raidPtr
321 1.1 oster */
322 1.1 oster
323 1.1 oster int rf_SimpleONQFunc(node)
324 1.1 oster RF_DagNode_t *node;
325 1.1 oster {
326 1.1 oster int np = node->numParams;
327 1.1 oster int d;
328 1.1 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-1].p;
329 1.1 oster int i;
330 1.1 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
331 1.1 oster RF_Etimer_t timer;
332 1.1 oster char *qbuf;
333 1.1 oster char *obuf, *nbuf;
334 1.1 oster RF_PhysDiskAddr_t *old, *new;
335 1.1 oster unsigned long coeff;
336 1.1 oster
337 1.1 oster RF_ETIMER_START(timer);
338 1.1 oster
339 1.1 oster d = (np-3)/4;
340 1.1 oster RF_ASSERT (4*d+3 == np);
341 1.1 oster qbuf = (char *) node->params[2*d+1].p; /* q buffer*/
342 1.1 oster for (i=0; i < d; i++)
343 1.1 oster {
344 1.1 oster old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
345 1.1 oster obuf = (char *) node->params[2*i+1].p;
346 1.1 oster new = (RF_PhysDiskAddr_t *) node->params[2*(d+1+i)].p;
347 1.1 oster nbuf = (char *) node->params[2*(d+1+i)+1].p;
348 1.1 oster RF_ASSERT (new->numSector == old->numSector);
349 1.1 oster RF_ASSERT (new->raidAddress == old->raidAddress);
350 1.1 oster /* the stripe unit within the stripe tells us the coefficient to use
351 1.1 oster for the multiply. */
352 1.1 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),new->raidAddress);
353 1.1 oster /* compute the data unit offset within the column, then add one */
354 1.1 oster coeff = (coeff % raidPtr->Layout.numDataCol);
355 1.1 oster QDelta(qbuf,obuf,nbuf, rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
356 1.1 oster }
357 1.1 oster
358 1.1 oster RF_ETIMER_STOP(timer);
359 1.1 oster RF_ETIMER_EVAL(timer);
360 1.1 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
361 1.1 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no I/O in this node */
362 1.1 oster return(0);
363 1.1 oster }
364 1.1 oster
365 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
366 1.1 oster {
367 1.1 oster rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
368 1.1 oster }
369 1.1 oster
370 1.1 oster static void RegularQSubr(node,qbuf)
371 1.1 oster RF_DagNode_t *node;
372 1.1 oster char *qbuf;
373 1.1 oster {
374 1.1 oster int np = node->numParams;
375 1.1 oster int d;
376 1.1 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-1].p;
377 1.1 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
378 1.1 oster int i;
379 1.1 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
380 1.1 oster RF_Etimer_t timer;
381 1.1 oster char *obuf, *qpbuf;
382 1.1 oster RF_PhysDiskAddr_t *old;
383 1.1 oster unsigned long coeff;
384 1.1 oster
385 1.1 oster RF_ETIMER_START(timer);
386 1.1 oster
387 1.1 oster d = (np-1)/2;
388 1.1 oster RF_ASSERT (2*d+1 == np);
389 1.1 oster for (i=0; i < d; i++)
390 1.1 oster {
391 1.1 oster old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
392 1.1 oster obuf = (char *) node->params[2*i+1].p;
393 1.1 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),old->raidAddress);
394 1.1 oster /* compute the data unit offset within the column, then add one */
395 1.1 oster coeff = (coeff % raidPtr->Layout.numDataCol);
396 1.1 oster /* the input buffers may not all be aligned with the start of the
397 1.1 oster stripe. so shift by their sector offset within the stripe unit */
398 1.1 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr,old->startSector % secPerSU);
399 1.1 oster rf_IncQ((unsigned long *)qpbuf,(unsigned long *)obuf,rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
400 1.1 oster }
401 1.1 oster
402 1.1 oster RF_ETIMER_STOP(timer);
403 1.1 oster RF_ETIMER_EVAL(timer);
404 1.1 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
405 1.1 oster }
406 1.1 oster
407 1.1 oster /*
408 1.1 oster used in degraded writes.
409 1.1 oster */
410 1.1 oster
411 1.1 oster static void DegrQSubr(node)
412 1.1 oster RF_DagNode_t *node;
413 1.1 oster {
414 1.1 oster int np = node->numParams;
415 1.1 oster int d;
416 1.1 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-1].p;
417 1.1 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
418 1.1 oster int i;
419 1.1 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
420 1.1 oster RF_Etimer_t timer;
421 1.1 oster char *qbuf = node->results[1];
422 1.1 oster char *obuf, *qpbuf;
423 1.1 oster RF_PhysDiskAddr_t *old;
424 1.1 oster unsigned long coeff;
425 1.1 oster unsigned fail_start;
426 1.1 oster int j;
427 1.1 oster
428 1.1 oster old = (RF_PhysDiskAddr_t *)node->params[np-2].p;
429 1.1 oster fail_start = old->startSector % secPerSU;
430 1.1 oster
431 1.1 oster RF_ETIMER_START(timer);
432 1.1 oster
433 1.1 oster d = (np-2)/2;
434 1.1 oster RF_ASSERT (2*d+2 == np);
435 1.1 oster for (i=0; i < d; i++)
436 1.1 oster {
437 1.1 oster old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
438 1.1 oster obuf = (char *) node->params[2*i+1].p;
439 1.1 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),old->raidAddress);
440 1.1 oster /* compute the data unit offset within the column, then add one */
441 1.1 oster coeff = (coeff % raidPtr->Layout.numDataCol);
442 1.1 oster /* the input buffers may not all be aligned with the start of the
443 1.1 oster stripe. so shift by their sector offset within the stripe unit */
444 1.1 oster j = old->startSector % secPerSU;
445 1.1 oster RF_ASSERT(j >= fail_start);
446 1.1 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr,j - fail_start);
447 1.1 oster rf_IncQ((unsigned long *)qpbuf,(unsigned long *)obuf,rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
448 1.1 oster }
449 1.1 oster
450 1.1 oster RF_ETIMER_STOP(timer);
451 1.1 oster RF_ETIMER_EVAL(timer);
452 1.1 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
453 1.1 oster }
454 1.1 oster
455 1.1 oster /*
456 1.1 oster Called by large write code to compute the new parity and the new q.
457 1.1 oster
458 1.1 oster structure of the params:
459 1.1 oster
460 1.1 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
461 1.1 oster raidPtr
462 1.1 oster
463 1.1 oster for a total of 2d+1 arguments.
464 1.1 oster The result buffers results[0], results[1] are the buffers for the p and q,
465 1.1 oster respectively.
466 1.1 oster
467 1.1 oster We compute Q first, then compute P. The P calculation may try to reuse
468 1.1 oster one of the input buffers for its output, so if we computed P first, we would
469 1.1 oster corrupt the input for the q calculation.
470 1.1 oster */
471 1.1 oster
472 1.1 oster int rf_RegularPQFunc(node)
473 1.1 oster RF_DagNode_t *node;
474 1.1 oster {
475 1.1 oster RegularQSubr(node,node->results[1]);
476 1.1 oster return(rf_RegularXorFunc(node)); /* does the wakeup */
477 1.1 oster }
478 1.1 oster
479 1.1 oster int rf_RegularQFunc(node)
480 1.1 oster RF_DagNode_t *node;
481 1.1 oster {
482 1.1 oster /* Almost ... adjust Qsubr args */
483 1.1 oster RegularQSubr(node, node->results[0]);
484 1.1 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no I/O in this node */
485 1.1 oster return(0);
486 1.1 oster }
487 1.1 oster
488 1.1 oster /*
489 1.1 oster Called by singly degraded write code to compute the new parity and the new q.
490 1.1 oster
491 1.1 oster structure of the params:
492 1.1 oster
493 1.1 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
494 1.1 oster failedPDA raidPtr
495 1.1 oster
496 1.1 oster for a total of 2d+2 arguments.
497 1.1 oster The result buffers results[0], results[1] are the buffers for the parity and q,
498 1.1 oster respectively.
499 1.1 oster
500 1.1 oster We compute Q first, then compute parity. The parity calculation may try to reuse
501 1.1 oster one of the input buffers for its output, so if we computed parity first, we would
502 1.1 oster corrupt the input for the q calculation.
503 1.1 oster
504 1.1 oster We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
505 1.1 oster */
506 1.1 oster
507 1.1 oster void rf_Degraded_100_PQFunc(node)
508 1.1 oster RF_DagNode_t *node;
509 1.1 oster {
510 1.1 oster int np = node->numParams;
511 1.1 oster
512 1.1 oster RF_ASSERT (np >= 2);
513 1.1 oster DegrQSubr(node);
514 1.1 oster rf_RecoveryXorFunc(node);
515 1.1 oster }
516 1.1 oster
517 1.1 oster
518 1.1 oster /*
519 1.1 oster The two below are used when reading a stripe with a single lost data unit.
520 1.1 oster The parameters are
521 1.1 oster
522 1.1 oster pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
523 1.1 oster
524 1.1 oster and results[0] contains the data buffer. Which is originally zero-filled.
525 1.1 oster
526 1.1 oster */
527 1.1 oster
528 1.1 oster /* this Q func is used by the degraded-mode dag functions to recover lost data.
529 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
530 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
531 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
532 1.1 oster * the other PDAs in the parameter list to determine where within the target
533 1.1 oster * buffer the corresponding data should be xored.
534 1.1 oster *
535 1.1 oster * Recall the basic equation is
536 1.1 oster *
537 1.1 oster * Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256
538 1.1 oster *
539 1.1 oster * so to recover data_j we need
540 1.1 oster *
541 1.1 oster * J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
542 1.1 oster *
543 1.1 oster * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
544 1.1 oster * copying Q into it. Then we need to do a table lookup to convert to solve
545 1.1 oster * data_j /= J
546 1.1 oster *
547 1.1 oster *
548 1.1 oster */
549 1.1 oster int rf_RecoveryQFunc(node)
550 1.1 oster RF_DagNode_t *node;
551 1.1 oster {
552 1.1 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams-1].p;
553 1.1 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &raidPtr->Layout;
554 1.1 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams-2].p;
555 1.1 oster int i;
556 1.1 oster RF_PhysDiskAddr_t *pda;
557 1.1 oster RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr,failedPDA->startSector);
558 1.1 oster char *srcbuf, *destbuf;
559 1.1 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
560 1.1 oster RF_Etimer_t timer;
561 1.1 oster unsigned long coeff;
562 1.1 oster
563 1.1 oster RF_ETIMER_START(timer);
564 1.1 oster /* start by copying Q into the buffer */
565 1.1 oster bcopy(node->params[node->numParams-3].p,node->results[0],
566 1.1 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
567 1.1 oster for (i=0; i<node->numParams-4; i+=2)
568 1.1 oster {
569 1.1 oster RF_ASSERT (node->params[i+1].p != node->results[0]);
570 1.1 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
571 1.1 oster srcbuf = (char *) node->params[i+1].p;
572 1.1 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
573 1.1 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr,suoffset-failedSUOffset);
574 1.1 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),pda->raidAddress);
575 1.1 oster /* compute the data unit offset within the column */
576 1.1 oster coeff = (coeff % raidPtr->Layout.numDataCol);
577 1.1 oster rf_IncQ((unsigned long *)destbuf, (unsigned long *)srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
578 1.1 oster }
579 1.1 oster /* Do the nasty inversion now */
580 1.1 oster coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),failedPDA->startSector) % raidPtr->Layout.numDataCol);
581 1.1 oster rf_InvertQ(node->results[0],node->results[0],rf_RaidAddressToByte(raidPtr,pda->numSector),coeff);
582 1.1 oster RF_ETIMER_STOP(timer);
583 1.1 oster RF_ETIMER_EVAL(timer);
584 1.1 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
585 1.1 oster rf_GenericWakeupFunc(node, 0);
586 1.1 oster return(0);
587 1.1 oster }
588 1.1 oster
589 1.1 oster int rf_RecoveryPQFunc(node)
590 1.1 oster RF_DagNode_t *node;
591 1.1 oster {
592 1.1 oster RF_PANIC();
593 1.1 oster return(1);
594 1.1 oster }
595 1.1 oster
596 1.1 oster /*
597 1.1 oster Degraded write Q subroutine.
598 1.1 oster Used when P is dead.
599 1.1 oster Large-write style Q computation.
600 1.1 oster Parameters
601 1.1 oster
602 1.1 oster (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
603 1.1 oster
604 1.1 oster We ignore failedPDA.
605 1.1 oster
606 1.1 oster This is a "simple style" recovery func.
607 1.1 oster */
608 1.1 oster
609 1.1 oster void rf_PQ_DegradedWriteQFunc(node)
610 1.1 oster RF_DagNode_t *node;
611 1.1 oster {
612 1.1 oster int np = node->numParams;
613 1.1 oster int d;
614 1.1 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-1].p;
615 1.1 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
616 1.1 oster int i;
617 1.1 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
618 1.1 oster RF_Etimer_t timer;
619 1.1 oster char *qbuf = node->results[0];
620 1.1 oster char *obuf, *qpbuf;
621 1.1 oster RF_PhysDiskAddr_t *old;
622 1.1 oster unsigned long coeff;
623 1.1 oster int fail_start,j;
624 1.1 oster
625 1.1 oster old = (RF_PhysDiskAddr_t *) node->params[np-2].p;
626 1.1 oster fail_start = old->startSector % secPerSU;
627 1.1 oster
628 1.1 oster RF_ETIMER_START(timer);
629 1.1 oster
630 1.1 oster d = (np-2)/2;
631 1.1 oster RF_ASSERT (2*d+2 == np);
632 1.1 oster
633 1.1 oster for (i=0; i < d; i++)
634 1.1 oster {
635 1.1 oster old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
636 1.1 oster obuf = (char *) node->params[2*i+1].p;
637 1.1 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),old->raidAddress);
638 1.1 oster /* compute the data unit offset within the column, then add one */
639 1.1 oster coeff = (coeff % raidPtr->Layout.numDataCol);
640 1.1 oster j = old->startSector % secPerSU;
641 1.1 oster RF_ASSERT(j >= fail_start);
642 1.1 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr,j - fail_start);
643 1.1 oster rf_IncQ((unsigned long *)qpbuf,(unsigned long *)obuf,rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
644 1.1 oster }
645 1.1 oster
646 1.1 oster RF_ETIMER_STOP(timer);
647 1.1 oster RF_ETIMER_EVAL(timer);
648 1.1 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
649 1.1 oster rf_GenericWakeupFunc(node, 0);
650 1.1 oster }
651 1.1 oster
652 1.1 oster
653 1.1 oster
654 1.1 oster
655 1.1 oster /* Q computations */
656 1.1 oster
657 1.1 oster /*
658 1.1 oster coeff - colummn;
659 1.1 oster
660 1.1 oster compute dest ^= qfor[28-coeff][rn[coeff+1] a]
661 1.1 oster
662 1.1 oster on 5-bit basis;
663 1.1 oster length in bytes;
664 1.1 oster */
665 1.1 oster
666 1.1 oster void rf_IncQ(dest,buf,length,coeff)
667 1.1 oster unsigned long *dest;
668 1.1 oster unsigned long *buf;
669 1.1 oster unsigned length;
670 1.1 oster unsigned coeff;
671 1.1 oster {
672 1.1 oster unsigned long a, d, new;
673 1.1 oster unsigned long a1, a2;
674 1.1 oster unsigned int *q = &(rf_qfor[28-coeff][0]);
675 1.1 oster unsigned r = rf_rn[coeff+1];
676 1.1 oster
677 1.1 oster #define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
678 1.1 oster #define INSERT(a,i) (a << (5L*i))
679 1.1 oster
680 1.1 oster length /= 8;
681 1.1 oster /* 13 5 bit quants in a 64 bit word */
682 1.1 oster while (length)
683 1.1 oster {
684 1.1 oster a = *buf++;
685 1.1 oster d = *dest;
686 1.1 oster a1 = EXTRACT(a,0) ^ r;
687 1.1 oster a2 = EXTRACT(a,1) ^ r;
688 1.1 oster new = INSERT(a2,1) | a1 ;
689 1.1 oster a1 = EXTRACT(a,2) ^ r;
690 1.1 oster a2 = EXTRACT(a,3) ^ r;
691 1.1 oster a1 = q[a1];
692 1.1 oster a2 = q[a2];
693 1.1 oster new = new | INSERT(a1,2) | INSERT (a2,3);
694 1.1 oster a1 = EXTRACT(a,4) ^ r;
695 1.1 oster a2 = EXTRACT(a,5) ^ r;
696 1.1 oster a1 = q[a1];
697 1.1 oster a2 = q[a2];
698 1.1 oster new = new | INSERT(a1,4) | INSERT (a2,5);
699 1.1 oster a1 = EXTRACT(a,5) ^ r;
700 1.1 oster a2 = EXTRACT(a,6) ^ r;
701 1.1 oster a1 = q[a1];
702 1.1 oster a2 = q[a2];
703 1.1 oster new = new | INSERT(a1,5) | INSERT (a2,6);
704 1.1 oster #if RF_LONGSHIFT > 2
705 1.1 oster a1 = EXTRACT(a,7) ^ r;
706 1.1 oster a2 = EXTRACT(a,8) ^ r;
707 1.1 oster a1 = q[a1];
708 1.1 oster a2 = q[a2];
709 1.1 oster new = new | INSERT(a1,7) | INSERT (a2,8);
710 1.1 oster a1 = EXTRACT(a,9) ^ r;
711 1.1 oster a2 = EXTRACT(a,10) ^ r;
712 1.1 oster a1 = q[a1];
713 1.1 oster a2 = q[a2];
714 1.1 oster new = new | INSERT(a1,9) | INSERT (a2,10);
715 1.1 oster a1 = EXTRACT(a,11) ^ r;
716 1.1 oster a2 = EXTRACT(a,12) ^ r;
717 1.1 oster a1 = q[a1];
718 1.1 oster a2 = q[a2];
719 1.1 oster new = new | INSERT(a1,11) | INSERT (a2,12);
720 1.1 oster #endif /* RF_LONGSHIFT > 2 */
721 1.1 oster d ^= new;
722 1.1 oster *dest++ = d;
723 1.1 oster length--;
724 1.1 oster }
725 1.1 oster }
726 1.1 oster
727 1.1 oster /*
728 1.1 oster compute
729 1.1 oster
730 1.1 oster dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
731 1.1 oster
732 1.1 oster on a five bit basis.
733 1.1 oster optimization: compute old ^ new on 64 bit basis.
734 1.1 oster
735 1.1 oster length in bytes.
736 1.1 oster */
737 1.1 oster
738 1.1 oster static void QDelta(
739 1.1 oster char *dest,
740 1.1 oster char *obuf,
741 1.1 oster char *nbuf,
742 1.1 oster unsigned length,
743 1.1 oster unsigned char coeff)
744 1.1 oster {
745 1.1 oster unsigned long a, d, new;
746 1.1 oster unsigned long a1, a2;
747 1.1 oster unsigned int *q = &(rf_qfor[28-coeff][0]);
748 1.1 oster unsigned r = rf_rn[coeff+1];
749 1.1 oster
750 1.2 oster #ifdef _KERNEL
751 1.1 oster /* PQ in kernel currently not supported because the encoding/decoding table is not present */
752 1.1 oster bzero(dest, length);
753 1.1 oster #else /* KERNEL */
754 1.1 oster /* this code probably doesn't work and should be rewritten -wvcii */
755 1.1 oster /* 13 5 bit quants in a 64 bit word */
756 1.1 oster length /= 8;
757 1.1 oster while (length)
758 1.1 oster {
759 1.1 oster a = *obuf++; /* XXX need to reorg to avoid cache conflicts */
760 1.1 oster a ^= *nbuf++;
761 1.1 oster d = *dest;
762 1.1 oster a1 = EXTRACT(a,0) ^ r;
763 1.1 oster a2 = EXTRACT(a,1) ^ r;
764 1.1 oster a1 = q[a1];
765 1.1 oster a2 = q[a2];
766 1.1 oster new = INSERT(a2,1) | a1 ;
767 1.1 oster a1 = EXTRACT(a,2) ^ r;
768 1.1 oster a2 = EXTRACT(a,3) ^ r;
769 1.1 oster a1 = q[a1];
770 1.1 oster a2 = q[a2];
771 1.1 oster new = new | INSERT(a1,2) | INSERT (a2,3);
772 1.1 oster a1 = EXTRACT(a,4) ^ r;
773 1.1 oster a2 = EXTRACT(a,5) ^ r;
774 1.1 oster a1 = q[a1];
775 1.1 oster a2 = q[a2];
776 1.1 oster new = new | INSERT(a1,4) | INSERT (a2,5);
777 1.1 oster a1 = EXTRACT(a,5) ^ r;
778 1.1 oster a2 = EXTRACT(a,6) ^ r;
779 1.1 oster a1 = q[a1];
780 1.1 oster a2 = q[a2];
781 1.1 oster new = new | INSERT(a1,5) | INSERT (a2,6);
782 1.1 oster #if RF_LONGSHIFT > 2
783 1.1 oster a1 = EXTRACT(a,7) ^ r;
784 1.1 oster a2 = EXTRACT(a,8) ^ r;
785 1.1 oster a1 = q[a1];
786 1.1 oster a2 = q[a2];
787 1.1 oster new = new | INSERT(a1,7) | INSERT (a2,8);
788 1.1 oster a1 = EXTRACT(a,9) ^ r;
789 1.1 oster a2 = EXTRACT(a,10) ^ r;
790 1.1 oster a1 = q[a1];
791 1.1 oster a2 = q[a2];
792 1.1 oster new = new | INSERT(a1,9) | INSERT (a2,10);
793 1.1 oster a1 = EXTRACT(a,11) ^ r;
794 1.1 oster a2 = EXTRACT(a,12) ^ r;
795 1.1 oster a1 = q[a1];
796 1.1 oster a2 = q[a2];
797 1.1 oster new = new | INSERT(a1,11) | INSERT (a2,12);
798 1.1 oster #endif /* RF_LONGSHIFT > 2 */
799 1.1 oster d ^= new;
800 1.1 oster *dest++ = d;
801 1.1 oster length--;
802 1.1 oster }
803 1.2 oster #endif /* _KERNEL */
804 1.1 oster }
805 1.1 oster
806 1.1 oster /*
807 1.1 oster recover columns a and b from the given p and q into
808 1.1 oster bufs abuf and bbuf. All bufs are word aligned.
809 1.1 oster Length is in bytes.
810 1.1 oster */
811 1.1 oster
812 1.1 oster
813 1.1 oster /*
814 1.1 oster * XXX
815 1.1 oster *
816 1.1 oster * Everything about this seems wrong.
817 1.1 oster */
818 1.1 oster void rf_PQ_recover(pbuf,qbuf,abuf,bbuf,length,coeff_a,coeff_b)
819 1.1 oster unsigned long *pbuf;
820 1.1 oster unsigned long *qbuf;
821 1.1 oster unsigned long *abuf;
822 1.1 oster unsigned long *bbuf;
823 1.1 oster unsigned length;
824 1.1 oster unsigned coeff_a;
825 1.1 oster unsigned coeff_b;
826 1.1 oster {
827 1.1 oster unsigned long p, q, a, a0, a1;
828 1.1 oster int col = (29 * coeff_a) + coeff_b;
829 1.1 oster unsigned char *q0 = & (rf_qinv[col][0]);
830 1.1 oster
831 1.1 oster length /= 8;
832 1.1 oster while (length)
833 1.1 oster {
834 1.1 oster p = *pbuf++;
835 1.1 oster q = *qbuf++;
836 1.1 oster a0 = EXTRACT(p,0);
837 1.1 oster a1 = EXTRACT(q,0);
838 1.1 oster a = q0[a0<<5 | a1];
839 1.1 oster #define MF(i) \
840 1.1 oster a0 = EXTRACT(p,i); \
841 1.1 oster a1 = EXTRACT(q,i); \
842 1.1 oster a = a | INSERT(q0[a0<<5 | a1],i)
843 1.1 oster
844 1.1 oster MF(1);
845 1.1 oster MF(2);
846 1.1 oster MF(3);
847 1.1 oster MF(4);
848 1.1 oster MF(5);
849 1.1 oster MF(6);
850 1.1 oster #if 0
851 1.1 oster MF(7);
852 1.1 oster MF(8);
853 1.1 oster MF(9);
854 1.1 oster MF(10);
855 1.1 oster MF(11);
856 1.1 oster MF(12);
857 1.1 oster #endif /* 0 */
858 1.1 oster *abuf++ = a;
859 1.1 oster *bbuf++ = a ^ p;
860 1.1 oster length--;
861 1.1 oster }
862 1.1 oster }
863 1.1 oster
864 1.1 oster /*
865 1.1 oster Lost parity and a data column. Recover that data column.
866 1.1 oster Assume col coeff is lost. Let q the contents of Q after
867 1.1 oster all surviving data columns have been q-xored out of it.
868 1.1 oster Then we have the equation
869 1.1 oster
870 1.1 oster q[28-coeff][a_i ^ r_i+1] = q
871 1.1 oster
872 1.1 oster but q is cyclic with period 31.
873 1.1 oster So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
874 1.1 oster q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
875 1.1 oster
876 1.1 oster so a_i = r_{coeff+1} ^ q[3+coeff][q]
877 1.1 oster
878 1.1 oster The routine is passed q buffer and the buffer
879 1.1 oster the data is to be recoverd into. They can be the same.
880 1.1 oster */
881 1.1 oster
882 1.1 oster
883 1.1 oster
884 1.1 oster static void rf_InvertQ(
885 1.1 oster unsigned long *qbuf,
886 1.1 oster unsigned long *abuf,
887 1.1 oster unsigned length,
888 1.1 oster unsigned coeff)
889 1.1 oster {
890 1.1 oster unsigned long a, new;
891 1.1 oster unsigned long a1, a2;
892 1.1 oster unsigned int *q = &(rf_qfor[3+coeff][0]);
893 1.1 oster unsigned r = rf_rn[coeff+1];
894 1.1 oster
895 1.1 oster /* 13 5 bit quants in a 64 bit word */
896 1.1 oster length /= 8;
897 1.1 oster while (length)
898 1.1 oster {
899 1.1 oster a = *qbuf++;
900 1.1 oster a1 = EXTRACT(a,0);
901 1.1 oster a2 = EXTRACT(a,1);
902 1.1 oster a1 = r ^ q[a1];
903 1.1 oster a2 = r ^ q[a2];
904 1.1 oster new = INSERT(a2,1) | a1;
905 1.1 oster #define M(i,j) \
906 1.1 oster a1 = EXTRACT(a,i); \
907 1.1 oster a2 = EXTRACT(a,j); \
908 1.1 oster a1 = r ^ q[a1]; \
909 1.1 oster a2 = r ^ q[a2]; \
910 1.1 oster new = new | INSERT(a1,i) | INSERT(a2,j)
911 1.1 oster
912 1.1 oster M(2,3);
913 1.1 oster M(4,5);
914 1.1 oster M(5,6);
915 1.1 oster #if RF_LONGSHIFT > 2
916 1.1 oster M(7,8);
917 1.1 oster M(9,10);
918 1.1 oster M(11,12);
919 1.1 oster #endif /* RF_LONGSHIFT > 2 */
920 1.1 oster *abuf++ = new;
921 1.1 oster length--;
922 1.1 oster }
923 1.1 oster }
924 1.1 oster
925 1.1 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) */
926