rf_pq.c revision 1.4 1 1.4 oster /* $NetBSD: rf_pq.c,v 1.4 1999/08/13 03:41:57 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Daniel Stodolsky
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * Code for RAID level 6 (P + Q) disk array architecture.
31 1.1 oster */
32 1.1 oster
33 1.1 oster #include "rf_archs.h"
34 1.1 oster #include "rf_types.h"
35 1.1 oster #include "rf_raid.h"
36 1.1 oster #include "rf_dag.h"
37 1.1 oster #include "rf_dagffrd.h"
38 1.1 oster #include "rf_dagffwr.h"
39 1.1 oster #include "rf_dagdegrd.h"
40 1.1 oster #include "rf_dagdegwr.h"
41 1.1 oster #include "rf_dagutils.h"
42 1.1 oster #include "rf_dagfuncs.h"
43 1.1 oster #include "rf_threadid.h"
44 1.1 oster #include "rf_etimer.h"
45 1.1 oster #include "rf_pqdeg.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_map.h"
48 1.1 oster #include "rf_pq.h"
49 1.1 oster
50 1.3 oster RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"};
51 1.3 oster RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"};
52 1.1 oster
53 1.3 oster int
54 1.3 oster rf_RegularONPFunc(node)
55 1.3 oster RF_DagNode_t *node;
56 1.1 oster {
57 1.3 oster return (rf_RegularXorFunc(node));
58 1.1 oster }
59 1.1 oster /*
60 1.3 oster same as simpleONQ func, but the coefficient is always 1
61 1.1 oster */
62 1.1 oster
63 1.3 oster int
64 1.3 oster rf_SimpleONPFunc(node)
65 1.3 oster RF_DagNode_t *node;
66 1.1 oster {
67 1.3 oster return (rf_SimpleXorFunc(node));
68 1.1 oster }
69 1.1 oster
70 1.3 oster int
71 1.3 oster rf_RecoveryPFunc(node)
72 1.3 oster RF_DagNode_t *node;
73 1.1 oster {
74 1.3 oster return (rf_RecoveryXorFunc(node));
75 1.1 oster }
76 1.1 oster
77 1.3 oster int
78 1.3 oster rf_RegularPFunc(node)
79 1.3 oster RF_DagNode_t *node;
80 1.1 oster {
81 1.3 oster return (rf_RegularXorFunc(node));
82 1.1 oster }
83 1.1 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
84 1.1 oster
85 1.3 oster static void
86 1.3 oster QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
87 1.3 oster unsigned char coeff);
88 1.3 oster static void
89 1.3 oster rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
90 1.3 oster unsigned length, unsigned coeff);
91 1.3 oster
92 1.3 oster RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"};
93 1.3 oster RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"};
94 1.3 oster RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"};
95 1.3 oster
96 1.3 oster void
97 1.3 oster rf_PQDagSelect(
98 1.3 oster RF_Raid_t * raidPtr,
99 1.3 oster RF_IoType_t type,
100 1.3 oster RF_AccessStripeMap_t * asmap,
101 1.3 oster RF_VoidFuncPtr * createFunc)
102 1.3 oster {
103 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
104 1.3 oster unsigned ndfail = asmap->numDataFailed;
105 1.3 oster unsigned npfail = asmap->numParityFailed;
106 1.3 oster unsigned ntfail = npfail + ndfail;
107 1.3 oster
108 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
109 1.3 oster if (ntfail > 2) {
110 1.3 oster RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
111 1.3 oster /* *infoFunc = */ *createFunc = NULL;
112 1.3 oster return;
113 1.3 oster }
114 1.3 oster /* ok, we can do this I/O */
115 1.3 oster if (type == RF_IO_TYPE_READ) {
116 1.3 oster switch (ndfail) {
117 1.3 oster case 0:
118 1.3 oster /* fault free read */
119 1.3 oster *createFunc = rf_CreateFaultFreeReadDAG; /* same as raid 5 */
120 1.3 oster break;
121 1.3 oster case 1:
122 1.3 oster /* lost a single data unit */
123 1.3 oster /* two cases: (1) parity is not lost. do a normal raid
124 1.3 oster * 5 reconstruct read. (2) parity is lost. do a
125 1.3 oster * reconstruct read using "q". */
126 1.3 oster if (ntfail == 2) { /* also lost redundancy */
127 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
128 1.3 oster *createFunc = rf_PQ_110_CreateReadDAG;
129 1.3 oster else
130 1.3 oster *createFunc = rf_PQ_101_CreateReadDAG;
131 1.3 oster } else {
132 1.3 oster /* P and Q are ok. But is there a failure in
133 1.3 oster * some unaccessed data unit? */
134 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
135 1.3 oster *createFunc = rf_PQ_200_CreateReadDAG;
136 1.3 oster else
137 1.3 oster *createFunc = rf_PQ_100_CreateReadDAG;
138 1.3 oster }
139 1.3 oster break;
140 1.3 oster case 2:
141 1.3 oster /* lost two data units */
142 1.3 oster /* *infoFunc = PQOneTwo; */
143 1.3 oster *createFunc = rf_PQ_200_CreateReadDAG;
144 1.3 oster break;
145 1.3 oster }
146 1.3 oster return;
147 1.3 oster }
148 1.3 oster /* a write */
149 1.3 oster switch (ntfail) {
150 1.3 oster case 0: /* fault free */
151 1.3 oster if (rf_suppressLocksAndLargeWrites ||
152 1.3 oster (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
153 1.3 oster (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
154 1.3 oster
155 1.3 oster *createFunc = rf_PQCreateSmallWriteDAG;
156 1.3 oster } else {
157 1.3 oster *createFunc = rf_PQCreateLargeWriteDAG;
158 1.3 oster }
159 1.3 oster break;
160 1.3 oster
161 1.3 oster case 1: /* single disk fault */
162 1.3 oster if (npfail == 1) {
163 1.3 oster RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
164 1.3 oster if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like
165 1.3 oster * normal mode raid5
166 1.3 oster * write. */
167 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
168 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
169 1.3 oster *createFunc = rf_PQ_001_CreateSmallWriteDAG;
170 1.3 oster else
171 1.3 oster *createFunc = rf_PQ_001_CreateLargeWriteDAG;
172 1.3 oster } else {/* parity died, small write only updating Q */
173 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
174 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
175 1.3 oster *createFunc = rf_PQ_010_CreateSmallWriteDAG;
176 1.3 oster else
177 1.3 oster *createFunc = rf_PQ_010_CreateLargeWriteDAG;
178 1.3 oster }
179 1.3 oster } else { /* data missing. Do a P reconstruct write if
180 1.3 oster * only a single data unit is lost in the
181 1.3 oster * stripe, otherwise a PQ reconstruct write. */
182 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
183 1.3 oster *createFunc = rf_PQ_200_CreateWriteDAG;
184 1.3 oster else
185 1.3 oster *createFunc = rf_PQ_100_CreateWriteDAG;
186 1.3 oster }
187 1.3 oster break;
188 1.3 oster
189 1.3 oster case 2: /* two disk faults */
190 1.3 oster switch (npfail) {
191 1.3 oster case 2: /* both p and q dead */
192 1.3 oster *createFunc = rf_PQ_011_CreateWriteDAG;
193 1.3 oster break;
194 1.3 oster case 1: /* either p or q and dead data */
195 1.3 oster RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
196 1.3 oster RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
197 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
198 1.3 oster *createFunc = rf_PQ_101_CreateWriteDAG;
199 1.3 oster else
200 1.3 oster *createFunc = rf_PQ_110_CreateWriteDAG;
201 1.3 oster break;
202 1.3 oster case 0: /* double data loss */
203 1.3 oster *createFunc = rf_PQ_200_CreateWriteDAG;
204 1.3 oster break;
205 1.3 oster }
206 1.3 oster break;
207 1.3 oster
208 1.3 oster default: /* more than 2 disk faults */
209 1.3 oster *createFunc = NULL;
210 1.3 oster RF_PANIC();
211 1.3 oster }
212 1.3 oster return;
213 1.3 oster }
214 1.3 oster /*
215 1.3 oster Used as a stop gap info function
216 1.3 oster */
217 1.3 oster static void
218 1.3 oster PQOne(raidPtr, nSucc, nAnte, asmap)
219 1.3 oster RF_Raid_t *raidPtr;
220 1.3 oster int *nSucc;
221 1.3 oster int *nAnte;
222 1.3 oster RF_AccessStripeMap_t *asmap;
223 1.1 oster {
224 1.3 oster *nSucc = *nAnte = 1;
225 1.1 oster }
226 1.1 oster
227 1.3 oster static void
228 1.3 oster PQOneTwo(raidPtr, nSucc, nAnte, asmap)
229 1.3 oster RF_Raid_t *raidPtr;
230 1.3 oster int *nSucc;
231 1.3 oster int *nAnte;
232 1.3 oster RF_AccessStripeMap_t *asmap;
233 1.3 oster {
234 1.3 oster *nSucc = 1;
235 1.3 oster *nAnte = 2;
236 1.3 oster }
237 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
238 1.1 oster {
239 1.3 oster rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
240 1.3 oster rf_RegularPQFunc, RF_FALSE);
241 1.1 oster }
242 1.1 oster
243 1.3 oster int
244 1.3 oster rf_RegularONQFunc(node)
245 1.3 oster RF_DagNode_t *node;
246 1.3 oster {
247 1.3 oster int np = node->numParams;
248 1.3 oster int d;
249 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
250 1.3 oster int i;
251 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
252 1.3 oster RF_Etimer_t timer;
253 1.3 oster char *qbuf, *qpbuf;
254 1.3 oster char *obuf, *nbuf;
255 1.3 oster RF_PhysDiskAddr_t *old, *new;
256 1.3 oster unsigned long coeff;
257 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
258 1.3 oster
259 1.3 oster RF_ETIMER_START(timer);
260 1.3 oster
261 1.3 oster d = (np - 3) / 4;
262 1.3 oster RF_ASSERT(4 * d + 3 == np);
263 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
264 1.3 oster for (i = 0; i < d; i++) {
265 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
266 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
267 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
268 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
269 1.3 oster RF_ASSERT(new->numSector == old->numSector);
270 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
271 1.3 oster /* the stripe unit within the stripe tells us the coefficient
272 1.3 oster * to use for the multiply. */
273 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
274 1.3 oster /* compute the data unit offset within the column, then add
275 1.3 oster * one */
276 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
277 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
278 1.3 oster QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
279 1.3 oster }
280 1.3 oster
281 1.3 oster RF_ETIMER_STOP(timer);
282 1.3 oster RF_ETIMER_EVAL(timer);
283 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
284 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
285 1.3 oster * I/O in this node */
286 1.3 oster return (0);
287 1.1 oster }
288 1.1 oster /*
289 1.1 oster See the SimpleXORFunc for the difference between a simple and regular func.
290 1.3 oster These Q functions should be used for
291 1.3 oster
292 1.3 oster new q = Q(data,old data,old q)
293 1.1 oster
294 1.3 oster style updates and not for
295 1.1 oster
296 1.1 oster q = ( new data, new data, .... )
297 1.1 oster
298 1.1 oster computations.
299 1.1 oster
300 1.1 oster The simple q takes 2(2d+1)+1 params, where d is the number
301 1.1 oster of stripes written. The order of params is
302 1.1 oster old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
303 1.1 oster [2d] old q pda_0, old q buffer
304 1.1 oster [2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d
305 1.1 oster raidPtr
306 1.1 oster */
307 1.1 oster
308 1.3 oster int
309 1.3 oster rf_SimpleONQFunc(node)
310 1.3 oster RF_DagNode_t *node;
311 1.3 oster {
312 1.3 oster int np = node->numParams;
313 1.3 oster int d;
314 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
315 1.3 oster int i;
316 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
317 1.3 oster RF_Etimer_t timer;
318 1.3 oster char *qbuf;
319 1.3 oster char *obuf, *nbuf;
320 1.3 oster RF_PhysDiskAddr_t *old, *new;
321 1.3 oster unsigned long coeff;
322 1.3 oster
323 1.3 oster RF_ETIMER_START(timer);
324 1.3 oster
325 1.3 oster d = (np - 3) / 4;
326 1.3 oster RF_ASSERT(4 * d + 3 == np);
327 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
328 1.3 oster for (i = 0; i < d; i++) {
329 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
330 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
331 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
332 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
333 1.3 oster RF_ASSERT(new->numSector == old->numSector);
334 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
335 1.3 oster /* the stripe unit within the stripe tells us the coefficient
336 1.3 oster * to use for the multiply. */
337 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
338 1.3 oster /* compute the data unit offset within the column, then add
339 1.3 oster * one */
340 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
341 1.3 oster QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
342 1.3 oster }
343 1.3 oster
344 1.3 oster RF_ETIMER_STOP(timer);
345 1.3 oster RF_ETIMER_EVAL(timer);
346 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
347 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
348 1.3 oster * I/O in this node */
349 1.3 oster return (0);
350 1.1 oster }
351 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
352 1.1 oster {
353 1.3 oster rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
354 1.1 oster }
355 1.1 oster
356 1.3 oster static void
357 1.3 oster RegularQSubr(node, qbuf)
358 1.3 oster RF_DagNode_t *node;
359 1.3 oster char *qbuf;
360 1.3 oster {
361 1.3 oster int np = node->numParams;
362 1.3 oster int d;
363 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
364 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
365 1.3 oster int i;
366 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
367 1.3 oster RF_Etimer_t timer;
368 1.3 oster char *obuf, *qpbuf;
369 1.3 oster RF_PhysDiskAddr_t *old;
370 1.3 oster unsigned long coeff;
371 1.3 oster
372 1.3 oster RF_ETIMER_START(timer);
373 1.3 oster
374 1.3 oster d = (np - 1) / 2;
375 1.3 oster RF_ASSERT(2 * d + 1 == np);
376 1.3 oster for (i = 0; i < d; i++) {
377 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
378 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
379 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
380 1.3 oster /* compute the data unit offset within the column, then add
381 1.3 oster * one */
382 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
383 1.3 oster /* the input buffers may not all be aligned with the start of
384 1.3 oster * the stripe. so shift by their sector offset within the
385 1.3 oster * stripe unit */
386 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
387 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
388 1.3 oster }
389 1.3 oster
390 1.3 oster RF_ETIMER_STOP(timer);
391 1.3 oster RF_ETIMER_EVAL(timer);
392 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
393 1.1 oster }
394 1.1 oster /*
395 1.1 oster used in degraded writes.
396 1.1 oster */
397 1.1 oster
398 1.3 oster static void
399 1.3 oster DegrQSubr(node)
400 1.3 oster RF_DagNode_t *node;
401 1.3 oster {
402 1.3 oster int np = node->numParams;
403 1.3 oster int d;
404 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
405 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
406 1.3 oster int i;
407 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
408 1.3 oster RF_Etimer_t timer;
409 1.3 oster char *qbuf = node->results[1];
410 1.3 oster char *obuf, *qpbuf;
411 1.3 oster RF_PhysDiskAddr_t *old;
412 1.3 oster unsigned long coeff;
413 1.3 oster unsigned fail_start;
414 1.3 oster int j;
415 1.3 oster
416 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
417 1.3 oster fail_start = old->startSector % secPerSU;
418 1.3 oster
419 1.3 oster RF_ETIMER_START(timer);
420 1.3 oster
421 1.3 oster d = (np - 2) / 2;
422 1.3 oster RF_ASSERT(2 * d + 2 == np);
423 1.3 oster for (i = 0; i < d; i++) {
424 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
425 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
426 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
427 1.3 oster /* compute the data unit offset within the column, then add
428 1.3 oster * one */
429 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
430 1.3 oster /* the input buffers may not all be aligned with the start of
431 1.3 oster * the stripe. so shift by their sector offset within the
432 1.3 oster * stripe unit */
433 1.3 oster j = old->startSector % secPerSU;
434 1.3 oster RF_ASSERT(j >= fail_start);
435 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
436 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
437 1.3 oster }
438 1.3 oster
439 1.3 oster RF_ETIMER_STOP(timer);
440 1.3 oster RF_ETIMER_EVAL(timer);
441 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
442 1.1 oster }
443 1.1 oster /*
444 1.1 oster Called by large write code to compute the new parity and the new q.
445 1.3 oster
446 1.1 oster structure of the params:
447 1.1 oster
448 1.1 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
449 1.3 oster raidPtr
450 1.1 oster
451 1.1 oster for a total of 2d+1 arguments.
452 1.1 oster The result buffers results[0], results[1] are the buffers for the p and q,
453 1.1 oster respectively.
454 1.1 oster
455 1.1 oster We compute Q first, then compute P. The P calculation may try to reuse
456 1.1 oster one of the input buffers for its output, so if we computed P first, we would
457 1.1 oster corrupt the input for the q calculation.
458 1.1 oster */
459 1.1 oster
460 1.3 oster int
461 1.3 oster rf_RegularPQFunc(node)
462 1.3 oster RF_DagNode_t *node;
463 1.3 oster {
464 1.3 oster RegularQSubr(node, node->results[1]);
465 1.3 oster return (rf_RegularXorFunc(node)); /* does the wakeup */
466 1.3 oster }
467 1.3 oster
468 1.3 oster int
469 1.3 oster rf_RegularQFunc(node)
470 1.3 oster RF_DagNode_t *node;
471 1.3 oster {
472 1.3 oster /* Almost ... adjust Qsubr args */
473 1.3 oster RegularQSubr(node, node->results[0]);
474 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
475 1.3 oster * I/O in this node */
476 1.3 oster return (0);
477 1.1 oster }
478 1.1 oster /*
479 1.1 oster Called by singly degraded write code to compute the new parity and the new q.
480 1.3 oster
481 1.1 oster structure of the params:
482 1.1 oster
483 1.3 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
484 1.3 oster failedPDA raidPtr
485 1.1 oster
486 1.1 oster for a total of 2d+2 arguments.
487 1.1 oster The result buffers results[0], results[1] are the buffers for the parity and q,
488 1.1 oster respectively.
489 1.1 oster
490 1.1 oster We compute Q first, then compute parity. The parity calculation may try to reuse
491 1.1 oster one of the input buffers for its output, so if we computed parity first, we would
492 1.1 oster corrupt the input for the q calculation.
493 1.1 oster
494 1.1 oster We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
495 1.1 oster */
496 1.1 oster
497 1.3 oster void
498 1.3 oster rf_Degraded_100_PQFunc(node)
499 1.3 oster RF_DagNode_t *node;
500 1.3 oster {
501 1.3 oster int np = node->numParams;
502 1.3 oster
503 1.3 oster RF_ASSERT(np >= 2);
504 1.3 oster DegrQSubr(node);
505 1.3 oster rf_RecoveryXorFunc(node);
506 1.1 oster }
507 1.1 oster
508 1.1 oster
509 1.1 oster /*
510 1.1 oster The two below are used when reading a stripe with a single lost data unit.
511 1.1 oster The parameters are
512 1.1 oster
513 1.1 oster pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
514 1.1 oster
515 1.1 oster and results[0] contains the data buffer. Which is originally zero-filled.
516 1.3 oster
517 1.1 oster */
518 1.1 oster
519 1.1 oster /* this Q func is used by the degraded-mode dag functions to recover lost data.
520 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
521 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
522 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
523 1.1 oster * the other PDAs in the parameter list to determine where within the target
524 1.1 oster * buffer the corresponding data should be xored.
525 1.1 oster *
526 1.3 oster * Recall the basic equation is
527 1.3 oster *
528 1.1 oster * Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256
529 1.1 oster *
530 1.1 oster * so to recover data_j we need
531 1.1 oster *
532 1.1 oster * J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
533 1.1 oster *
534 1.1 oster * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
535 1.1 oster * copying Q into it. Then we need to do a table lookup to convert to solve
536 1.1 oster * data_j /= J
537 1.3 oster *
538 1.3 oster *
539 1.1 oster */
540 1.3 oster int
541 1.3 oster rf_RecoveryQFunc(node)
542 1.3 oster RF_DagNode_t *node;
543 1.3 oster {
544 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
545 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
546 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
547 1.3 oster int i;
548 1.3 oster RF_PhysDiskAddr_t *pda;
549 1.3 oster RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
550 1.3 oster char *srcbuf, *destbuf;
551 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
552 1.3 oster RF_Etimer_t timer;
553 1.3 oster unsigned long coeff;
554 1.3 oster
555 1.3 oster RF_ETIMER_START(timer);
556 1.3 oster /* start by copying Q into the buffer */
557 1.3 oster bcopy(node->params[node->numParams - 3].p, node->results[0],
558 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
559 1.3 oster for (i = 0; i < node->numParams - 4; i += 2) {
560 1.3 oster RF_ASSERT(node->params[i + 1].p != node->results[0]);
561 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
562 1.3 oster srcbuf = (char *) node->params[i + 1].p;
563 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
564 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
565 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
566 1.3 oster /* compute the data unit offset within the column */
567 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
568 1.3 oster rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
569 1.3 oster }
570 1.3 oster /* Do the nasty inversion now */
571 1.3 oster coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol);
572 1.3 oster rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
573 1.3 oster RF_ETIMER_STOP(timer);
574 1.3 oster RF_ETIMER_EVAL(timer);
575 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
576 1.3 oster rf_GenericWakeupFunc(node, 0);
577 1.3 oster return (0);
578 1.3 oster }
579 1.3 oster
580 1.3 oster int
581 1.3 oster rf_RecoveryPQFunc(node)
582 1.3 oster RF_DagNode_t *node;
583 1.1 oster {
584 1.3 oster RF_PANIC();
585 1.3 oster return (1);
586 1.1 oster }
587 1.1 oster /*
588 1.3 oster Degraded write Q subroutine.
589 1.1 oster Used when P is dead.
590 1.3 oster Large-write style Q computation.
591 1.1 oster Parameters
592 1.1 oster
593 1.1 oster (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
594 1.1 oster
595 1.1 oster We ignore failedPDA.
596 1.1 oster
597 1.1 oster This is a "simple style" recovery func.
598 1.1 oster */
599 1.1 oster
600 1.3 oster void
601 1.3 oster rf_PQ_DegradedWriteQFunc(node)
602 1.3 oster RF_DagNode_t *node;
603 1.3 oster {
604 1.3 oster int np = node->numParams;
605 1.3 oster int d;
606 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
607 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
608 1.3 oster int i;
609 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
610 1.3 oster RF_Etimer_t timer;
611 1.3 oster char *qbuf = node->results[0];
612 1.3 oster char *obuf, *qpbuf;
613 1.3 oster RF_PhysDiskAddr_t *old;
614 1.3 oster unsigned long coeff;
615 1.3 oster int fail_start, j;
616 1.3 oster
617 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
618 1.3 oster fail_start = old->startSector % secPerSU;
619 1.3 oster
620 1.3 oster RF_ETIMER_START(timer);
621 1.3 oster
622 1.3 oster d = (np - 2) / 2;
623 1.3 oster RF_ASSERT(2 * d + 2 == np);
624 1.3 oster
625 1.3 oster for (i = 0; i < d; i++) {
626 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
627 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
628 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
629 1.3 oster /* compute the data unit offset within the column, then add
630 1.3 oster * one */
631 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
632 1.3 oster j = old->startSector % secPerSU;
633 1.3 oster RF_ASSERT(j >= fail_start);
634 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
635 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
636 1.3 oster }
637 1.3 oster
638 1.3 oster RF_ETIMER_STOP(timer);
639 1.3 oster RF_ETIMER_EVAL(timer);
640 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
641 1.3 oster rf_GenericWakeupFunc(node, 0);
642 1.1 oster }
643 1.1 oster
644 1.1 oster
645 1.1 oster
646 1.1 oster
647 1.1 oster /* Q computations */
648 1.1 oster
649 1.1 oster /*
650 1.1 oster coeff - colummn;
651 1.1 oster
652 1.1 oster compute dest ^= qfor[28-coeff][rn[coeff+1] a]
653 1.1 oster
654 1.1 oster on 5-bit basis;
655 1.1 oster length in bytes;
656 1.1 oster */
657 1.1 oster
658 1.3 oster void
659 1.3 oster rf_IncQ(dest, buf, length, coeff)
660 1.3 oster unsigned long *dest;
661 1.3 oster unsigned long *buf;
662 1.3 oster unsigned length;
663 1.3 oster unsigned coeff;
664 1.3 oster {
665 1.3 oster unsigned long a, d, new;
666 1.3 oster unsigned long a1, a2;
667 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
668 1.3 oster unsigned r = rf_rn[coeff + 1];
669 1.1 oster
670 1.1 oster #define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
671 1.1 oster #define INSERT(a,i) (a << (5L*i))
672 1.1 oster
673 1.3 oster length /= 8;
674 1.3 oster /* 13 5 bit quants in a 64 bit word */
675 1.3 oster while (length) {
676 1.3 oster a = *buf++;
677 1.3 oster d = *dest;
678 1.3 oster a1 = EXTRACT(a, 0) ^ r;
679 1.3 oster a2 = EXTRACT(a, 1) ^ r;
680 1.3 oster new = INSERT(a2, 1) | a1;
681 1.3 oster a1 = EXTRACT(a, 2) ^ r;
682 1.3 oster a2 = EXTRACT(a, 3) ^ r;
683 1.3 oster a1 = q[a1];
684 1.3 oster a2 = q[a2];
685 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
686 1.3 oster a1 = EXTRACT(a, 4) ^ r;
687 1.3 oster a2 = EXTRACT(a, 5) ^ r;
688 1.3 oster a1 = q[a1];
689 1.3 oster a2 = q[a2];
690 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
691 1.3 oster a1 = EXTRACT(a, 5) ^ r;
692 1.3 oster a2 = EXTRACT(a, 6) ^ r;
693 1.3 oster a1 = q[a1];
694 1.3 oster a2 = q[a2];
695 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
696 1.1 oster #if RF_LONGSHIFT > 2
697 1.3 oster a1 = EXTRACT(a, 7) ^ r;
698 1.3 oster a2 = EXTRACT(a, 8) ^ r;
699 1.3 oster a1 = q[a1];
700 1.3 oster a2 = q[a2];
701 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
702 1.3 oster a1 = EXTRACT(a, 9) ^ r;
703 1.3 oster a2 = EXTRACT(a, 10) ^ r;
704 1.3 oster a1 = q[a1];
705 1.3 oster a2 = q[a2];
706 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
707 1.3 oster a1 = EXTRACT(a, 11) ^ r;
708 1.3 oster a2 = EXTRACT(a, 12) ^ r;
709 1.3 oster a1 = q[a1];
710 1.3 oster a2 = q[a2];
711 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
712 1.3 oster #endif /* RF_LONGSHIFT > 2 */
713 1.3 oster d ^= new;
714 1.3 oster *dest++ = d;
715 1.3 oster length--;
716 1.3 oster }
717 1.1 oster }
718 1.3 oster /*
719 1.3 oster compute
720 1.1 oster
721 1.1 oster dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
722 1.1 oster
723 1.1 oster on a five bit basis.
724 1.1 oster optimization: compute old ^ new on 64 bit basis.
725 1.1 oster
726 1.1 oster length in bytes.
727 1.1 oster */
728 1.1 oster
729 1.3 oster static void
730 1.3 oster QDelta(
731 1.3 oster char *dest,
732 1.3 oster char *obuf,
733 1.3 oster char *nbuf,
734 1.3 oster unsigned length,
735 1.3 oster unsigned char coeff)
736 1.3 oster {
737 1.3 oster unsigned long a, d, new;
738 1.3 oster unsigned long a1, a2;
739 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
740 1.3 oster unsigned r = rf_rn[coeff + 1];
741 1.1 oster
742 1.2 oster #ifdef _KERNEL
743 1.3 oster /* PQ in kernel currently not supported because the encoding/decoding
744 1.3 oster * table is not present */
745 1.3 oster bzero(dest, length);
746 1.3 oster #else /* KERNEL */
747 1.3 oster /* this code probably doesn't work and should be rewritten -wvcii */
748 1.3 oster /* 13 5 bit quants in a 64 bit word */
749 1.3 oster length /= 8;
750 1.3 oster while (length) {
751 1.3 oster a = *obuf++; /* XXX need to reorg to avoid cache conflicts */
752 1.3 oster a ^= *nbuf++;
753 1.3 oster d = *dest;
754 1.3 oster a1 = EXTRACT(a, 0) ^ r;
755 1.3 oster a2 = EXTRACT(a, 1) ^ r;
756 1.3 oster a1 = q[a1];
757 1.3 oster a2 = q[a2];
758 1.3 oster new = INSERT(a2, 1) | a1;
759 1.3 oster a1 = EXTRACT(a, 2) ^ r;
760 1.3 oster a2 = EXTRACT(a, 3) ^ r;
761 1.3 oster a1 = q[a1];
762 1.3 oster a2 = q[a2];
763 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
764 1.3 oster a1 = EXTRACT(a, 4) ^ r;
765 1.3 oster a2 = EXTRACT(a, 5) ^ r;
766 1.3 oster a1 = q[a1];
767 1.3 oster a2 = q[a2];
768 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
769 1.3 oster a1 = EXTRACT(a, 5) ^ r;
770 1.3 oster a2 = EXTRACT(a, 6) ^ r;
771 1.3 oster a1 = q[a1];
772 1.3 oster a2 = q[a2];
773 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
774 1.1 oster #if RF_LONGSHIFT > 2
775 1.3 oster a1 = EXTRACT(a, 7) ^ r;
776 1.3 oster a2 = EXTRACT(a, 8) ^ r;
777 1.3 oster a1 = q[a1];
778 1.3 oster a2 = q[a2];
779 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
780 1.3 oster a1 = EXTRACT(a, 9) ^ r;
781 1.3 oster a2 = EXTRACT(a, 10) ^ r;
782 1.3 oster a1 = q[a1];
783 1.3 oster a2 = q[a2];
784 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
785 1.3 oster a1 = EXTRACT(a, 11) ^ r;
786 1.3 oster a2 = EXTRACT(a, 12) ^ r;
787 1.3 oster a1 = q[a1];
788 1.3 oster a2 = q[a2];
789 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
790 1.3 oster #endif /* RF_LONGSHIFT > 2 */
791 1.3 oster d ^= new;
792 1.3 oster *dest++ = d;
793 1.3 oster length--;
794 1.3 oster }
795 1.3 oster #endif /* _KERNEL */
796 1.1 oster }
797 1.1 oster /*
798 1.1 oster recover columns a and b from the given p and q into
799 1.1 oster bufs abuf and bbuf. All bufs are word aligned.
800 1.1 oster Length is in bytes.
801 1.1 oster */
802 1.3 oster
803 1.1 oster
804 1.1 oster /*
805 1.1 oster * XXX
806 1.1 oster *
807 1.1 oster * Everything about this seems wrong.
808 1.1 oster */
809 1.3 oster void
810 1.3 oster rf_PQ_recover(pbuf, qbuf, abuf, bbuf, length, coeff_a, coeff_b)
811 1.3 oster unsigned long *pbuf;
812 1.3 oster unsigned long *qbuf;
813 1.3 oster unsigned long *abuf;
814 1.3 oster unsigned long *bbuf;
815 1.3 oster unsigned length;
816 1.3 oster unsigned coeff_a;
817 1.3 oster unsigned coeff_b;
818 1.3 oster {
819 1.3 oster unsigned long p, q, a, a0, a1;
820 1.3 oster int col = (29 * coeff_a) + coeff_b;
821 1.3 oster unsigned char *q0 = &(rf_qinv[col][0]);
822 1.3 oster
823 1.3 oster length /= 8;
824 1.3 oster while (length) {
825 1.3 oster p = *pbuf++;
826 1.3 oster q = *qbuf++;
827 1.3 oster a0 = EXTRACT(p, 0);
828 1.3 oster a1 = EXTRACT(q, 0);
829 1.3 oster a = q0[a0 << 5 | a1];
830 1.1 oster #define MF(i) \
831 1.1 oster a0 = EXTRACT(p,i); \
832 1.1 oster a1 = EXTRACT(q,i); \
833 1.1 oster a = a | INSERT(q0[a0<<5 | a1],i)
834 1.1 oster
835 1.3 oster MF(1);
836 1.3 oster MF(2);
837 1.3 oster MF(3);
838 1.3 oster MF(4);
839 1.3 oster MF(5);
840 1.3 oster MF(6);
841 1.1 oster #if 0
842 1.3 oster MF(7);
843 1.3 oster MF(8);
844 1.3 oster MF(9);
845 1.3 oster MF(10);
846 1.3 oster MF(11);
847 1.3 oster MF(12);
848 1.3 oster #endif /* 0 */
849 1.3 oster *abuf++ = a;
850 1.3 oster *bbuf++ = a ^ p;
851 1.3 oster length--;
852 1.3 oster }
853 1.1 oster }
854 1.3 oster /*
855 1.1 oster Lost parity and a data column. Recover that data column.
856 1.1 oster Assume col coeff is lost. Let q the contents of Q after
857 1.1 oster all surviving data columns have been q-xored out of it.
858 1.1 oster Then we have the equation
859 1.1 oster
860 1.1 oster q[28-coeff][a_i ^ r_i+1] = q
861 1.1 oster
862 1.3 oster but q is cyclic with period 31.
863 1.1 oster So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
864 1.1 oster q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
865 1.1 oster
866 1.1 oster so a_i = r_{coeff+1} ^ q[3+coeff][q]
867 1.1 oster
868 1.1 oster The routine is passed q buffer and the buffer
869 1.1 oster the data is to be recoverd into. They can be the same.
870 1.1 oster */
871 1.1 oster
872 1.1 oster
873 1.3 oster
874 1.3 oster static void
875 1.3 oster rf_InvertQ(
876 1.3 oster unsigned long *qbuf,
877 1.3 oster unsigned long *abuf,
878 1.3 oster unsigned length,
879 1.3 oster unsigned coeff)
880 1.3 oster {
881 1.3 oster unsigned long a, new;
882 1.3 oster unsigned long a1, a2;
883 1.3 oster unsigned int *q = &(rf_qfor[3 + coeff][0]);
884 1.3 oster unsigned r = rf_rn[coeff + 1];
885 1.3 oster
886 1.3 oster /* 13 5 bit quants in a 64 bit word */
887 1.3 oster length /= 8;
888 1.3 oster while (length) {
889 1.3 oster a = *qbuf++;
890 1.3 oster a1 = EXTRACT(a, 0);
891 1.3 oster a2 = EXTRACT(a, 1);
892 1.3 oster a1 = r ^ q[a1];
893 1.3 oster a2 = r ^ q[a2];
894 1.3 oster new = INSERT(a2, 1) | a1;
895 1.1 oster #define M(i,j) \
896 1.1 oster a1 = EXTRACT(a,i); \
897 1.1 oster a2 = EXTRACT(a,j); \
898 1.1 oster a1 = r ^ q[a1]; \
899 1.1 oster a2 = r ^ q[a2]; \
900 1.1 oster new = new | INSERT(a1,i) | INSERT(a2,j)
901 1.1 oster
902 1.3 oster M(2, 3);
903 1.3 oster M(4, 5);
904 1.3 oster M(5, 6);
905 1.1 oster #if RF_LONGSHIFT > 2
906 1.3 oster M(7, 8);
907 1.3 oster M(9, 10);
908 1.3 oster M(11, 12);
909 1.3 oster #endif /* RF_LONGSHIFT > 2 */
910 1.3 oster *abuf++ = new;
911 1.3 oster length--;
912 1.3 oster }
913 1.1 oster }
914 1.3 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) ||
915 1.3 oster * (RF_INCLUDE_RAID6 > 0) */
916