Home | History | Annotate | Line # | Download | only in raidframe
rf_pq.c revision 1.4
      1  1.4  oster /*	$NetBSD: rf_pq.c,v 1.4 1999/08/13 03:41:57 oster Exp $	*/
      2  1.1  oster /*
      3  1.1  oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4  1.1  oster  * All rights reserved.
      5  1.1  oster  *
      6  1.1  oster  * Author: Daniel Stodolsky
      7  1.1  oster  *
      8  1.1  oster  * Permission to use, copy, modify and distribute this software and
      9  1.1  oster  * its documentation is hereby granted, provided that both the copyright
     10  1.1  oster  * notice and this permission notice appear in all copies of the
     11  1.1  oster  * software, derivative works or modified versions, and any portions
     12  1.1  oster  * thereof, and that both notices appear in supporting documentation.
     13  1.1  oster  *
     14  1.1  oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  1.1  oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  1.1  oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  1.1  oster  *
     18  1.1  oster  * Carnegie Mellon requests users of this software to return to
     19  1.1  oster  *
     20  1.1  oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  1.1  oster  *  School of Computer Science
     22  1.1  oster  *  Carnegie Mellon University
     23  1.1  oster  *  Pittsburgh PA 15213-3890
     24  1.1  oster  *
     25  1.1  oster  * any improvements or extensions that they make and grant Carnegie the
     26  1.1  oster  * rights to redistribute these changes.
     27  1.1  oster  */
     28  1.1  oster 
     29  1.1  oster /*
     30  1.1  oster  * Code for RAID level 6 (P + Q) disk array architecture.
     31  1.1  oster  */
     32  1.1  oster 
     33  1.1  oster #include "rf_archs.h"
     34  1.1  oster #include "rf_types.h"
     35  1.1  oster #include "rf_raid.h"
     36  1.1  oster #include "rf_dag.h"
     37  1.1  oster #include "rf_dagffrd.h"
     38  1.1  oster #include "rf_dagffwr.h"
     39  1.1  oster #include "rf_dagdegrd.h"
     40  1.1  oster #include "rf_dagdegwr.h"
     41  1.1  oster #include "rf_dagutils.h"
     42  1.1  oster #include "rf_dagfuncs.h"
     43  1.1  oster #include "rf_threadid.h"
     44  1.1  oster #include "rf_etimer.h"
     45  1.1  oster #include "rf_pqdeg.h"
     46  1.1  oster #include "rf_general.h"
     47  1.1  oster #include "rf_map.h"
     48  1.1  oster #include "rf_pq.h"
     49  1.1  oster 
     50  1.3  oster RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"};
     51  1.3  oster RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"};
     52  1.1  oster 
     53  1.3  oster int
     54  1.3  oster rf_RegularONPFunc(node)
     55  1.3  oster 	RF_DagNode_t *node;
     56  1.1  oster {
     57  1.3  oster 	return (rf_RegularXorFunc(node));
     58  1.1  oster }
     59  1.1  oster /*
     60  1.3  oster    same as simpleONQ func, but the coefficient is always 1
     61  1.1  oster */
     62  1.1  oster 
     63  1.3  oster int
     64  1.3  oster rf_SimpleONPFunc(node)
     65  1.3  oster 	RF_DagNode_t *node;
     66  1.1  oster {
     67  1.3  oster 	return (rf_SimpleXorFunc(node));
     68  1.1  oster }
     69  1.1  oster 
     70  1.3  oster int
     71  1.3  oster rf_RecoveryPFunc(node)
     72  1.3  oster 	RF_DagNode_t *node;
     73  1.1  oster {
     74  1.3  oster 	return (rf_RecoveryXorFunc(node));
     75  1.1  oster }
     76  1.1  oster 
     77  1.3  oster int
     78  1.3  oster rf_RegularPFunc(node)
     79  1.3  oster 	RF_DagNode_t *node;
     80  1.1  oster {
     81  1.3  oster 	return (rf_RegularXorFunc(node));
     82  1.1  oster }
     83  1.1  oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
     84  1.1  oster 
     85  1.3  oster static void
     86  1.3  oster QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
     87  1.3  oster     unsigned char coeff);
     88  1.3  oster static void
     89  1.3  oster rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
     90  1.3  oster     unsigned length, unsigned coeff);
     91  1.3  oster 
     92  1.3  oster RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"};
     93  1.3  oster RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"};
     94  1.3  oster RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"};
     95  1.3  oster 
     96  1.3  oster void
     97  1.3  oster rf_PQDagSelect(
     98  1.3  oster     RF_Raid_t * raidPtr,
     99  1.3  oster     RF_IoType_t type,
    100  1.3  oster     RF_AccessStripeMap_t * asmap,
    101  1.3  oster     RF_VoidFuncPtr * createFunc)
    102  1.3  oster {
    103  1.3  oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    104  1.3  oster 	unsigned ndfail = asmap->numDataFailed;
    105  1.3  oster 	unsigned npfail = asmap->numParityFailed;
    106  1.3  oster 	unsigned ntfail = npfail + ndfail;
    107  1.3  oster 
    108  1.3  oster 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    109  1.3  oster 	if (ntfail > 2) {
    110  1.3  oster 		RF_ERRORMSG("more than two disks failed in a single group!  Aborting I/O operation.\n");
    111  1.3  oster 		 /* *infoFunc = */ *createFunc = NULL;
    112  1.3  oster 		return;
    113  1.3  oster 	}
    114  1.3  oster 	/* ok, we can do this I/O */
    115  1.3  oster 	if (type == RF_IO_TYPE_READ) {
    116  1.3  oster 		switch (ndfail) {
    117  1.3  oster 		case 0:
    118  1.3  oster 			/* fault free read */
    119  1.3  oster 			*createFunc = rf_CreateFaultFreeReadDAG;	/* same as raid 5 */
    120  1.3  oster 			break;
    121  1.3  oster 		case 1:
    122  1.3  oster 			/* lost a single data unit */
    123  1.3  oster 			/* two cases: (1) parity is not lost. do a normal raid
    124  1.3  oster 			 * 5 reconstruct read. (2) parity is lost. do a
    125  1.3  oster 			 * reconstruct read using "q". */
    126  1.3  oster 			if (ntfail == 2) {	/* also lost redundancy */
    127  1.3  oster 				if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
    128  1.3  oster 					*createFunc = rf_PQ_110_CreateReadDAG;
    129  1.3  oster 				else
    130  1.3  oster 					*createFunc = rf_PQ_101_CreateReadDAG;
    131  1.3  oster 			} else {
    132  1.3  oster 				/* P and Q are ok. But is there a failure in
    133  1.3  oster 				 * some unaccessed data unit? */
    134  1.3  oster 				if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
    135  1.3  oster 					*createFunc = rf_PQ_200_CreateReadDAG;
    136  1.3  oster 				else
    137  1.3  oster 					*createFunc = rf_PQ_100_CreateReadDAG;
    138  1.3  oster 			}
    139  1.3  oster 			break;
    140  1.3  oster 		case 2:
    141  1.3  oster 			/* lost two data units */
    142  1.3  oster 			/* *infoFunc = PQOneTwo; */
    143  1.3  oster 			*createFunc = rf_PQ_200_CreateReadDAG;
    144  1.3  oster 			break;
    145  1.3  oster 		}
    146  1.3  oster 		return;
    147  1.3  oster 	}
    148  1.3  oster 	/* a write */
    149  1.3  oster 	switch (ntfail) {
    150  1.3  oster 	case 0:		/* fault free */
    151  1.3  oster 		if (rf_suppressLocksAndLargeWrites ||
    152  1.3  oster 		    (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
    153  1.3  oster 			(asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
    154  1.3  oster 
    155  1.3  oster 			*createFunc = rf_PQCreateSmallWriteDAG;
    156  1.3  oster 		} else {
    157  1.3  oster 			*createFunc = rf_PQCreateLargeWriteDAG;
    158  1.3  oster 		}
    159  1.3  oster 		break;
    160  1.3  oster 
    161  1.3  oster 	case 1:		/* single disk fault */
    162  1.3  oster 		if (npfail == 1) {
    163  1.3  oster 			RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
    164  1.3  oster 			if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) {	/* q died, treat like
    165  1.3  oster 										 * normal mode raid5
    166  1.3  oster 										 * write. */
    167  1.3  oster 				if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
    168  1.3  oster 				    || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
    169  1.3  oster 					*createFunc = rf_PQ_001_CreateSmallWriteDAG;
    170  1.3  oster 				else
    171  1.3  oster 					*createFunc = rf_PQ_001_CreateLargeWriteDAG;
    172  1.3  oster 			} else {/* parity died, small write only updating Q */
    173  1.3  oster 				if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
    174  1.3  oster 				    || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
    175  1.3  oster 					*createFunc = rf_PQ_010_CreateSmallWriteDAG;
    176  1.3  oster 				else
    177  1.3  oster 					*createFunc = rf_PQ_010_CreateLargeWriteDAG;
    178  1.3  oster 			}
    179  1.3  oster 		} else {	/* data missing. Do a P reconstruct write if
    180  1.3  oster 				 * only a single data unit is lost in the
    181  1.3  oster 				 * stripe, otherwise a PQ reconstruct write. */
    182  1.3  oster 			if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
    183  1.3  oster 				*createFunc = rf_PQ_200_CreateWriteDAG;
    184  1.3  oster 			else
    185  1.3  oster 				*createFunc = rf_PQ_100_CreateWriteDAG;
    186  1.3  oster 		}
    187  1.3  oster 		break;
    188  1.3  oster 
    189  1.3  oster 	case 2:		/* two disk faults */
    190  1.3  oster 		switch (npfail) {
    191  1.3  oster 		case 2:	/* both p and q dead */
    192  1.3  oster 			*createFunc = rf_PQ_011_CreateWriteDAG;
    193  1.3  oster 			break;
    194  1.3  oster 		case 1:	/* either p or q and dead data */
    195  1.3  oster 			RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
    196  1.3  oster 			RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
    197  1.3  oster 			if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
    198  1.3  oster 				*createFunc = rf_PQ_101_CreateWriteDAG;
    199  1.3  oster 			else
    200  1.3  oster 				*createFunc = rf_PQ_110_CreateWriteDAG;
    201  1.3  oster 			break;
    202  1.3  oster 		case 0:	/* double data loss */
    203  1.3  oster 			*createFunc = rf_PQ_200_CreateWriteDAG;
    204  1.3  oster 			break;
    205  1.3  oster 		}
    206  1.3  oster 		break;
    207  1.3  oster 
    208  1.3  oster 	default:		/* more than 2 disk faults */
    209  1.3  oster 		*createFunc = NULL;
    210  1.3  oster 		RF_PANIC();
    211  1.3  oster 	}
    212  1.3  oster 	return;
    213  1.3  oster }
    214  1.3  oster /*
    215  1.3  oster    Used as a stop gap info function
    216  1.3  oster */
    217  1.3  oster static void
    218  1.3  oster PQOne(raidPtr, nSucc, nAnte, asmap)
    219  1.3  oster 	RF_Raid_t *raidPtr;
    220  1.3  oster 	int    *nSucc;
    221  1.3  oster 	int    *nAnte;
    222  1.3  oster 	RF_AccessStripeMap_t *asmap;
    223  1.1  oster {
    224  1.3  oster 	*nSucc = *nAnte = 1;
    225  1.1  oster }
    226  1.1  oster 
    227  1.3  oster static void
    228  1.3  oster PQOneTwo(raidPtr, nSucc, nAnte, asmap)
    229  1.3  oster 	RF_Raid_t *raidPtr;
    230  1.3  oster 	int    *nSucc;
    231  1.3  oster 	int    *nAnte;
    232  1.3  oster 	RF_AccessStripeMap_t *asmap;
    233  1.3  oster {
    234  1.3  oster 	*nSucc = 1;
    235  1.3  oster 	*nAnte = 2;
    236  1.3  oster }
    237  1.1  oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
    238  1.1  oster {
    239  1.3  oster 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
    240  1.3  oster 	    rf_RegularPQFunc, RF_FALSE);
    241  1.1  oster }
    242  1.1  oster 
    243  1.3  oster int
    244  1.3  oster rf_RegularONQFunc(node)
    245  1.3  oster 	RF_DagNode_t *node;
    246  1.3  oster {
    247  1.3  oster 	int     np = node->numParams;
    248  1.3  oster 	int     d;
    249  1.3  oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    250  1.3  oster 	int     i;
    251  1.3  oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    252  1.3  oster 	RF_Etimer_t timer;
    253  1.3  oster 	char   *qbuf, *qpbuf;
    254  1.3  oster 	char   *obuf, *nbuf;
    255  1.3  oster 	RF_PhysDiskAddr_t *old, *new;
    256  1.3  oster 	unsigned long coeff;
    257  1.3  oster 	unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    258  1.3  oster 
    259  1.3  oster 	RF_ETIMER_START(timer);
    260  1.3  oster 
    261  1.3  oster 	d = (np - 3) / 4;
    262  1.3  oster 	RF_ASSERT(4 * d + 3 == np);
    263  1.3  oster 	qbuf = (char *) node->params[2 * d + 1].p;	/* q buffer */
    264  1.3  oster 	for (i = 0; i < d; i++) {
    265  1.3  oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    266  1.3  oster 		obuf = (char *) node->params[2 * i + 1].p;
    267  1.3  oster 		new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
    268  1.3  oster 		nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
    269  1.3  oster 		RF_ASSERT(new->numSector == old->numSector);
    270  1.3  oster 		RF_ASSERT(new->raidAddress == old->raidAddress);
    271  1.3  oster 		/* the stripe unit within the stripe tells us the coefficient
    272  1.3  oster 		 * to use for the multiply. */
    273  1.3  oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
    274  1.3  oster 		/* compute the data unit offset within the column, then add
    275  1.3  oster 		 * one */
    276  1.3  oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    277  1.3  oster 		qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
    278  1.3  oster 		QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    279  1.3  oster 	}
    280  1.3  oster 
    281  1.3  oster 	RF_ETIMER_STOP(timer);
    282  1.3  oster 	RF_ETIMER_EVAL(timer);
    283  1.3  oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    284  1.3  oster 	rf_GenericWakeupFunc(node, 0);	/* call wake func explicitly since no
    285  1.3  oster 					 * I/O in this node */
    286  1.3  oster 	return (0);
    287  1.1  oster }
    288  1.1  oster /*
    289  1.1  oster    See the SimpleXORFunc for the difference between a simple and regular func.
    290  1.3  oster    These Q functions should be used for
    291  1.3  oster 
    292  1.3  oster          new q = Q(data,old data,old q)
    293  1.1  oster 
    294  1.3  oster    style updates and not for
    295  1.1  oster 
    296  1.1  oster          q = ( new data, new data, .... )
    297  1.1  oster 
    298  1.1  oster    computations.
    299  1.1  oster 
    300  1.1  oster    The simple q takes 2(2d+1)+1 params, where d is the number
    301  1.1  oster    of stripes written. The order of params is
    302  1.1  oster    old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
    303  1.1  oster    [2d] old q pda_0, old q buffer
    304  1.1  oster    [2d_2] new data pda_0, new data buffer_0, ...                                    new data pda_d, new data buffer_d
    305  1.1  oster    raidPtr
    306  1.1  oster */
    307  1.1  oster 
    308  1.3  oster int
    309  1.3  oster rf_SimpleONQFunc(node)
    310  1.3  oster 	RF_DagNode_t *node;
    311  1.3  oster {
    312  1.3  oster 	int     np = node->numParams;
    313  1.3  oster 	int     d;
    314  1.3  oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    315  1.3  oster 	int     i;
    316  1.3  oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    317  1.3  oster 	RF_Etimer_t timer;
    318  1.3  oster 	char   *qbuf;
    319  1.3  oster 	char   *obuf, *nbuf;
    320  1.3  oster 	RF_PhysDiskAddr_t *old, *new;
    321  1.3  oster 	unsigned long coeff;
    322  1.3  oster 
    323  1.3  oster 	RF_ETIMER_START(timer);
    324  1.3  oster 
    325  1.3  oster 	d = (np - 3) / 4;
    326  1.3  oster 	RF_ASSERT(4 * d + 3 == np);
    327  1.3  oster 	qbuf = (char *) node->params[2 * d + 1].p;	/* q buffer */
    328  1.3  oster 	for (i = 0; i < d; i++) {
    329  1.3  oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    330  1.3  oster 		obuf = (char *) node->params[2 * i + 1].p;
    331  1.3  oster 		new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
    332  1.3  oster 		nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
    333  1.3  oster 		RF_ASSERT(new->numSector == old->numSector);
    334  1.3  oster 		RF_ASSERT(new->raidAddress == old->raidAddress);
    335  1.3  oster 		/* the stripe unit within the stripe tells us the coefficient
    336  1.3  oster 		 * to use for the multiply. */
    337  1.3  oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
    338  1.3  oster 		/* compute the data unit offset within the column, then add
    339  1.3  oster 		 * one */
    340  1.3  oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    341  1.3  oster 		QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    342  1.3  oster 	}
    343  1.3  oster 
    344  1.3  oster 	RF_ETIMER_STOP(timer);
    345  1.3  oster 	RF_ETIMER_EVAL(timer);
    346  1.3  oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    347  1.3  oster 	rf_GenericWakeupFunc(node, 0);	/* call wake func explicitly since no
    348  1.3  oster 					 * I/O in this node */
    349  1.3  oster 	return (0);
    350  1.1  oster }
    351  1.1  oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
    352  1.1  oster {
    353  1.3  oster 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
    354  1.1  oster }
    355  1.1  oster 
    356  1.3  oster static void
    357  1.3  oster RegularQSubr(node, qbuf)
    358  1.3  oster 	RF_DagNode_t *node;
    359  1.3  oster 	char   *qbuf;
    360  1.3  oster {
    361  1.3  oster 	int     np = node->numParams;
    362  1.3  oster 	int     d;
    363  1.3  oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    364  1.3  oster 	unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    365  1.3  oster 	int     i;
    366  1.3  oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    367  1.3  oster 	RF_Etimer_t timer;
    368  1.3  oster 	char   *obuf, *qpbuf;
    369  1.3  oster 	RF_PhysDiskAddr_t *old;
    370  1.3  oster 	unsigned long coeff;
    371  1.3  oster 
    372  1.3  oster 	RF_ETIMER_START(timer);
    373  1.3  oster 
    374  1.3  oster 	d = (np - 1) / 2;
    375  1.3  oster 	RF_ASSERT(2 * d + 1 == np);
    376  1.3  oster 	for (i = 0; i < d; i++) {
    377  1.3  oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    378  1.3  oster 		obuf = (char *) node->params[2 * i + 1].p;
    379  1.3  oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
    380  1.3  oster 		/* compute the data unit offset within the column, then add
    381  1.3  oster 		 * one */
    382  1.3  oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    383  1.3  oster 		/* the input buffers may not all be aligned with the start of
    384  1.3  oster 		 * the stripe. so shift by their sector offset within the
    385  1.3  oster 		 * stripe unit */
    386  1.3  oster 		qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
    387  1.3  oster 		rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    388  1.3  oster 	}
    389  1.3  oster 
    390  1.3  oster 	RF_ETIMER_STOP(timer);
    391  1.3  oster 	RF_ETIMER_EVAL(timer);
    392  1.3  oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    393  1.1  oster }
    394  1.1  oster /*
    395  1.1  oster    used in degraded writes.
    396  1.1  oster */
    397  1.1  oster 
    398  1.3  oster static void
    399  1.3  oster DegrQSubr(node)
    400  1.3  oster 	RF_DagNode_t *node;
    401  1.3  oster {
    402  1.3  oster 	int     np = node->numParams;
    403  1.3  oster 	int     d;
    404  1.3  oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    405  1.3  oster 	unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    406  1.3  oster 	int     i;
    407  1.3  oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    408  1.3  oster 	RF_Etimer_t timer;
    409  1.3  oster 	char   *qbuf = node->results[1];
    410  1.3  oster 	char   *obuf, *qpbuf;
    411  1.3  oster 	RF_PhysDiskAddr_t *old;
    412  1.3  oster 	unsigned long coeff;
    413  1.3  oster 	unsigned fail_start;
    414  1.3  oster 	int     j;
    415  1.3  oster 
    416  1.3  oster 	old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
    417  1.3  oster 	fail_start = old->startSector % secPerSU;
    418  1.3  oster 
    419  1.3  oster 	RF_ETIMER_START(timer);
    420  1.3  oster 
    421  1.3  oster 	d = (np - 2) / 2;
    422  1.3  oster 	RF_ASSERT(2 * d + 2 == np);
    423  1.3  oster 	for (i = 0; i < d; i++) {
    424  1.3  oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    425  1.3  oster 		obuf = (char *) node->params[2 * i + 1].p;
    426  1.3  oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
    427  1.3  oster 		/* compute the data unit offset within the column, then add
    428  1.3  oster 		 * one */
    429  1.3  oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    430  1.3  oster 		/* the input buffers may not all be aligned with the start of
    431  1.3  oster 		 * the stripe. so shift by their sector offset within the
    432  1.3  oster 		 * stripe unit */
    433  1.3  oster 		j = old->startSector % secPerSU;
    434  1.3  oster 		RF_ASSERT(j >= fail_start);
    435  1.3  oster 		qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
    436  1.3  oster 		rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    437  1.3  oster 	}
    438  1.3  oster 
    439  1.3  oster 	RF_ETIMER_STOP(timer);
    440  1.3  oster 	RF_ETIMER_EVAL(timer);
    441  1.3  oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    442  1.1  oster }
    443  1.1  oster /*
    444  1.1  oster    Called by large write code to compute the new parity and the new q.
    445  1.3  oster 
    446  1.1  oster    structure of the params:
    447  1.1  oster 
    448  1.1  oster    pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
    449  1.3  oster    raidPtr
    450  1.1  oster 
    451  1.1  oster    for a total of 2d+1 arguments.
    452  1.1  oster    The result buffers results[0], results[1] are the buffers for the p and q,
    453  1.1  oster    respectively.
    454  1.1  oster 
    455  1.1  oster    We compute Q first, then compute P. The P calculation may try to reuse
    456  1.1  oster    one of the input buffers for its output, so if we computed P first, we would
    457  1.1  oster    corrupt the input for the q calculation.
    458  1.1  oster */
    459  1.1  oster 
    460  1.3  oster int
    461  1.3  oster rf_RegularPQFunc(node)
    462  1.3  oster 	RF_DagNode_t *node;
    463  1.3  oster {
    464  1.3  oster 	RegularQSubr(node, node->results[1]);
    465  1.3  oster 	return (rf_RegularXorFunc(node));	/* does the wakeup */
    466  1.3  oster }
    467  1.3  oster 
    468  1.3  oster int
    469  1.3  oster rf_RegularQFunc(node)
    470  1.3  oster 	RF_DagNode_t *node;
    471  1.3  oster {
    472  1.3  oster 	/* Almost ... adjust Qsubr args */
    473  1.3  oster 	RegularQSubr(node, node->results[0]);
    474  1.3  oster 	rf_GenericWakeupFunc(node, 0);	/* call wake func explicitly since no
    475  1.3  oster 					 * I/O in this node */
    476  1.3  oster 	return (0);
    477  1.1  oster }
    478  1.1  oster /*
    479  1.1  oster    Called by singly degraded write code to compute the new parity and the new q.
    480  1.3  oster 
    481  1.1  oster    structure of the params:
    482  1.1  oster 
    483  1.3  oster    pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
    484  1.3  oster    failedPDA raidPtr
    485  1.1  oster 
    486  1.1  oster    for a total of 2d+2 arguments.
    487  1.1  oster    The result buffers results[0], results[1] are the buffers for the parity and q,
    488  1.1  oster    respectively.
    489  1.1  oster 
    490  1.1  oster    We compute Q first, then compute parity. The parity calculation may try to reuse
    491  1.1  oster    one of the input buffers for its output, so if we computed parity first, we would
    492  1.1  oster    corrupt the input for the q calculation.
    493  1.1  oster 
    494  1.1  oster    We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
    495  1.1  oster */
    496  1.1  oster 
    497  1.3  oster void
    498  1.3  oster rf_Degraded_100_PQFunc(node)
    499  1.3  oster 	RF_DagNode_t *node;
    500  1.3  oster {
    501  1.3  oster 	int     np = node->numParams;
    502  1.3  oster 
    503  1.3  oster 	RF_ASSERT(np >= 2);
    504  1.3  oster 	DegrQSubr(node);
    505  1.3  oster 	rf_RecoveryXorFunc(node);
    506  1.1  oster }
    507  1.1  oster 
    508  1.1  oster 
    509  1.1  oster /*
    510  1.1  oster    The two below are used when reading a stripe with a single lost data unit.
    511  1.1  oster    The parameters are
    512  1.1  oster 
    513  1.1  oster    pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
    514  1.1  oster 
    515  1.1  oster    and results[0] contains the data buffer. Which is originally zero-filled.
    516  1.3  oster 
    517  1.1  oster */
    518  1.1  oster 
    519  1.1  oster /* this Q func is used by the degraded-mode dag functions to recover lost data.
    520  1.1  oster  * the second-to-last parameter is the PDA for the failed portion of the access.
    521  1.1  oster  * the code here looks at this PDA and assumes that the xor target buffer is
    522  1.1  oster  * equal in size to the number of sectors in the failed PDA.  It then uses
    523  1.1  oster  * the other PDAs in the parameter list to determine where within the target
    524  1.1  oster  * buffer the corresponding data should be xored.
    525  1.1  oster  *
    526  1.3  oster  * Recall the basic equation is
    527  1.3  oster  *
    528  1.1  oster  *     Q = ( data_1 + 2 * data_2 ... + k * data_k  ) mod 256
    529  1.1  oster  *
    530  1.1  oster  * so to recover data_j we need
    531  1.1  oster  *
    532  1.1  oster  *    J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
    533  1.1  oster  *
    534  1.1  oster  * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
    535  1.1  oster  * copying Q into it. Then we need to do a table lookup to convert to solve
    536  1.1  oster  *   data_j /= J
    537  1.3  oster  *
    538  1.3  oster  *
    539  1.1  oster  */
    540  1.3  oster int
    541  1.3  oster rf_RecoveryQFunc(node)
    542  1.3  oster 	RF_DagNode_t *node;
    543  1.3  oster {
    544  1.3  oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    545  1.3  oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    546  1.3  oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    547  1.3  oster 	int     i;
    548  1.3  oster 	RF_PhysDiskAddr_t *pda;
    549  1.3  oster 	RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    550  1.3  oster 	char   *srcbuf, *destbuf;
    551  1.3  oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    552  1.3  oster 	RF_Etimer_t timer;
    553  1.3  oster 	unsigned long coeff;
    554  1.3  oster 
    555  1.3  oster 	RF_ETIMER_START(timer);
    556  1.3  oster 	/* start by copying Q into the buffer */
    557  1.3  oster 	bcopy(node->params[node->numParams - 3].p, node->results[0],
    558  1.3  oster 	    rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
    559  1.3  oster 	for (i = 0; i < node->numParams - 4; i += 2) {
    560  1.3  oster 		RF_ASSERT(node->params[i + 1].p != node->results[0]);
    561  1.3  oster 		pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    562  1.3  oster 		srcbuf = (char *) node->params[i + 1].p;
    563  1.3  oster 		suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    564  1.3  oster 		destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    565  1.3  oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
    566  1.3  oster 		/* compute the data unit offset within the column */
    567  1.3  oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    568  1.3  oster 		rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
    569  1.3  oster 	}
    570  1.3  oster 	/* Do the nasty inversion now */
    571  1.3  oster 	coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol);
    572  1.3  oster 	rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
    573  1.3  oster 	RF_ETIMER_STOP(timer);
    574  1.3  oster 	RF_ETIMER_EVAL(timer);
    575  1.3  oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    576  1.3  oster 	rf_GenericWakeupFunc(node, 0);
    577  1.3  oster 	return (0);
    578  1.3  oster }
    579  1.3  oster 
    580  1.3  oster int
    581  1.3  oster rf_RecoveryPQFunc(node)
    582  1.3  oster 	RF_DagNode_t *node;
    583  1.1  oster {
    584  1.3  oster 	RF_PANIC();
    585  1.3  oster 	return (1);
    586  1.1  oster }
    587  1.1  oster /*
    588  1.3  oster    Degraded write Q subroutine.
    589  1.1  oster    Used when P is dead.
    590  1.3  oster    Large-write style Q computation.
    591  1.1  oster    Parameters
    592  1.1  oster 
    593  1.1  oster    (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
    594  1.1  oster 
    595  1.1  oster    We ignore failedPDA.
    596  1.1  oster 
    597  1.1  oster    This is a "simple style" recovery func.
    598  1.1  oster */
    599  1.1  oster 
    600  1.3  oster void
    601  1.3  oster rf_PQ_DegradedWriteQFunc(node)
    602  1.3  oster 	RF_DagNode_t *node;
    603  1.3  oster {
    604  1.3  oster 	int     np = node->numParams;
    605  1.3  oster 	int     d;
    606  1.3  oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
    607  1.3  oster 	unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    608  1.3  oster 	int     i;
    609  1.3  oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    610  1.3  oster 	RF_Etimer_t timer;
    611  1.3  oster 	char   *qbuf = node->results[0];
    612  1.3  oster 	char   *obuf, *qpbuf;
    613  1.3  oster 	RF_PhysDiskAddr_t *old;
    614  1.3  oster 	unsigned long coeff;
    615  1.3  oster 	int     fail_start, j;
    616  1.3  oster 
    617  1.3  oster 	old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
    618  1.3  oster 	fail_start = old->startSector % secPerSU;
    619  1.3  oster 
    620  1.3  oster 	RF_ETIMER_START(timer);
    621  1.3  oster 
    622  1.3  oster 	d = (np - 2) / 2;
    623  1.3  oster 	RF_ASSERT(2 * d + 2 == np);
    624  1.3  oster 
    625  1.3  oster 	for (i = 0; i < d; i++) {
    626  1.3  oster 		old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
    627  1.3  oster 		obuf = (char *) node->params[2 * i + 1].p;
    628  1.3  oster 		coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
    629  1.3  oster 		/* compute the data unit offset within the column, then add
    630  1.3  oster 		 * one */
    631  1.3  oster 		coeff = (coeff % raidPtr->Layout.numDataCol);
    632  1.3  oster 		j = old->startSector % secPerSU;
    633  1.3  oster 		RF_ASSERT(j >= fail_start);
    634  1.3  oster 		qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
    635  1.3  oster 		rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
    636  1.3  oster 	}
    637  1.3  oster 
    638  1.3  oster 	RF_ETIMER_STOP(timer);
    639  1.3  oster 	RF_ETIMER_EVAL(timer);
    640  1.3  oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    641  1.3  oster 	rf_GenericWakeupFunc(node, 0);
    642  1.1  oster }
    643  1.1  oster 
    644  1.1  oster 
    645  1.1  oster 
    646  1.1  oster 
    647  1.1  oster /* Q computations */
    648  1.1  oster 
    649  1.1  oster /*
    650  1.1  oster    coeff - colummn;
    651  1.1  oster 
    652  1.1  oster    compute  dest ^= qfor[28-coeff][rn[coeff+1] a]
    653  1.1  oster 
    654  1.1  oster    on 5-bit basis;
    655  1.1  oster    length in bytes;
    656  1.1  oster */
    657  1.1  oster 
    658  1.3  oster void
    659  1.3  oster rf_IncQ(dest, buf, length, coeff)
    660  1.3  oster 	unsigned long *dest;
    661  1.3  oster 	unsigned long *buf;
    662  1.3  oster 	unsigned length;
    663  1.3  oster 	unsigned coeff;
    664  1.3  oster {
    665  1.3  oster 	unsigned long a, d, new;
    666  1.3  oster 	unsigned long a1, a2;
    667  1.3  oster 	unsigned int *q = &(rf_qfor[28 - coeff][0]);
    668  1.3  oster 	unsigned r = rf_rn[coeff + 1];
    669  1.1  oster 
    670  1.1  oster #define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
    671  1.1  oster #define INSERT(a,i) (a << (5L*i))
    672  1.1  oster 
    673  1.3  oster 	length /= 8;
    674  1.3  oster 	/* 13 5 bit quants in a 64 bit word */
    675  1.3  oster 	while (length) {
    676  1.3  oster 		a = *buf++;
    677  1.3  oster 		d = *dest;
    678  1.3  oster 		a1 = EXTRACT(a, 0) ^ r;
    679  1.3  oster 		a2 = EXTRACT(a, 1) ^ r;
    680  1.3  oster 		new = INSERT(a2, 1) | a1;
    681  1.3  oster 		a1 = EXTRACT(a, 2) ^ r;
    682  1.3  oster 		a2 = EXTRACT(a, 3) ^ r;
    683  1.3  oster 		a1 = q[a1];
    684  1.3  oster 		a2 = q[a2];
    685  1.3  oster 		new = new | INSERT(a1, 2) | INSERT(a2, 3);
    686  1.3  oster 		a1 = EXTRACT(a, 4) ^ r;
    687  1.3  oster 		a2 = EXTRACT(a, 5) ^ r;
    688  1.3  oster 		a1 = q[a1];
    689  1.3  oster 		a2 = q[a2];
    690  1.3  oster 		new = new | INSERT(a1, 4) | INSERT(a2, 5);
    691  1.3  oster 		a1 = EXTRACT(a, 5) ^ r;
    692  1.3  oster 		a2 = EXTRACT(a, 6) ^ r;
    693  1.3  oster 		a1 = q[a1];
    694  1.3  oster 		a2 = q[a2];
    695  1.3  oster 		new = new | INSERT(a1, 5) | INSERT(a2, 6);
    696  1.1  oster #if RF_LONGSHIFT > 2
    697  1.3  oster 		a1 = EXTRACT(a, 7) ^ r;
    698  1.3  oster 		a2 = EXTRACT(a, 8) ^ r;
    699  1.3  oster 		a1 = q[a1];
    700  1.3  oster 		a2 = q[a2];
    701  1.3  oster 		new = new | INSERT(a1, 7) | INSERT(a2, 8);
    702  1.3  oster 		a1 = EXTRACT(a, 9) ^ r;
    703  1.3  oster 		a2 = EXTRACT(a, 10) ^ r;
    704  1.3  oster 		a1 = q[a1];
    705  1.3  oster 		a2 = q[a2];
    706  1.3  oster 		new = new | INSERT(a1, 9) | INSERT(a2, 10);
    707  1.3  oster 		a1 = EXTRACT(a, 11) ^ r;
    708  1.3  oster 		a2 = EXTRACT(a, 12) ^ r;
    709  1.3  oster 		a1 = q[a1];
    710  1.3  oster 		a2 = q[a2];
    711  1.3  oster 		new = new | INSERT(a1, 11) | INSERT(a2, 12);
    712  1.3  oster #endif				/* RF_LONGSHIFT > 2 */
    713  1.3  oster 		d ^= new;
    714  1.3  oster 		*dest++ = d;
    715  1.3  oster 		length--;
    716  1.3  oster 	}
    717  1.1  oster }
    718  1.3  oster /*
    719  1.3  oster    compute
    720  1.1  oster 
    721  1.1  oster    dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
    722  1.1  oster 
    723  1.1  oster    on a five bit basis.
    724  1.1  oster    optimization: compute old ^ new on 64 bit basis.
    725  1.1  oster 
    726  1.1  oster    length in bytes.
    727  1.1  oster */
    728  1.1  oster 
    729  1.3  oster static void
    730  1.3  oster QDelta(
    731  1.3  oster     char *dest,
    732  1.3  oster     char *obuf,
    733  1.3  oster     char *nbuf,
    734  1.3  oster     unsigned length,
    735  1.3  oster     unsigned char coeff)
    736  1.3  oster {
    737  1.3  oster 	unsigned long a, d, new;
    738  1.3  oster 	unsigned long a1, a2;
    739  1.3  oster 	unsigned int *q = &(rf_qfor[28 - coeff][0]);
    740  1.3  oster 	unsigned r = rf_rn[coeff + 1];
    741  1.1  oster 
    742  1.2  oster #ifdef _KERNEL
    743  1.3  oster 	/* PQ in kernel currently not supported because the encoding/decoding
    744  1.3  oster 	 * table is not present */
    745  1.3  oster 	bzero(dest, length);
    746  1.3  oster #else				/* KERNEL */
    747  1.3  oster 	/* this code probably doesn't work and should be rewritten  -wvcii */
    748  1.3  oster 	/* 13 5 bit quants in a 64 bit word */
    749  1.3  oster 	length /= 8;
    750  1.3  oster 	while (length) {
    751  1.3  oster 		a = *obuf++;	/* XXX need to reorg to avoid cache conflicts */
    752  1.3  oster 		a ^= *nbuf++;
    753  1.3  oster 		d = *dest;
    754  1.3  oster 		a1 = EXTRACT(a, 0) ^ r;
    755  1.3  oster 		a2 = EXTRACT(a, 1) ^ r;
    756  1.3  oster 		a1 = q[a1];
    757  1.3  oster 		a2 = q[a2];
    758  1.3  oster 		new = INSERT(a2, 1) | a1;
    759  1.3  oster 		a1 = EXTRACT(a, 2) ^ r;
    760  1.3  oster 		a2 = EXTRACT(a, 3) ^ r;
    761  1.3  oster 		a1 = q[a1];
    762  1.3  oster 		a2 = q[a2];
    763  1.3  oster 		new = new | INSERT(a1, 2) | INSERT(a2, 3);
    764  1.3  oster 		a1 = EXTRACT(a, 4) ^ r;
    765  1.3  oster 		a2 = EXTRACT(a, 5) ^ r;
    766  1.3  oster 		a1 = q[a1];
    767  1.3  oster 		a2 = q[a2];
    768  1.3  oster 		new = new | INSERT(a1, 4) | INSERT(a2, 5);
    769  1.3  oster 		a1 = EXTRACT(a, 5) ^ r;
    770  1.3  oster 		a2 = EXTRACT(a, 6) ^ r;
    771  1.3  oster 		a1 = q[a1];
    772  1.3  oster 		a2 = q[a2];
    773  1.3  oster 		new = new | INSERT(a1, 5) | INSERT(a2, 6);
    774  1.1  oster #if RF_LONGSHIFT > 2
    775  1.3  oster 		a1 = EXTRACT(a, 7) ^ r;
    776  1.3  oster 		a2 = EXTRACT(a, 8) ^ r;
    777  1.3  oster 		a1 = q[a1];
    778  1.3  oster 		a2 = q[a2];
    779  1.3  oster 		new = new | INSERT(a1, 7) | INSERT(a2, 8);
    780  1.3  oster 		a1 = EXTRACT(a, 9) ^ r;
    781  1.3  oster 		a2 = EXTRACT(a, 10) ^ r;
    782  1.3  oster 		a1 = q[a1];
    783  1.3  oster 		a2 = q[a2];
    784  1.3  oster 		new = new | INSERT(a1, 9) | INSERT(a2, 10);
    785  1.3  oster 		a1 = EXTRACT(a, 11) ^ r;
    786  1.3  oster 		a2 = EXTRACT(a, 12) ^ r;
    787  1.3  oster 		a1 = q[a1];
    788  1.3  oster 		a2 = q[a2];
    789  1.3  oster 		new = new | INSERT(a1, 11) | INSERT(a2, 12);
    790  1.3  oster #endif				/* RF_LONGSHIFT > 2 */
    791  1.3  oster 		d ^= new;
    792  1.3  oster 		*dest++ = d;
    793  1.3  oster 		length--;
    794  1.3  oster 	}
    795  1.3  oster #endif				/* _KERNEL */
    796  1.1  oster }
    797  1.1  oster /*
    798  1.1  oster    recover columns a and b from the given p and q into
    799  1.1  oster    bufs abuf and bbuf. All bufs are word aligned.
    800  1.1  oster    Length is in bytes.
    801  1.1  oster */
    802  1.3  oster 
    803  1.1  oster 
    804  1.1  oster /*
    805  1.1  oster  * XXX
    806  1.1  oster  *
    807  1.1  oster  * Everything about this seems wrong.
    808  1.1  oster  */
    809  1.3  oster void
    810  1.3  oster rf_PQ_recover(pbuf, qbuf, abuf, bbuf, length, coeff_a, coeff_b)
    811  1.3  oster 	unsigned long *pbuf;
    812  1.3  oster 	unsigned long *qbuf;
    813  1.3  oster 	unsigned long *abuf;
    814  1.3  oster 	unsigned long *bbuf;
    815  1.3  oster 	unsigned length;
    816  1.3  oster 	unsigned coeff_a;
    817  1.3  oster 	unsigned coeff_b;
    818  1.3  oster {
    819  1.3  oster 	unsigned long p, q, a, a0, a1;
    820  1.3  oster 	int     col = (29 * coeff_a) + coeff_b;
    821  1.3  oster 	unsigned char *q0 = &(rf_qinv[col][0]);
    822  1.3  oster 
    823  1.3  oster 	length /= 8;
    824  1.3  oster 	while (length) {
    825  1.3  oster 		p = *pbuf++;
    826  1.3  oster 		q = *qbuf++;
    827  1.3  oster 		a0 = EXTRACT(p, 0);
    828  1.3  oster 		a1 = EXTRACT(q, 0);
    829  1.3  oster 		a = q0[a0 << 5 | a1];
    830  1.1  oster #define MF(i) \
    831  1.1  oster       a0 = EXTRACT(p,i); \
    832  1.1  oster       a1 = EXTRACT(q,i); \
    833  1.1  oster       a  = a | INSERT(q0[a0<<5 | a1],i)
    834  1.1  oster 
    835  1.3  oster 		MF(1);
    836  1.3  oster 		MF(2);
    837  1.3  oster 		MF(3);
    838  1.3  oster 		MF(4);
    839  1.3  oster 		MF(5);
    840  1.3  oster 		MF(6);
    841  1.1  oster #if 0
    842  1.3  oster 		MF(7);
    843  1.3  oster 		MF(8);
    844  1.3  oster 		MF(9);
    845  1.3  oster 		MF(10);
    846  1.3  oster 		MF(11);
    847  1.3  oster 		MF(12);
    848  1.3  oster #endif				/* 0 */
    849  1.3  oster 		*abuf++ = a;
    850  1.3  oster 		*bbuf++ = a ^ p;
    851  1.3  oster 		length--;
    852  1.3  oster 	}
    853  1.1  oster }
    854  1.3  oster /*
    855  1.1  oster    Lost parity and a data column. Recover that data column.
    856  1.1  oster    Assume col coeff is lost. Let q the contents of Q after
    857  1.1  oster    all surviving data columns have been q-xored out of it.
    858  1.1  oster    Then we have the equation
    859  1.1  oster 
    860  1.1  oster    q[28-coeff][a_i ^ r_i+1] = q
    861  1.1  oster 
    862  1.3  oster    but q is cyclic with period 31.
    863  1.1  oster    So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
    864  1.1  oster       q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
    865  1.1  oster 
    866  1.1  oster    so a_i = r_{coeff+1} ^ q[3+coeff][q]
    867  1.1  oster 
    868  1.1  oster    The routine is passed q buffer and the buffer
    869  1.1  oster    the data is to be recoverd into. They can be the same.
    870  1.1  oster */
    871  1.1  oster 
    872  1.1  oster 
    873  1.3  oster 
    874  1.3  oster static void
    875  1.3  oster rf_InvertQ(
    876  1.3  oster     unsigned long *qbuf,
    877  1.3  oster     unsigned long *abuf,
    878  1.3  oster     unsigned length,
    879  1.3  oster     unsigned coeff)
    880  1.3  oster {
    881  1.3  oster 	unsigned long a, new;
    882  1.3  oster 	unsigned long a1, a2;
    883  1.3  oster 	unsigned int *q = &(rf_qfor[3 + coeff][0]);
    884  1.3  oster 	unsigned r = rf_rn[coeff + 1];
    885  1.3  oster 
    886  1.3  oster 	/* 13 5 bit quants in a 64 bit word */
    887  1.3  oster 	length /= 8;
    888  1.3  oster 	while (length) {
    889  1.3  oster 		a = *qbuf++;
    890  1.3  oster 		a1 = EXTRACT(a, 0);
    891  1.3  oster 		a2 = EXTRACT(a, 1);
    892  1.3  oster 		a1 = r ^ q[a1];
    893  1.3  oster 		a2 = r ^ q[a2];
    894  1.3  oster 		new = INSERT(a2, 1) | a1;
    895  1.1  oster #define M(i,j) \
    896  1.1  oster       a1 = EXTRACT(a,i); \
    897  1.1  oster       a2 = EXTRACT(a,j); \
    898  1.1  oster       a1 = r ^ q[a1]; \
    899  1.1  oster       a2 = r ^ q[a2]; \
    900  1.1  oster       new = new | INSERT(a1,i) | INSERT(a2,j)
    901  1.1  oster 
    902  1.3  oster 		M(2, 3);
    903  1.3  oster 		M(4, 5);
    904  1.3  oster 		M(5, 6);
    905  1.1  oster #if RF_LONGSHIFT > 2
    906  1.3  oster 		M(7, 8);
    907  1.3  oster 		M(9, 10);
    908  1.3  oster 		M(11, 12);
    909  1.3  oster #endif				/* RF_LONGSHIFT > 2 */
    910  1.3  oster 		*abuf++ = new;
    911  1.3  oster 		length--;
    912  1.3  oster 	}
    913  1.1  oster }
    914  1.3  oster #endif				/* (RF_INCLUDE_DECL_PQ > 0) ||
    915  1.3  oster 				 * (RF_INCLUDE_RAID6 > 0) */
    916