rf_pq.c revision 1.6 1 1.6 oster /* $NetBSD: rf_pq.c,v 1.6 1999/08/15 03:44:46 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Daniel Stodolsky
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * Code for RAID level 6 (P + Q) disk array architecture.
31 1.1 oster */
32 1.1 oster
33 1.1 oster #include "rf_archs.h"
34 1.1 oster #include "rf_types.h"
35 1.1 oster #include "rf_raid.h"
36 1.1 oster #include "rf_dag.h"
37 1.1 oster #include "rf_dagffrd.h"
38 1.1 oster #include "rf_dagffwr.h"
39 1.1 oster #include "rf_dagdegrd.h"
40 1.1 oster #include "rf_dagdegwr.h"
41 1.1 oster #include "rf_dagutils.h"
42 1.1 oster #include "rf_dagfuncs.h"
43 1.1 oster #include "rf_threadid.h"
44 1.1 oster #include "rf_etimer.h"
45 1.1 oster #include "rf_pqdeg.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_map.h"
48 1.1 oster #include "rf_pq.h"
49 1.1 oster
50 1.3 oster RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"};
51 1.3 oster RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"};
52 1.1 oster
53 1.3 oster int
54 1.3 oster rf_RegularONPFunc(node)
55 1.3 oster RF_DagNode_t *node;
56 1.1 oster {
57 1.3 oster return (rf_RegularXorFunc(node));
58 1.1 oster }
59 1.1 oster /*
60 1.3 oster same as simpleONQ func, but the coefficient is always 1
61 1.1 oster */
62 1.1 oster
63 1.3 oster int
64 1.3 oster rf_SimpleONPFunc(node)
65 1.3 oster RF_DagNode_t *node;
66 1.1 oster {
67 1.3 oster return (rf_SimpleXorFunc(node));
68 1.1 oster }
69 1.1 oster
70 1.3 oster int
71 1.3 oster rf_RecoveryPFunc(node)
72 1.3 oster RF_DagNode_t *node;
73 1.1 oster {
74 1.3 oster return (rf_RecoveryXorFunc(node));
75 1.1 oster }
76 1.1 oster
77 1.3 oster int
78 1.3 oster rf_RegularPFunc(node)
79 1.3 oster RF_DagNode_t *node;
80 1.1 oster {
81 1.3 oster return (rf_RegularXorFunc(node));
82 1.1 oster }
83 1.1 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
84 1.1 oster
85 1.3 oster static void
86 1.3 oster QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
87 1.3 oster unsigned char coeff);
88 1.3 oster static void
89 1.3 oster rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
90 1.3 oster unsigned length, unsigned coeff);
91 1.3 oster
92 1.3 oster RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"};
93 1.3 oster RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"};
94 1.3 oster RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"};
95 1.3 oster
96 1.3 oster void
97 1.3 oster rf_PQDagSelect(
98 1.3 oster RF_Raid_t * raidPtr,
99 1.3 oster RF_IoType_t type,
100 1.3 oster RF_AccessStripeMap_t * asmap,
101 1.3 oster RF_VoidFuncPtr * createFunc)
102 1.3 oster {
103 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
104 1.3 oster unsigned ndfail = asmap->numDataFailed;
105 1.3 oster unsigned npfail = asmap->numParityFailed;
106 1.3 oster unsigned ntfail = npfail + ndfail;
107 1.3 oster
108 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
109 1.3 oster if (ntfail > 2) {
110 1.3 oster RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
111 1.3 oster /* *infoFunc = */ *createFunc = NULL;
112 1.3 oster return;
113 1.3 oster }
114 1.3 oster /* ok, we can do this I/O */
115 1.3 oster if (type == RF_IO_TYPE_READ) {
116 1.3 oster switch (ndfail) {
117 1.3 oster case 0:
118 1.3 oster /* fault free read */
119 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; /* same as raid 5 */
120 1.3 oster break;
121 1.3 oster case 1:
122 1.3 oster /* lost a single data unit */
123 1.3 oster /* two cases: (1) parity is not lost. do a normal raid
124 1.3 oster * 5 reconstruct read. (2) parity is lost. do a
125 1.3 oster * reconstruct read using "q". */
126 1.3 oster if (ntfail == 2) { /* also lost redundancy */
127 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
128 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateReadDAG;
129 1.3 oster else
130 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateReadDAG;
131 1.3 oster } else {
132 1.3 oster /* P and Q are ok. But is there a failure in
133 1.3 oster * some unaccessed data unit? */
134 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
135 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
136 1.3 oster else
137 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateReadDAG;
138 1.3 oster }
139 1.3 oster break;
140 1.3 oster case 2:
141 1.3 oster /* lost two data units */
142 1.3 oster /* *infoFunc = PQOneTwo; */
143 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
144 1.3 oster break;
145 1.3 oster }
146 1.3 oster return;
147 1.3 oster }
148 1.3 oster /* a write */
149 1.3 oster switch (ntfail) {
150 1.3 oster case 0: /* fault free */
151 1.3 oster if (rf_suppressLocksAndLargeWrites ||
152 1.3 oster (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
153 1.3 oster (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
154 1.3 oster
155 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateSmallWriteDAG;
156 1.3 oster } else {
157 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateLargeWriteDAG;
158 1.3 oster }
159 1.3 oster break;
160 1.3 oster
161 1.3 oster case 1: /* single disk fault */
162 1.3 oster if (npfail == 1) {
163 1.3 oster RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
164 1.3 oster if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like
165 1.3 oster * normal mode raid5
166 1.3 oster * write. */
167 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
168 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
169 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateSmallWriteDAG;
170 1.3 oster else
171 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateLargeWriteDAG;
172 1.3 oster } else {/* parity died, small write only updating Q */
173 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
174 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
175 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateSmallWriteDAG;
176 1.3 oster else
177 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateLargeWriteDAG;
178 1.3 oster }
179 1.3 oster } else { /* data missing. Do a P reconstruct write if
180 1.3 oster * only a single data unit is lost in the
181 1.3 oster * stripe, otherwise a PQ reconstruct write. */
182 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
183 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
184 1.3 oster else
185 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateWriteDAG;
186 1.3 oster }
187 1.3 oster break;
188 1.3 oster
189 1.3 oster case 2: /* two disk faults */
190 1.3 oster switch (npfail) {
191 1.3 oster case 2: /* both p and q dead */
192 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_011_CreateWriteDAG;
193 1.3 oster break;
194 1.3 oster case 1: /* either p or q and dead data */
195 1.3 oster RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
196 1.3 oster RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
197 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
198 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateWriteDAG;
199 1.3 oster else
200 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateWriteDAG;
201 1.3 oster break;
202 1.3 oster case 0: /* double data loss */
203 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
204 1.3 oster break;
205 1.3 oster }
206 1.3 oster break;
207 1.3 oster
208 1.3 oster default: /* more than 2 disk faults */
209 1.3 oster *createFunc = NULL;
210 1.3 oster RF_PANIC();
211 1.3 oster }
212 1.3 oster return;
213 1.3 oster }
214 1.3 oster /*
215 1.3 oster Used as a stop gap info function
216 1.3 oster */
217 1.5 oster #if 0
218 1.3 oster static void
219 1.3 oster PQOne(raidPtr, nSucc, nAnte, asmap)
220 1.3 oster RF_Raid_t *raidPtr;
221 1.3 oster int *nSucc;
222 1.3 oster int *nAnte;
223 1.3 oster RF_AccessStripeMap_t *asmap;
224 1.1 oster {
225 1.3 oster *nSucc = *nAnte = 1;
226 1.1 oster }
227 1.1 oster
228 1.3 oster static void
229 1.3 oster PQOneTwo(raidPtr, nSucc, nAnte, asmap)
230 1.3 oster RF_Raid_t *raidPtr;
231 1.3 oster int *nSucc;
232 1.3 oster int *nAnte;
233 1.3 oster RF_AccessStripeMap_t *asmap;
234 1.3 oster {
235 1.3 oster *nSucc = 1;
236 1.3 oster *nAnte = 2;
237 1.3 oster }
238 1.5 oster #endif
239 1.5 oster
240 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
241 1.1 oster {
242 1.3 oster rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
243 1.3 oster rf_RegularPQFunc, RF_FALSE);
244 1.1 oster }
245 1.1 oster
246 1.3 oster int
247 1.3 oster rf_RegularONQFunc(node)
248 1.3 oster RF_DagNode_t *node;
249 1.3 oster {
250 1.3 oster int np = node->numParams;
251 1.3 oster int d;
252 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
253 1.3 oster int i;
254 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
255 1.3 oster RF_Etimer_t timer;
256 1.3 oster char *qbuf, *qpbuf;
257 1.3 oster char *obuf, *nbuf;
258 1.3 oster RF_PhysDiskAddr_t *old, *new;
259 1.3 oster unsigned long coeff;
260 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
261 1.3 oster
262 1.3 oster RF_ETIMER_START(timer);
263 1.3 oster
264 1.3 oster d = (np - 3) / 4;
265 1.3 oster RF_ASSERT(4 * d + 3 == np);
266 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
267 1.3 oster for (i = 0; i < d; i++) {
268 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
269 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
270 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
271 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
272 1.3 oster RF_ASSERT(new->numSector == old->numSector);
273 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
274 1.3 oster /* the stripe unit within the stripe tells us the coefficient
275 1.3 oster * to use for the multiply. */
276 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
277 1.3 oster /* compute the data unit offset within the column, then add
278 1.3 oster * one */
279 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
280 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
281 1.3 oster QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
282 1.3 oster }
283 1.3 oster
284 1.3 oster RF_ETIMER_STOP(timer);
285 1.3 oster RF_ETIMER_EVAL(timer);
286 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
287 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
288 1.3 oster * I/O in this node */
289 1.3 oster return (0);
290 1.1 oster }
291 1.1 oster /*
292 1.1 oster See the SimpleXORFunc for the difference between a simple and regular func.
293 1.3 oster These Q functions should be used for
294 1.3 oster
295 1.3 oster new q = Q(data,old data,old q)
296 1.1 oster
297 1.3 oster style updates and not for
298 1.1 oster
299 1.1 oster q = ( new data, new data, .... )
300 1.1 oster
301 1.1 oster computations.
302 1.1 oster
303 1.1 oster The simple q takes 2(2d+1)+1 params, where d is the number
304 1.1 oster of stripes written. The order of params is
305 1.1 oster old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
306 1.1 oster [2d] old q pda_0, old q buffer
307 1.1 oster [2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d
308 1.1 oster raidPtr
309 1.1 oster */
310 1.1 oster
311 1.3 oster int
312 1.3 oster rf_SimpleONQFunc(node)
313 1.3 oster RF_DagNode_t *node;
314 1.3 oster {
315 1.3 oster int np = node->numParams;
316 1.3 oster int d;
317 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
318 1.3 oster int i;
319 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
320 1.3 oster RF_Etimer_t timer;
321 1.3 oster char *qbuf;
322 1.3 oster char *obuf, *nbuf;
323 1.3 oster RF_PhysDiskAddr_t *old, *new;
324 1.3 oster unsigned long coeff;
325 1.3 oster
326 1.3 oster RF_ETIMER_START(timer);
327 1.3 oster
328 1.3 oster d = (np - 3) / 4;
329 1.3 oster RF_ASSERT(4 * d + 3 == np);
330 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
331 1.3 oster for (i = 0; i < d; i++) {
332 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
333 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
334 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
335 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
336 1.3 oster RF_ASSERT(new->numSector == old->numSector);
337 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
338 1.3 oster /* the stripe unit within the stripe tells us the coefficient
339 1.3 oster * to use for the multiply. */
340 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
341 1.3 oster /* compute the data unit offset within the column, then add
342 1.3 oster * one */
343 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
344 1.3 oster QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
345 1.3 oster }
346 1.3 oster
347 1.3 oster RF_ETIMER_STOP(timer);
348 1.3 oster RF_ETIMER_EVAL(timer);
349 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
350 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
351 1.3 oster * I/O in this node */
352 1.3 oster return (0);
353 1.1 oster }
354 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
355 1.1 oster {
356 1.3 oster rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
357 1.1 oster }
358 1.1 oster
359 1.5 oster static void RegularQSubr(RF_DagNode_t *node, char *qbuf);
360 1.5 oster
361 1.3 oster static void
362 1.3 oster RegularQSubr(node, qbuf)
363 1.3 oster RF_DagNode_t *node;
364 1.3 oster char *qbuf;
365 1.3 oster {
366 1.3 oster int np = node->numParams;
367 1.3 oster int d;
368 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
369 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
370 1.3 oster int i;
371 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
372 1.3 oster RF_Etimer_t timer;
373 1.3 oster char *obuf, *qpbuf;
374 1.3 oster RF_PhysDiskAddr_t *old;
375 1.3 oster unsigned long coeff;
376 1.3 oster
377 1.3 oster RF_ETIMER_START(timer);
378 1.3 oster
379 1.3 oster d = (np - 1) / 2;
380 1.3 oster RF_ASSERT(2 * d + 1 == np);
381 1.3 oster for (i = 0; i < d; i++) {
382 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
383 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
384 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
385 1.3 oster /* compute the data unit offset within the column, then add
386 1.3 oster * one */
387 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
388 1.3 oster /* the input buffers may not all be aligned with the start of
389 1.3 oster * the stripe. so shift by their sector offset within the
390 1.3 oster * stripe unit */
391 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
392 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
393 1.3 oster }
394 1.3 oster
395 1.3 oster RF_ETIMER_STOP(timer);
396 1.3 oster RF_ETIMER_EVAL(timer);
397 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
398 1.1 oster }
399 1.1 oster /*
400 1.1 oster used in degraded writes.
401 1.1 oster */
402 1.1 oster
403 1.5 oster static void DegrQSubr(RF_DagNode_t *node);
404 1.5 oster
405 1.3 oster static void
406 1.3 oster DegrQSubr(node)
407 1.3 oster RF_DagNode_t *node;
408 1.3 oster {
409 1.3 oster int np = node->numParams;
410 1.3 oster int d;
411 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
412 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
413 1.3 oster int i;
414 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
415 1.3 oster RF_Etimer_t timer;
416 1.3 oster char *qbuf = node->results[1];
417 1.3 oster char *obuf, *qpbuf;
418 1.3 oster RF_PhysDiskAddr_t *old;
419 1.3 oster unsigned long coeff;
420 1.3 oster unsigned fail_start;
421 1.3 oster int j;
422 1.3 oster
423 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
424 1.3 oster fail_start = old->startSector % secPerSU;
425 1.3 oster
426 1.3 oster RF_ETIMER_START(timer);
427 1.3 oster
428 1.3 oster d = (np - 2) / 2;
429 1.3 oster RF_ASSERT(2 * d + 2 == np);
430 1.3 oster for (i = 0; i < d; i++) {
431 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
432 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
433 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
434 1.3 oster /* compute the data unit offset within the column, then add
435 1.3 oster * one */
436 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
437 1.3 oster /* the input buffers may not all be aligned with the start of
438 1.3 oster * the stripe. so shift by their sector offset within the
439 1.3 oster * stripe unit */
440 1.3 oster j = old->startSector % secPerSU;
441 1.3 oster RF_ASSERT(j >= fail_start);
442 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
443 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
444 1.3 oster }
445 1.3 oster
446 1.3 oster RF_ETIMER_STOP(timer);
447 1.3 oster RF_ETIMER_EVAL(timer);
448 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
449 1.1 oster }
450 1.1 oster /*
451 1.1 oster Called by large write code to compute the new parity and the new q.
452 1.3 oster
453 1.1 oster structure of the params:
454 1.1 oster
455 1.1 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
456 1.3 oster raidPtr
457 1.1 oster
458 1.1 oster for a total of 2d+1 arguments.
459 1.1 oster The result buffers results[0], results[1] are the buffers for the p and q,
460 1.1 oster respectively.
461 1.1 oster
462 1.1 oster We compute Q first, then compute P. The P calculation may try to reuse
463 1.1 oster one of the input buffers for its output, so if we computed P first, we would
464 1.1 oster corrupt the input for the q calculation.
465 1.1 oster */
466 1.1 oster
467 1.3 oster int
468 1.3 oster rf_RegularPQFunc(node)
469 1.3 oster RF_DagNode_t *node;
470 1.3 oster {
471 1.3 oster RegularQSubr(node, node->results[1]);
472 1.3 oster return (rf_RegularXorFunc(node)); /* does the wakeup */
473 1.3 oster }
474 1.3 oster
475 1.3 oster int
476 1.3 oster rf_RegularQFunc(node)
477 1.3 oster RF_DagNode_t *node;
478 1.3 oster {
479 1.3 oster /* Almost ... adjust Qsubr args */
480 1.3 oster RegularQSubr(node, node->results[0]);
481 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
482 1.3 oster * I/O in this node */
483 1.3 oster return (0);
484 1.1 oster }
485 1.1 oster /*
486 1.1 oster Called by singly degraded write code to compute the new parity and the new q.
487 1.3 oster
488 1.1 oster structure of the params:
489 1.1 oster
490 1.3 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
491 1.3 oster failedPDA raidPtr
492 1.1 oster
493 1.1 oster for a total of 2d+2 arguments.
494 1.1 oster The result buffers results[0], results[1] are the buffers for the parity and q,
495 1.1 oster respectively.
496 1.1 oster
497 1.1 oster We compute Q first, then compute parity. The parity calculation may try to reuse
498 1.1 oster one of the input buffers for its output, so if we computed parity first, we would
499 1.1 oster corrupt the input for the q calculation.
500 1.1 oster
501 1.1 oster We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
502 1.1 oster */
503 1.1 oster
504 1.3 oster void
505 1.3 oster rf_Degraded_100_PQFunc(node)
506 1.3 oster RF_DagNode_t *node;
507 1.3 oster {
508 1.3 oster int np = node->numParams;
509 1.3 oster
510 1.3 oster RF_ASSERT(np >= 2);
511 1.3 oster DegrQSubr(node);
512 1.3 oster rf_RecoveryXorFunc(node);
513 1.1 oster }
514 1.1 oster
515 1.1 oster
516 1.1 oster /*
517 1.1 oster The two below are used when reading a stripe with a single lost data unit.
518 1.1 oster The parameters are
519 1.1 oster
520 1.1 oster pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
521 1.1 oster
522 1.1 oster and results[0] contains the data buffer. Which is originally zero-filled.
523 1.3 oster
524 1.1 oster */
525 1.1 oster
526 1.1 oster /* this Q func is used by the degraded-mode dag functions to recover lost data.
527 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
528 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
529 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
530 1.1 oster * the other PDAs in the parameter list to determine where within the target
531 1.1 oster * buffer the corresponding data should be xored.
532 1.1 oster *
533 1.3 oster * Recall the basic equation is
534 1.3 oster *
535 1.1 oster * Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256
536 1.1 oster *
537 1.1 oster * so to recover data_j we need
538 1.1 oster *
539 1.1 oster * J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
540 1.1 oster *
541 1.1 oster * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
542 1.1 oster * copying Q into it. Then we need to do a table lookup to convert to solve
543 1.1 oster * data_j /= J
544 1.3 oster *
545 1.3 oster *
546 1.1 oster */
547 1.3 oster int
548 1.3 oster rf_RecoveryQFunc(node)
549 1.3 oster RF_DagNode_t *node;
550 1.3 oster {
551 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
552 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
553 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
554 1.3 oster int i;
555 1.3 oster RF_PhysDiskAddr_t *pda;
556 1.3 oster RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
557 1.3 oster char *srcbuf, *destbuf;
558 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
559 1.3 oster RF_Etimer_t timer;
560 1.3 oster unsigned long coeff;
561 1.3 oster
562 1.3 oster RF_ETIMER_START(timer);
563 1.3 oster /* start by copying Q into the buffer */
564 1.3 oster bcopy(node->params[node->numParams - 3].p, node->results[0],
565 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
566 1.3 oster for (i = 0; i < node->numParams - 4; i += 2) {
567 1.3 oster RF_ASSERT(node->params[i + 1].p != node->results[0]);
568 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
569 1.3 oster srcbuf = (char *) node->params[i + 1].p;
570 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
571 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
572 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
573 1.3 oster /* compute the data unit offset within the column */
574 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
575 1.3 oster rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
576 1.3 oster }
577 1.3 oster /* Do the nasty inversion now */
578 1.3 oster coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol);
579 1.3 oster rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
580 1.3 oster RF_ETIMER_STOP(timer);
581 1.3 oster RF_ETIMER_EVAL(timer);
582 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
583 1.3 oster rf_GenericWakeupFunc(node, 0);
584 1.3 oster return (0);
585 1.3 oster }
586 1.3 oster
587 1.3 oster int
588 1.3 oster rf_RecoveryPQFunc(node)
589 1.3 oster RF_DagNode_t *node;
590 1.1 oster {
591 1.6 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
592 1.6 oster printf("raid%d: Recovery from PQ not implemented.\n",raidPtr->raidid);
593 1.3 oster return (1);
594 1.1 oster }
595 1.1 oster /*
596 1.3 oster Degraded write Q subroutine.
597 1.1 oster Used when P is dead.
598 1.3 oster Large-write style Q computation.
599 1.1 oster Parameters
600 1.1 oster
601 1.1 oster (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
602 1.1 oster
603 1.1 oster We ignore failedPDA.
604 1.1 oster
605 1.1 oster This is a "simple style" recovery func.
606 1.1 oster */
607 1.1 oster
608 1.3 oster void
609 1.3 oster rf_PQ_DegradedWriteQFunc(node)
610 1.3 oster RF_DagNode_t *node;
611 1.3 oster {
612 1.3 oster int np = node->numParams;
613 1.3 oster int d;
614 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
615 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
616 1.3 oster int i;
617 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
618 1.3 oster RF_Etimer_t timer;
619 1.3 oster char *qbuf = node->results[0];
620 1.3 oster char *obuf, *qpbuf;
621 1.3 oster RF_PhysDiskAddr_t *old;
622 1.3 oster unsigned long coeff;
623 1.3 oster int fail_start, j;
624 1.3 oster
625 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
626 1.3 oster fail_start = old->startSector % secPerSU;
627 1.3 oster
628 1.3 oster RF_ETIMER_START(timer);
629 1.3 oster
630 1.3 oster d = (np - 2) / 2;
631 1.3 oster RF_ASSERT(2 * d + 2 == np);
632 1.3 oster
633 1.3 oster for (i = 0; i < d; i++) {
634 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
635 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
636 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
637 1.3 oster /* compute the data unit offset within the column, then add
638 1.3 oster * one */
639 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
640 1.3 oster j = old->startSector % secPerSU;
641 1.3 oster RF_ASSERT(j >= fail_start);
642 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
643 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
644 1.3 oster }
645 1.3 oster
646 1.3 oster RF_ETIMER_STOP(timer);
647 1.3 oster RF_ETIMER_EVAL(timer);
648 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
649 1.3 oster rf_GenericWakeupFunc(node, 0);
650 1.1 oster }
651 1.1 oster
652 1.1 oster
653 1.1 oster
654 1.1 oster
655 1.1 oster /* Q computations */
656 1.1 oster
657 1.1 oster /*
658 1.1 oster coeff - colummn;
659 1.1 oster
660 1.1 oster compute dest ^= qfor[28-coeff][rn[coeff+1] a]
661 1.1 oster
662 1.1 oster on 5-bit basis;
663 1.1 oster length in bytes;
664 1.1 oster */
665 1.1 oster
666 1.3 oster void
667 1.3 oster rf_IncQ(dest, buf, length, coeff)
668 1.3 oster unsigned long *dest;
669 1.3 oster unsigned long *buf;
670 1.3 oster unsigned length;
671 1.3 oster unsigned coeff;
672 1.3 oster {
673 1.3 oster unsigned long a, d, new;
674 1.3 oster unsigned long a1, a2;
675 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
676 1.3 oster unsigned r = rf_rn[coeff + 1];
677 1.1 oster
678 1.1 oster #define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
679 1.1 oster #define INSERT(a,i) (a << (5L*i))
680 1.1 oster
681 1.3 oster length /= 8;
682 1.3 oster /* 13 5 bit quants in a 64 bit word */
683 1.3 oster while (length) {
684 1.3 oster a = *buf++;
685 1.3 oster d = *dest;
686 1.3 oster a1 = EXTRACT(a, 0) ^ r;
687 1.3 oster a2 = EXTRACT(a, 1) ^ r;
688 1.3 oster new = INSERT(a2, 1) | a1;
689 1.3 oster a1 = EXTRACT(a, 2) ^ r;
690 1.3 oster a2 = EXTRACT(a, 3) ^ r;
691 1.3 oster a1 = q[a1];
692 1.3 oster a2 = q[a2];
693 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
694 1.3 oster a1 = EXTRACT(a, 4) ^ r;
695 1.3 oster a2 = EXTRACT(a, 5) ^ r;
696 1.3 oster a1 = q[a1];
697 1.3 oster a2 = q[a2];
698 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
699 1.3 oster a1 = EXTRACT(a, 5) ^ r;
700 1.3 oster a2 = EXTRACT(a, 6) ^ r;
701 1.3 oster a1 = q[a1];
702 1.3 oster a2 = q[a2];
703 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
704 1.1 oster #if RF_LONGSHIFT > 2
705 1.3 oster a1 = EXTRACT(a, 7) ^ r;
706 1.3 oster a2 = EXTRACT(a, 8) ^ r;
707 1.3 oster a1 = q[a1];
708 1.3 oster a2 = q[a2];
709 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
710 1.3 oster a1 = EXTRACT(a, 9) ^ r;
711 1.3 oster a2 = EXTRACT(a, 10) ^ r;
712 1.3 oster a1 = q[a1];
713 1.3 oster a2 = q[a2];
714 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
715 1.3 oster a1 = EXTRACT(a, 11) ^ r;
716 1.3 oster a2 = EXTRACT(a, 12) ^ r;
717 1.3 oster a1 = q[a1];
718 1.3 oster a2 = q[a2];
719 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
720 1.3 oster #endif /* RF_LONGSHIFT > 2 */
721 1.3 oster d ^= new;
722 1.3 oster *dest++ = d;
723 1.3 oster length--;
724 1.3 oster }
725 1.1 oster }
726 1.3 oster /*
727 1.3 oster compute
728 1.1 oster
729 1.1 oster dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
730 1.1 oster
731 1.1 oster on a five bit basis.
732 1.1 oster optimization: compute old ^ new on 64 bit basis.
733 1.1 oster
734 1.1 oster length in bytes.
735 1.1 oster */
736 1.1 oster
737 1.3 oster static void
738 1.3 oster QDelta(
739 1.3 oster char *dest,
740 1.3 oster char *obuf,
741 1.3 oster char *nbuf,
742 1.3 oster unsigned length,
743 1.3 oster unsigned char coeff)
744 1.3 oster {
745 1.3 oster unsigned long a, d, new;
746 1.3 oster unsigned long a1, a2;
747 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
748 1.5 oster unsigned int r = rf_rn[coeff + 1];
749 1.5 oster
750 1.5 oster r = a1 = a2 = new = d = a = 0; /* XXX for now... */
751 1.5 oster q = NULL; /* XXX for now */
752 1.1 oster
753 1.2 oster #ifdef _KERNEL
754 1.3 oster /* PQ in kernel currently not supported because the encoding/decoding
755 1.3 oster * table is not present */
756 1.3 oster bzero(dest, length);
757 1.3 oster #else /* KERNEL */
758 1.3 oster /* this code probably doesn't work and should be rewritten -wvcii */
759 1.3 oster /* 13 5 bit quants in a 64 bit word */
760 1.3 oster length /= 8;
761 1.3 oster while (length) {
762 1.3 oster a = *obuf++; /* XXX need to reorg to avoid cache conflicts */
763 1.3 oster a ^= *nbuf++;
764 1.3 oster d = *dest;
765 1.3 oster a1 = EXTRACT(a, 0) ^ r;
766 1.3 oster a2 = EXTRACT(a, 1) ^ r;
767 1.3 oster a1 = q[a1];
768 1.3 oster a2 = q[a2];
769 1.3 oster new = INSERT(a2, 1) | a1;
770 1.3 oster a1 = EXTRACT(a, 2) ^ r;
771 1.3 oster a2 = EXTRACT(a, 3) ^ r;
772 1.3 oster a1 = q[a1];
773 1.3 oster a2 = q[a2];
774 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
775 1.3 oster a1 = EXTRACT(a, 4) ^ r;
776 1.3 oster a2 = EXTRACT(a, 5) ^ r;
777 1.3 oster a1 = q[a1];
778 1.3 oster a2 = q[a2];
779 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
780 1.3 oster a1 = EXTRACT(a, 5) ^ r;
781 1.3 oster a2 = EXTRACT(a, 6) ^ r;
782 1.3 oster a1 = q[a1];
783 1.3 oster a2 = q[a2];
784 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
785 1.1 oster #if RF_LONGSHIFT > 2
786 1.3 oster a1 = EXTRACT(a, 7) ^ r;
787 1.3 oster a2 = EXTRACT(a, 8) ^ r;
788 1.3 oster a1 = q[a1];
789 1.3 oster a2 = q[a2];
790 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
791 1.3 oster a1 = EXTRACT(a, 9) ^ r;
792 1.3 oster a2 = EXTRACT(a, 10) ^ r;
793 1.3 oster a1 = q[a1];
794 1.3 oster a2 = q[a2];
795 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
796 1.3 oster a1 = EXTRACT(a, 11) ^ r;
797 1.3 oster a2 = EXTRACT(a, 12) ^ r;
798 1.3 oster a1 = q[a1];
799 1.3 oster a2 = q[a2];
800 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
801 1.3 oster #endif /* RF_LONGSHIFT > 2 */
802 1.3 oster d ^= new;
803 1.3 oster *dest++ = d;
804 1.3 oster length--;
805 1.3 oster }
806 1.3 oster #endif /* _KERNEL */
807 1.1 oster }
808 1.1 oster /*
809 1.1 oster recover columns a and b from the given p and q into
810 1.1 oster bufs abuf and bbuf. All bufs are word aligned.
811 1.1 oster Length is in bytes.
812 1.1 oster */
813 1.3 oster
814 1.1 oster
815 1.1 oster /*
816 1.1 oster * XXX
817 1.1 oster *
818 1.1 oster * Everything about this seems wrong.
819 1.1 oster */
820 1.3 oster void
821 1.3 oster rf_PQ_recover(pbuf, qbuf, abuf, bbuf, length, coeff_a, coeff_b)
822 1.3 oster unsigned long *pbuf;
823 1.3 oster unsigned long *qbuf;
824 1.3 oster unsigned long *abuf;
825 1.3 oster unsigned long *bbuf;
826 1.3 oster unsigned length;
827 1.3 oster unsigned coeff_a;
828 1.3 oster unsigned coeff_b;
829 1.3 oster {
830 1.3 oster unsigned long p, q, a, a0, a1;
831 1.3 oster int col = (29 * coeff_a) + coeff_b;
832 1.3 oster unsigned char *q0 = &(rf_qinv[col][0]);
833 1.3 oster
834 1.3 oster length /= 8;
835 1.3 oster while (length) {
836 1.3 oster p = *pbuf++;
837 1.3 oster q = *qbuf++;
838 1.3 oster a0 = EXTRACT(p, 0);
839 1.3 oster a1 = EXTRACT(q, 0);
840 1.3 oster a = q0[a0 << 5 | a1];
841 1.1 oster #define MF(i) \
842 1.1 oster a0 = EXTRACT(p,i); \
843 1.1 oster a1 = EXTRACT(q,i); \
844 1.1 oster a = a | INSERT(q0[a0<<5 | a1],i)
845 1.1 oster
846 1.3 oster MF(1);
847 1.3 oster MF(2);
848 1.3 oster MF(3);
849 1.3 oster MF(4);
850 1.3 oster MF(5);
851 1.3 oster MF(6);
852 1.1 oster #if 0
853 1.3 oster MF(7);
854 1.3 oster MF(8);
855 1.3 oster MF(9);
856 1.3 oster MF(10);
857 1.3 oster MF(11);
858 1.3 oster MF(12);
859 1.3 oster #endif /* 0 */
860 1.3 oster *abuf++ = a;
861 1.3 oster *bbuf++ = a ^ p;
862 1.3 oster length--;
863 1.3 oster }
864 1.1 oster }
865 1.3 oster /*
866 1.1 oster Lost parity and a data column. Recover that data column.
867 1.1 oster Assume col coeff is lost. Let q the contents of Q after
868 1.1 oster all surviving data columns have been q-xored out of it.
869 1.1 oster Then we have the equation
870 1.1 oster
871 1.1 oster q[28-coeff][a_i ^ r_i+1] = q
872 1.1 oster
873 1.3 oster but q is cyclic with period 31.
874 1.1 oster So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
875 1.1 oster q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
876 1.1 oster
877 1.1 oster so a_i = r_{coeff+1} ^ q[3+coeff][q]
878 1.1 oster
879 1.1 oster The routine is passed q buffer and the buffer
880 1.1 oster the data is to be recoverd into. They can be the same.
881 1.1 oster */
882 1.1 oster
883 1.1 oster
884 1.3 oster
885 1.3 oster static void
886 1.3 oster rf_InvertQ(
887 1.3 oster unsigned long *qbuf,
888 1.3 oster unsigned long *abuf,
889 1.3 oster unsigned length,
890 1.3 oster unsigned coeff)
891 1.3 oster {
892 1.3 oster unsigned long a, new;
893 1.3 oster unsigned long a1, a2;
894 1.3 oster unsigned int *q = &(rf_qfor[3 + coeff][0]);
895 1.3 oster unsigned r = rf_rn[coeff + 1];
896 1.3 oster
897 1.3 oster /* 13 5 bit quants in a 64 bit word */
898 1.3 oster length /= 8;
899 1.3 oster while (length) {
900 1.3 oster a = *qbuf++;
901 1.3 oster a1 = EXTRACT(a, 0);
902 1.3 oster a2 = EXTRACT(a, 1);
903 1.3 oster a1 = r ^ q[a1];
904 1.3 oster a2 = r ^ q[a2];
905 1.3 oster new = INSERT(a2, 1) | a1;
906 1.1 oster #define M(i,j) \
907 1.1 oster a1 = EXTRACT(a,i); \
908 1.1 oster a2 = EXTRACT(a,j); \
909 1.1 oster a1 = r ^ q[a1]; \
910 1.1 oster a2 = r ^ q[a2]; \
911 1.1 oster new = new | INSERT(a1,i) | INSERT(a2,j)
912 1.1 oster
913 1.3 oster M(2, 3);
914 1.3 oster M(4, 5);
915 1.3 oster M(5, 6);
916 1.1 oster #if RF_LONGSHIFT > 2
917 1.3 oster M(7, 8);
918 1.3 oster M(9, 10);
919 1.3 oster M(11, 12);
920 1.3 oster #endif /* RF_LONGSHIFT > 2 */
921 1.3 oster *abuf++ = new;
922 1.3 oster length--;
923 1.3 oster }
924 1.1 oster }
925 1.3 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) ||
926 1.3 oster * (RF_INCLUDE_RAID6 > 0) */
927