rf_pq.c revision 1.7 1 1.7 oster /* $NetBSD: rf_pq.c,v 1.7 2000/01/07 03:41:02 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Daniel Stodolsky
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * Code for RAID level 6 (P + Q) disk array architecture.
31 1.1 oster */
32 1.1 oster
33 1.1 oster #include "rf_archs.h"
34 1.1 oster #include "rf_types.h"
35 1.1 oster #include "rf_raid.h"
36 1.1 oster #include "rf_dag.h"
37 1.1 oster #include "rf_dagffrd.h"
38 1.1 oster #include "rf_dagffwr.h"
39 1.1 oster #include "rf_dagdegrd.h"
40 1.1 oster #include "rf_dagdegwr.h"
41 1.1 oster #include "rf_dagutils.h"
42 1.1 oster #include "rf_dagfuncs.h"
43 1.1 oster #include "rf_etimer.h"
44 1.1 oster #include "rf_pqdeg.h"
45 1.1 oster #include "rf_general.h"
46 1.1 oster #include "rf_map.h"
47 1.1 oster #include "rf_pq.h"
48 1.1 oster
49 1.3 oster RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"};
50 1.3 oster RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"};
51 1.1 oster
52 1.3 oster int
53 1.3 oster rf_RegularONPFunc(node)
54 1.3 oster RF_DagNode_t *node;
55 1.1 oster {
56 1.3 oster return (rf_RegularXorFunc(node));
57 1.1 oster }
58 1.1 oster /*
59 1.3 oster same as simpleONQ func, but the coefficient is always 1
60 1.1 oster */
61 1.1 oster
62 1.3 oster int
63 1.3 oster rf_SimpleONPFunc(node)
64 1.3 oster RF_DagNode_t *node;
65 1.1 oster {
66 1.3 oster return (rf_SimpleXorFunc(node));
67 1.1 oster }
68 1.1 oster
69 1.3 oster int
70 1.3 oster rf_RecoveryPFunc(node)
71 1.3 oster RF_DagNode_t *node;
72 1.1 oster {
73 1.3 oster return (rf_RecoveryXorFunc(node));
74 1.1 oster }
75 1.1 oster
76 1.3 oster int
77 1.3 oster rf_RegularPFunc(node)
78 1.3 oster RF_DagNode_t *node;
79 1.1 oster {
80 1.3 oster return (rf_RegularXorFunc(node));
81 1.1 oster }
82 1.1 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
83 1.1 oster
84 1.3 oster static void
85 1.3 oster QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
86 1.3 oster unsigned char coeff);
87 1.3 oster static void
88 1.3 oster rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
89 1.3 oster unsigned length, unsigned coeff);
90 1.3 oster
91 1.3 oster RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"};
92 1.3 oster RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"};
93 1.3 oster RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"};
94 1.3 oster
95 1.3 oster void
96 1.3 oster rf_PQDagSelect(
97 1.3 oster RF_Raid_t * raidPtr,
98 1.3 oster RF_IoType_t type,
99 1.3 oster RF_AccessStripeMap_t * asmap,
100 1.3 oster RF_VoidFuncPtr * createFunc)
101 1.3 oster {
102 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
103 1.3 oster unsigned ndfail = asmap->numDataFailed;
104 1.3 oster unsigned npfail = asmap->numParityFailed;
105 1.3 oster unsigned ntfail = npfail + ndfail;
106 1.3 oster
107 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
108 1.3 oster if (ntfail > 2) {
109 1.3 oster RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
110 1.3 oster /* *infoFunc = */ *createFunc = NULL;
111 1.3 oster return;
112 1.3 oster }
113 1.3 oster /* ok, we can do this I/O */
114 1.3 oster if (type == RF_IO_TYPE_READ) {
115 1.3 oster switch (ndfail) {
116 1.3 oster case 0:
117 1.3 oster /* fault free read */
118 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; /* same as raid 5 */
119 1.3 oster break;
120 1.3 oster case 1:
121 1.3 oster /* lost a single data unit */
122 1.3 oster /* two cases: (1) parity is not lost. do a normal raid
123 1.3 oster * 5 reconstruct read. (2) parity is lost. do a
124 1.3 oster * reconstruct read using "q". */
125 1.3 oster if (ntfail == 2) { /* also lost redundancy */
126 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
127 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateReadDAG;
128 1.3 oster else
129 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateReadDAG;
130 1.3 oster } else {
131 1.3 oster /* P and Q are ok. But is there a failure in
132 1.3 oster * some unaccessed data unit? */
133 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
134 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
135 1.3 oster else
136 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateReadDAG;
137 1.3 oster }
138 1.3 oster break;
139 1.3 oster case 2:
140 1.3 oster /* lost two data units */
141 1.3 oster /* *infoFunc = PQOneTwo; */
142 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
143 1.3 oster break;
144 1.3 oster }
145 1.3 oster return;
146 1.3 oster }
147 1.3 oster /* a write */
148 1.3 oster switch (ntfail) {
149 1.3 oster case 0: /* fault free */
150 1.3 oster if (rf_suppressLocksAndLargeWrites ||
151 1.3 oster (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
152 1.3 oster (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
153 1.3 oster
154 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateSmallWriteDAG;
155 1.3 oster } else {
156 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateLargeWriteDAG;
157 1.3 oster }
158 1.3 oster break;
159 1.3 oster
160 1.3 oster case 1: /* single disk fault */
161 1.3 oster if (npfail == 1) {
162 1.3 oster RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
163 1.3 oster if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like
164 1.3 oster * normal mode raid5
165 1.3 oster * write. */
166 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
167 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
168 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateSmallWriteDAG;
169 1.3 oster else
170 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateLargeWriteDAG;
171 1.3 oster } else {/* parity died, small write only updating Q */
172 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
173 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
174 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateSmallWriteDAG;
175 1.3 oster else
176 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateLargeWriteDAG;
177 1.3 oster }
178 1.3 oster } else { /* data missing. Do a P reconstruct write if
179 1.3 oster * only a single data unit is lost in the
180 1.3 oster * stripe, otherwise a PQ reconstruct write. */
181 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
182 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
183 1.3 oster else
184 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateWriteDAG;
185 1.3 oster }
186 1.3 oster break;
187 1.3 oster
188 1.3 oster case 2: /* two disk faults */
189 1.3 oster switch (npfail) {
190 1.3 oster case 2: /* both p and q dead */
191 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_011_CreateWriteDAG;
192 1.3 oster break;
193 1.3 oster case 1: /* either p or q and dead data */
194 1.3 oster RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
195 1.3 oster RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
196 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
197 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateWriteDAG;
198 1.3 oster else
199 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateWriteDAG;
200 1.3 oster break;
201 1.3 oster case 0: /* double data loss */
202 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
203 1.3 oster break;
204 1.3 oster }
205 1.3 oster break;
206 1.3 oster
207 1.3 oster default: /* more than 2 disk faults */
208 1.3 oster *createFunc = NULL;
209 1.3 oster RF_PANIC();
210 1.3 oster }
211 1.3 oster return;
212 1.3 oster }
213 1.3 oster /*
214 1.3 oster Used as a stop gap info function
215 1.3 oster */
216 1.5 oster #if 0
217 1.3 oster static void
218 1.3 oster PQOne(raidPtr, nSucc, nAnte, asmap)
219 1.3 oster RF_Raid_t *raidPtr;
220 1.3 oster int *nSucc;
221 1.3 oster int *nAnte;
222 1.3 oster RF_AccessStripeMap_t *asmap;
223 1.1 oster {
224 1.3 oster *nSucc = *nAnte = 1;
225 1.1 oster }
226 1.1 oster
227 1.3 oster static void
228 1.3 oster PQOneTwo(raidPtr, nSucc, nAnte, asmap)
229 1.3 oster RF_Raid_t *raidPtr;
230 1.3 oster int *nSucc;
231 1.3 oster int *nAnte;
232 1.3 oster RF_AccessStripeMap_t *asmap;
233 1.3 oster {
234 1.3 oster *nSucc = 1;
235 1.3 oster *nAnte = 2;
236 1.3 oster }
237 1.5 oster #endif
238 1.5 oster
239 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
240 1.1 oster {
241 1.3 oster rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
242 1.3 oster rf_RegularPQFunc, RF_FALSE);
243 1.1 oster }
244 1.1 oster
245 1.3 oster int
246 1.3 oster rf_RegularONQFunc(node)
247 1.3 oster RF_DagNode_t *node;
248 1.3 oster {
249 1.3 oster int np = node->numParams;
250 1.3 oster int d;
251 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
252 1.3 oster int i;
253 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
254 1.3 oster RF_Etimer_t timer;
255 1.3 oster char *qbuf, *qpbuf;
256 1.3 oster char *obuf, *nbuf;
257 1.3 oster RF_PhysDiskAddr_t *old, *new;
258 1.3 oster unsigned long coeff;
259 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
260 1.3 oster
261 1.3 oster RF_ETIMER_START(timer);
262 1.3 oster
263 1.3 oster d = (np - 3) / 4;
264 1.3 oster RF_ASSERT(4 * d + 3 == np);
265 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
266 1.3 oster for (i = 0; i < d; i++) {
267 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
268 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
269 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
270 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
271 1.3 oster RF_ASSERT(new->numSector == old->numSector);
272 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
273 1.3 oster /* the stripe unit within the stripe tells us the coefficient
274 1.3 oster * to use for the multiply. */
275 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
276 1.3 oster /* compute the data unit offset within the column, then add
277 1.3 oster * one */
278 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
279 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
280 1.3 oster QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
281 1.3 oster }
282 1.3 oster
283 1.3 oster RF_ETIMER_STOP(timer);
284 1.3 oster RF_ETIMER_EVAL(timer);
285 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
286 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
287 1.3 oster * I/O in this node */
288 1.3 oster return (0);
289 1.1 oster }
290 1.1 oster /*
291 1.1 oster See the SimpleXORFunc for the difference between a simple and regular func.
292 1.3 oster These Q functions should be used for
293 1.3 oster
294 1.3 oster new q = Q(data,old data,old q)
295 1.1 oster
296 1.3 oster style updates and not for
297 1.1 oster
298 1.1 oster q = ( new data, new data, .... )
299 1.1 oster
300 1.1 oster computations.
301 1.1 oster
302 1.1 oster The simple q takes 2(2d+1)+1 params, where d is the number
303 1.1 oster of stripes written. The order of params is
304 1.1 oster old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
305 1.1 oster [2d] old q pda_0, old q buffer
306 1.1 oster [2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d
307 1.1 oster raidPtr
308 1.1 oster */
309 1.1 oster
310 1.3 oster int
311 1.3 oster rf_SimpleONQFunc(node)
312 1.3 oster RF_DagNode_t *node;
313 1.3 oster {
314 1.3 oster int np = node->numParams;
315 1.3 oster int d;
316 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
317 1.3 oster int i;
318 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
319 1.3 oster RF_Etimer_t timer;
320 1.3 oster char *qbuf;
321 1.3 oster char *obuf, *nbuf;
322 1.3 oster RF_PhysDiskAddr_t *old, *new;
323 1.3 oster unsigned long coeff;
324 1.3 oster
325 1.3 oster RF_ETIMER_START(timer);
326 1.3 oster
327 1.3 oster d = (np - 3) / 4;
328 1.3 oster RF_ASSERT(4 * d + 3 == np);
329 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
330 1.3 oster for (i = 0; i < d; i++) {
331 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
332 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
333 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
334 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
335 1.3 oster RF_ASSERT(new->numSector == old->numSector);
336 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
337 1.3 oster /* the stripe unit within the stripe tells us the coefficient
338 1.3 oster * to use for the multiply. */
339 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
340 1.3 oster /* compute the data unit offset within the column, then add
341 1.3 oster * one */
342 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
343 1.3 oster QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
344 1.3 oster }
345 1.3 oster
346 1.3 oster RF_ETIMER_STOP(timer);
347 1.3 oster RF_ETIMER_EVAL(timer);
348 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
349 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
350 1.3 oster * I/O in this node */
351 1.3 oster return (0);
352 1.1 oster }
353 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
354 1.1 oster {
355 1.3 oster rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
356 1.1 oster }
357 1.1 oster
358 1.5 oster static void RegularQSubr(RF_DagNode_t *node, char *qbuf);
359 1.5 oster
360 1.3 oster static void
361 1.3 oster RegularQSubr(node, qbuf)
362 1.3 oster RF_DagNode_t *node;
363 1.3 oster char *qbuf;
364 1.3 oster {
365 1.3 oster int np = node->numParams;
366 1.3 oster int d;
367 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
368 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
369 1.3 oster int i;
370 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
371 1.3 oster RF_Etimer_t timer;
372 1.3 oster char *obuf, *qpbuf;
373 1.3 oster RF_PhysDiskAddr_t *old;
374 1.3 oster unsigned long coeff;
375 1.3 oster
376 1.3 oster RF_ETIMER_START(timer);
377 1.3 oster
378 1.3 oster d = (np - 1) / 2;
379 1.3 oster RF_ASSERT(2 * d + 1 == np);
380 1.3 oster for (i = 0; i < d; i++) {
381 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
382 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
383 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
384 1.3 oster /* compute the data unit offset within the column, then add
385 1.3 oster * one */
386 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
387 1.3 oster /* the input buffers may not all be aligned with the start of
388 1.3 oster * the stripe. so shift by their sector offset within the
389 1.3 oster * stripe unit */
390 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
391 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
392 1.3 oster }
393 1.3 oster
394 1.3 oster RF_ETIMER_STOP(timer);
395 1.3 oster RF_ETIMER_EVAL(timer);
396 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
397 1.1 oster }
398 1.1 oster /*
399 1.1 oster used in degraded writes.
400 1.1 oster */
401 1.1 oster
402 1.5 oster static void DegrQSubr(RF_DagNode_t *node);
403 1.5 oster
404 1.3 oster static void
405 1.3 oster DegrQSubr(node)
406 1.3 oster RF_DagNode_t *node;
407 1.3 oster {
408 1.3 oster int np = node->numParams;
409 1.3 oster int d;
410 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
411 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
412 1.3 oster int i;
413 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
414 1.3 oster RF_Etimer_t timer;
415 1.3 oster char *qbuf = node->results[1];
416 1.3 oster char *obuf, *qpbuf;
417 1.3 oster RF_PhysDiskAddr_t *old;
418 1.3 oster unsigned long coeff;
419 1.3 oster unsigned fail_start;
420 1.3 oster int j;
421 1.3 oster
422 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
423 1.3 oster fail_start = old->startSector % secPerSU;
424 1.3 oster
425 1.3 oster RF_ETIMER_START(timer);
426 1.3 oster
427 1.3 oster d = (np - 2) / 2;
428 1.3 oster RF_ASSERT(2 * d + 2 == np);
429 1.3 oster for (i = 0; i < d; i++) {
430 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
431 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
432 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
433 1.3 oster /* compute the data unit offset within the column, then add
434 1.3 oster * one */
435 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
436 1.3 oster /* the input buffers may not all be aligned with the start of
437 1.3 oster * the stripe. so shift by their sector offset within the
438 1.3 oster * stripe unit */
439 1.3 oster j = old->startSector % secPerSU;
440 1.3 oster RF_ASSERT(j >= fail_start);
441 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
442 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
443 1.3 oster }
444 1.3 oster
445 1.3 oster RF_ETIMER_STOP(timer);
446 1.3 oster RF_ETIMER_EVAL(timer);
447 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
448 1.1 oster }
449 1.1 oster /*
450 1.1 oster Called by large write code to compute the new parity and the new q.
451 1.3 oster
452 1.1 oster structure of the params:
453 1.1 oster
454 1.1 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
455 1.3 oster raidPtr
456 1.1 oster
457 1.1 oster for a total of 2d+1 arguments.
458 1.1 oster The result buffers results[0], results[1] are the buffers for the p and q,
459 1.1 oster respectively.
460 1.1 oster
461 1.1 oster We compute Q first, then compute P. The P calculation may try to reuse
462 1.1 oster one of the input buffers for its output, so if we computed P first, we would
463 1.1 oster corrupt the input for the q calculation.
464 1.1 oster */
465 1.1 oster
466 1.3 oster int
467 1.3 oster rf_RegularPQFunc(node)
468 1.3 oster RF_DagNode_t *node;
469 1.3 oster {
470 1.3 oster RegularQSubr(node, node->results[1]);
471 1.3 oster return (rf_RegularXorFunc(node)); /* does the wakeup */
472 1.3 oster }
473 1.3 oster
474 1.3 oster int
475 1.3 oster rf_RegularQFunc(node)
476 1.3 oster RF_DagNode_t *node;
477 1.3 oster {
478 1.3 oster /* Almost ... adjust Qsubr args */
479 1.3 oster RegularQSubr(node, node->results[0]);
480 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
481 1.3 oster * I/O in this node */
482 1.3 oster return (0);
483 1.1 oster }
484 1.1 oster /*
485 1.1 oster Called by singly degraded write code to compute the new parity and the new q.
486 1.3 oster
487 1.1 oster structure of the params:
488 1.1 oster
489 1.3 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
490 1.3 oster failedPDA raidPtr
491 1.1 oster
492 1.1 oster for a total of 2d+2 arguments.
493 1.1 oster The result buffers results[0], results[1] are the buffers for the parity and q,
494 1.1 oster respectively.
495 1.1 oster
496 1.1 oster We compute Q first, then compute parity. The parity calculation may try to reuse
497 1.1 oster one of the input buffers for its output, so if we computed parity first, we would
498 1.1 oster corrupt the input for the q calculation.
499 1.1 oster
500 1.1 oster We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
501 1.1 oster */
502 1.1 oster
503 1.3 oster void
504 1.3 oster rf_Degraded_100_PQFunc(node)
505 1.3 oster RF_DagNode_t *node;
506 1.3 oster {
507 1.3 oster int np = node->numParams;
508 1.3 oster
509 1.3 oster RF_ASSERT(np >= 2);
510 1.3 oster DegrQSubr(node);
511 1.3 oster rf_RecoveryXorFunc(node);
512 1.1 oster }
513 1.1 oster
514 1.1 oster
515 1.1 oster /*
516 1.1 oster The two below are used when reading a stripe with a single lost data unit.
517 1.1 oster The parameters are
518 1.1 oster
519 1.1 oster pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
520 1.1 oster
521 1.1 oster and results[0] contains the data buffer. Which is originally zero-filled.
522 1.3 oster
523 1.1 oster */
524 1.1 oster
525 1.1 oster /* this Q func is used by the degraded-mode dag functions to recover lost data.
526 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
527 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
528 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
529 1.1 oster * the other PDAs in the parameter list to determine where within the target
530 1.1 oster * buffer the corresponding data should be xored.
531 1.1 oster *
532 1.3 oster * Recall the basic equation is
533 1.3 oster *
534 1.1 oster * Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256
535 1.1 oster *
536 1.1 oster * so to recover data_j we need
537 1.1 oster *
538 1.1 oster * J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
539 1.1 oster *
540 1.1 oster * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
541 1.1 oster * copying Q into it. Then we need to do a table lookup to convert to solve
542 1.1 oster * data_j /= J
543 1.3 oster *
544 1.3 oster *
545 1.1 oster */
546 1.3 oster int
547 1.3 oster rf_RecoveryQFunc(node)
548 1.3 oster RF_DagNode_t *node;
549 1.3 oster {
550 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
551 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
552 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
553 1.3 oster int i;
554 1.3 oster RF_PhysDiskAddr_t *pda;
555 1.3 oster RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
556 1.3 oster char *srcbuf, *destbuf;
557 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
558 1.3 oster RF_Etimer_t timer;
559 1.3 oster unsigned long coeff;
560 1.3 oster
561 1.3 oster RF_ETIMER_START(timer);
562 1.3 oster /* start by copying Q into the buffer */
563 1.3 oster bcopy(node->params[node->numParams - 3].p, node->results[0],
564 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
565 1.3 oster for (i = 0; i < node->numParams - 4; i += 2) {
566 1.3 oster RF_ASSERT(node->params[i + 1].p != node->results[0]);
567 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
568 1.3 oster srcbuf = (char *) node->params[i + 1].p;
569 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
570 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
571 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
572 1.3 oster /* compute the data unit offset within the column */
573 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
574 1.3 oster rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
575 1.3 oster }
576 1.3 oster /* Do the nasty inversion now */
577 1.3 oster coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol);
578 1.3 oster rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
579 1.3 oster RF_ETIMER_STOP(timer);
580 1.3 oster RF_ETIMER_EVAL(timer);
581 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
582 1.3 oster rf_GenericWakeupFunc(node, 0);
583 1.3 oster return (0);
584 1.3 oster }
585 1.3 oster
586 1.3 oster int
587 1.3 oster rf_RecoveryPQFunc(node)
588 1.3 oster RF_DagNode_t *node;
589 1.1 oster {
590 1.6 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
591 1.6 oster printf("raid%d: Recovery from PQ not implemented.\n",raidPtr->raidid);
592 1.3 oster return (1);
593 1.1 oster }
594 1.1 oster /*
595 1.3 oster Degraded write Q subroutine.
596 1.1 oster Used when P is dead.
597 1.3 oster Large-write style Q computation.
598 1.1 oster Parameters
599 1.1 oster
600 1.1 oster (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
601 1.1 oster
602 1.1 oster We ignore failedPDA.
603 1.1 oster
604 1.1 oster This is a "simple style" recovery func.
605 1.1 oster */
606 1.1 oster
607 1.3 oster void
608 1.3 oster rf_PQ_DegradedWriteQFunc(node)
609 1.3 oster RF_DagNode_t *node;
610 1.3 oster {
611 1.3 oster int np = node->numParams;
612 1.3 oster int d;
613 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
614 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
615 1.3 oster int i;
616 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
617 1.3 oster RF_Etimer_t timer;
618 1.3 oster char *qbuf = node->results[0];
619 1.3 oster char *obuf, *qpbuf;
620 1.3 oster RF_PhysDiskAddr_t *old;
621 1.3 oster unsigned long coeff;
622 1.3 oster int fail_start, j;
623 1.3 oster
624 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
625 1.3 oster fail_start = old->startSector % secPerSU;
626 1.3 oster
627 1.3 oster RF_ETIMER_START(timer);
628 1.3 oster
629 1.3 oster d = (np - 2) / 2;
630 1.3 oster RF_ASSERT(2 * d + 2 == np);
631 1.3 oster
632 1.3 oster for (i = 0; i < d; i++) {
633 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
634 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
635 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
636 1.3 oster /* compute the data unit offset within the column, then add
637 1.3 oster * one */
638 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
639 1.3 oster j = old->startSector % secPerSU;
640 1.3 oster RF_ASSERT(j >= fail_start);
641 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
642 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
643 1.3 oster }
644 1.3 oster
645 1.3 oster RF_ETIMER_STOP(timer);
646 1.3 oster RF_ETIMER_EVAL(timer);
647 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
648 1.3 oster rf_GenericWakeupFunc(node, 0);
649 1.1 oster }
650 1.1 oster
651 1.1 oster
652 1.1 oster
653 1.1 oster
654 1.1 oster /* Q computations */
655 1.1 oster
656 1.1 oster /*
657 1.1 oster coeff - colummn;
658 1.1 oster
659 1.1 oster compute dest ^= qfor[28-coeff][rn[coeff+1] a]
660 1.1 oster
661 1.1 oster on 5-bit basis;
662 1.1 oster length in bytes;
663 1.1 oster */
664 1.1 oster
665 1.3 oster void
666 1.3 oster rf_IncQ(dest, buf, length, coeff)
667 1.3 oster unsigned long *dest;
668 1.3 oster unsigned long *buf;
669 1.3 oster unsigned length;
670 1.3 oster unsigned coeff;
671 1.3 oster {
672 1.3 oster unsigned long a, d, new;
673 1.3 oster unsigned long a1, a2;
674 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
675 1.3 oster unsigned r = rf_rn[coeff + 1];
676 1.1 oster
677 1.1 oster #define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
678 1.1 oster #define INSERT(a,i) (a << (5L*i))
679 1.1 oster
680 1.3 oster length /= 8;
681 1.3 oster /* 13 5 bit quants in a 64 bit word */
682 1.3 oster while (length) {
683 1.3 oster a = *buf++;
684 1.3 oster d = *dest;
685 1.3 oster a1 = EXTRACT(a, 0) ^ r;
686 1.3 oster a2 = EXTRACT(a, 1) ^ r;
687 1.3 oster new = INSERT(a2, 1) | a1;
688 1.3 oster a1 = EXTRACT(a, 2) ^ r;
689 1.3 oster a2 = EXTRACT(a, 3) ^ r;
690 1.3 oster a1 = q[a1];
691 1.3 oster a2 = q[a2];
692 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
693 1.3 oster a1 = EXTRACT(a, 4) ^ r;
694 1.3 oster a2 = EXTRACT(a, 5) ^ r;
695 1.3 oster a1 = q[a1];
696 1.3 oster a2 = q[a2];
697 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
698 1.3 oster a1 = EXTRACT(a, 5) ^ r;
699 1.3 oster a2 = EXTRACT(a, 6) ^ r;
700 1.3 oster a1 = q[a1];
701 1.3 oster a2 = q[a2];
702 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
703 1.1 oster #if RF_LONGSHIFT > 2
704 1.3 oster a1 = EXTRACT(a, 7) ^ r;
705 1.3 oster a2 = EXTRACT(a, 8) ^ r;
706 1.3 oster a1 = q[a1];
707 1.3 oster a2 = q[a2];
708 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
709 1.3 oster a1 = EXTRACT(a, 9) ^ r;
710 1.3 oster a2 = EXTRACT(a, 10) ^ r;
711 1.3 oster a1 = q[a1];
712 1.3 oster a2 = q[a2];
713 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
714 1.3 oster a1 = EXTRACT(a, 11) ^ r;
715 1.3 oster a2 = EXTRACT(a, 12) ^ r;
716 1.3 oster a1 = q[a1];
717 1.3 oster a2 = q[a2];
718 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
719 1.3 oster #endif /* RF_LONGSHIFT > 2 */
720 1.3 oster d ^= new;
721 1.3 oster *dest++ = d;
722 1.3 oster length--;
723 1.3 oster }
724 1.1 oster }
725 1.3 oster /*
726 1.3 oster compute
727 1.1 oster
728 1.1 oster dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
729 1.1 oster
730 1.1 oster on a five bit basis.
731 1.1 oster optimization: compute old ^ new on 64 bit basis.
732 1.1 oster
733 1.1 oster length in bytes.
734 1.1 oster */
735 1.1 oster
736 1.3 oster static void
737 1.3 oster QDelta(
738 1.3 oster char *dest,
739 1.3 oster char *obuf,
740 1.3 oster char *nbuf,
741 1.3 oster unsigned length,
742 1.3 oster unsigned char coeff)
743 1.3 oster {
744 1.3 oster unsigned long a, d, new;
745 1.3 oster unsigned long a1, a2;
746 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
747 1.5 oster unsigned int r = rf_rn[coeff + 1];
748 1.5 oster
749 1.5 oster r = a1 = a2 = new = d = a = 0; /* XXX for now... */
750 1.5 oster q = NULL; /* XXX for now */
751 1.1 oster
752 1.2 oster #ifdef _KERNEL
753 1.3 oster /* PQ in kernel currently not supported because the encoding/decoding
754 1.3 oster * table is not present */
755 1.3 oster bzero(dest, length);
756 1.3 oster #else /* KERNEL */
757 1.3 oster /* this code probably doesn't work and should be rewritten -wvcii */
758 1.3 oster /* 13 5 bit quants in a 64 bit word */
759 1.3 oster length /= 8;
760 1.3 oster while (length) {
761 1.3 oster a = *obuf++; /* XXX need to reorg to avoid cache conflicts */
762 1.3 oster a ^= *nbuf++;
763 1.3 oster d = *dest;
764 1.3 oster a1 = EXTRACT(a, 0) ^ r;
765 1.3 oster a2 = EXTRACT(a, 1) ^ r;
766 1.3 oster a1 = q[a1];
767 1.3 oster a2 = q[a2];
768 1.3 oster new = INSERT(a2, 1) | a1;
769 1.3 oster a1 = EXTRACT(a, 2) ^ r;
770 1.3 oster a2 = EXTRACT(a, 3) ^ r;
771 1.3 oster a1 = q[a1];
772 1.3 oster a2 = q[a2];
773 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
774 1.3 oster a1 = EXTRACT(a, 4) ^ r;
775 1.3 oster a2 = EXTRACT(a, 5) ^ r;
776 1.3 oster a1 = q[a1];
777 1.3 oster a2 = q[a2];
778 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
779 1.3 oster a1 = EXTRACT(a, 5) ^ r;
780 1.3 oster a2 = EXTRACT(a, 6) ^ r;
781 1.3 oster a1 = q[a1];
782 1.3 oster a2 = q[a2];
783 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
784 1.1 oster #if RF_LONGSHIFT > 2
785 1.3 oster a1 = EXTRACT(a, 7) ^ r;
786 1.3 oster a2 = EXTRACT(a, 8) ^ r;
787 1.3 oster a1 = q[a1];
788 1.3 oster a2 = q[a2];
789 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
790 1.3 oster a1 = EXTRACT(a, 9) ^ r;
791 1.3 oster a2 = EXTRACT(a, 10) ^ r;
792 1.3 oster a1 = q[a1];
793 1.3 oster a2 = q[a2];
794 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
795 1.3 oster a1 = EXTRACT(a, 11) ^ r;
796 1.3 oster a2 = EXTRACT(a, 12) ^ r;
797 1.3 oster a1 = q[a1];
798 1.3 oster a2 = q[a2];
799 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
800 1.3 oster #endif /* RF_LONGSHIFT > 2 */
801 1.3 oster d ^= new;
802 1.3 oster *dest++ = d;
803 1.3 oster length--;
804 1.3 oster }
805 1.3 oster #endif /* _KERNEL */
806 1.1 oster }
807 1.1 oster /*
808 1.1 oster recover columns a and b from the given p and q into
809 1.1 oster bufs abuf and bbuf. All bufs are word aligned.
810 1.1 oster Length is in bytes.
811 1.1 oster */
812 1.3 oster
813 1.1 oster
814 1.1 oster /*
815 1.1 oster * XXX
816 1.1 oster *
817 1.1 oster * Everything about this seems wrong.
818 1.1 oster */
819 1.3 oster void
820 1.3 oster rf_PQ_recover(pbuf, qbuf, abuf, bbuf, length, coeff_a, coeff_b)
821 1.3 oster unsigned long *pbuf;
822 1.3 oster unsigned long *qbuf;
823 1.3 oster unsigned long *abuf;
824 1.3 oster unsigned long *bbuf;
825 1.3 oster unsigned length;
826 1.3 oster unsigned coeff_a;
827 1.3 oster unsigned coeff_b;
828 1.3 oster {
829 1.3 oster unsigned long p, q, a, a0, a1;
830 1.3 oster int col = (29 * coeff_a) + coeff_b;
831 1.3 oster unsigned char *q0 = &(rf_qinv[col][0]);
832 1.3 oster
833 1.3 oster length /= 8;
834 1.3 oster while (length) {
835 1.3 oster p = *pbuf++;
836 1.3 oster q = *qbuf++;
837 1.3 oster a0 = EXTRACT(p, 0);
838 1.3 oster a1 = EXTRACT(q, 0);
839 1.3 oster a = q0[a0 << 5 | a1];
840 1.1 oster #define MF(i) \
841 1.1 oster a0 = EXTRACT(p,i); \
842 1.1 oster a1 = EXTRACT(q,i); \
843 1.1 oster a = a | INSERT(q0[a0<<5 | a1],i)
844 1.1 oster
845 1.3 oster MF(1);
846 1.3 oster MF(2);
847 1.3 oster MF(3);
848 1.3 oster MF(4);
849 1.3 oster MF(5);
850 1.3 oster MF(6);
851 1.1 oster #if 0
852 1.3 oster MF(7);
853 1.3 oster MF(8);
854 1.3 oster MF(9);
855 1.3 oster MF(10);
856 1.3 oster MF(11);
857 1.3 oster MF(12);
858 1.3 oster #endif /* 0 */
859 1.3 oster *abuf++ = a;
860 1.3 oster *bbuf++ = a ^ p;
861 1.3 oster length--;
862 1.3 oster }
863 1.1 oster }
864 1.3 oster /*
865 1.1 oster Lost parity and a data column. Recover that data column.
866 1.1 oster Assume col coeff is lost. Let q the contents of Q after
867 1.1 oster all surviving data columns have been q-xored out of it.
868 1.1 oster Then we have the equation
869 1.1 oster
870 1.1 oster q[28-coeff][a_i ^ r_i+1] = q
871 1.1 oster
872 1.3 oster but q is cyclic with period 31.
873 1.1 oster So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
874 1.1 oster q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
875 1.1 oster
876 1.1 oster so a_i = r_{coeff+1} ^ q[3+coeff][q]
877 1.1 oster
878 1.1 oster The routine is passed q buffer and the buffer
879 1.1 oster the data is to be recoverd into. They can be the same.
880 1.1 oster */
881 1.1 oster
882 1.1 oster
883 1.3 oster
884 1.3 oster static void
885 1.3 oster rf_InvertQ(
886 1.3 oster unsigned long *qbuf,
887 1.3 oster unsigned long *abuf,
888 1.3 oster unsigned length,
889 1.3 oster unsigned coeff)
890 1.3 oster {
891 1.3 oster unsigned long a, new;
892 1.3 oster unsigned long a1, a2;
893 1.3 oster unsigned int *q = &(rf_qfor[3 + coeff][0]);
894 1.3 oster unsigned r = rf_rn[coeff + 1];
895 1.3 oster
896 1.3 oster /* 13 5 bit quants in a 64 bit word */
897 1.3 oster length /= 8;
898 1.3 oster while (length) {
899 1.3 oster a = *qbuf++;
900 1.3 oster a1 = EXTRACT(a, 0);
901 1.3 oster a2 = EXTRACT(a, 1);
902 1.3 oster a1 = r ^ q[a1];
903 1.3 oster a2 = r ^ q[a2];
904 1.3 oster new = INSERT(a2, 1) | a1;
905 1.1 oster #define M(i,j) \
906 1.1 oster a1 = EXTRACT(a,i); \
907 1.1 oster a2 = EXTRACT(a,j); \
908 1.1 oster a1 = r ^ q[a1]; \
909 1.1 oster a2 = r ^ q[a2]; \
910 1.1 oster new = new | INSERT(a1,i) | INSERT(a2,j)
911 1.1 oster
912 1.3 oster M(2, 3);
913 1.3 oster M(4, 5);
914 1.3 oster M(5, 6);
915 1.1 oster #if RF_LONGSHIFT > 2
916 1.3 oster M(7, 8);
917 1.3 oster M(9, 10);
918 1.3 oster M(11, 12);
919 1.3 oster #endif /* RF_LONGSHIFT > 2 */
920 1.3 oster *abuf++ = new;
921 1.3 oster length--;
922 1.3 oster }
923 1.1 oster }
924 1.3 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) ||
925 1.3 oster * (RF_INCLUDE_RAID6 > 0) */
926