rf_pq.c revision 1.9 1 1.9 thorpej /* $NetBSD: rf_pq.c,v 1.9 2001/07/18 06:45:34 thorpej Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Daniel Stodolsky
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * Code for RAID level 6 (P + Q) disk array architecture.
31 1.1 oster */
32 1.1 oster
33 1.1 oster #include "rf_archs.h"
34 1.8 oster
35 1.8 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
36 1.8 oster
37 1.1 oster #include "rf_types.h"
38 1.1 oster #include "rf_raid.h"
39 1.1 oster #include "rf_dag.h"
40 1.1 oster #include "rf_dagffrd.h"
41 1.1 oster #include "rf_dagffwr.h"
42 1.1 oster #include "rf_dagdegrd.h"
43 1.1 oster #include "rf_dagdegwr.h"
44 1.1 oster #include "rf_dagutils.h"
45 1.1 oster #include "rf_dagfuncs.h"
46 1.1 oster #include "rf_etimer.h"
47 1.1 oster #include "rf_pqdeg.h"
48 1.1 oster #include "rf_general.h"
49 1.1 oster #include "rf_map.h"
50 1.1 oster #include "rf_pq.h"
51 1.1 oster
52 1.3 oster RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"};
53 1.3 oster RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"};
54 1.1 oster
55 1.3 oster int
56 1.3 oster rf_RegularONPFunc(node)
57 1.3 oster RF_DagNode_t *node;
58 1.1 oster {
59 1.3 oster return (rf_RegularXorFunc(node));
60 1.1 oster }
61 1.1 oster /*
62 1.3 oster same as simpleONQ func, but the coefficient is always 1
63 1.1 oster */
64 1.1 oster
65 1.3 oster int
66 1.3 oster rf_SimpleONPFunc(node)
67 1.3 oster RF_DagNode_t *node;
68 1.1 oster {
69 1.3 oster return (rf_SimpleXorFunc(node));
70 1.1 oster }
71 1.1 oster
72 1.3 oster int
73 1.3 oster rf_RecoveryPFunc(node)
74 1.3 oster RF_DagNode_t *node;
75 1.1 oster {
76 1.3 oster return (rf_RecoveryXorFunc(node));
77 1.1 oster }
78 1.1 oster
79 1.3 oster int
80 1.3 oster rf_RegularPFunc(node)
81 1.3 oster RF_DagNode_t *node;
82 1.1 oster {
83 1.3 oster return (rf_RegularXorFunc(node));
84 1.1 oster }
85 1.8 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
86 1.1 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
87 1.1 oster
88 1.3 oster static void
89 1.3 oster QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
90 1.3 oster unsigned char coeff);
91 1.3 oster static void
92 1.3 oster rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
93 1.3 oster unsigned length, unsigned coeff);
94 1.3 oster
95 1.3 oster RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"};
96 1.3 oster RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"};
97 1.3 oster RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"};
98 1.3 oster
99 1.3 oster void
100 1.3 oster rf_PQDagSelect(
101 1.3 oster RF_Raid_t * raidPtr,
102 1.3 oster RF_IoType_t type,
103 1.3 oster RF_AccessStripeMap_t * asmap,
104 1.3 oster RF_VoidFuncPtr * createFunc)
105 1.3 oster {
106 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
107 1.3 oster unsigned ndfail = asmap->numDataFailed;
108 1.3 oster unsigned npfail = asmap->numParityFailed;
109 1.3 oster unsigned ntfail = npfail + ndfail;
110 1.3 oster
111 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
112 1.3 oster if (ntfail > 2) {
113 1.3 oster RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
114 1.3 oster /* *infoFunc = */ *createFunc = NULL;
115 1.3 oster return;
116 1.3 oster }
117 1.3 oster /* ok, we can do this I/O */
118 1.3 oster if (type == RF_IO_TYPE_READ) {
119 1.3 oster switch (ndfail) {
120 1.3 oster case 0:
121 1.3 oster /* fault free read */
122 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; /* same as raid 5 */
123 1.3 oster break;
124 1.3 oster case 1:
125 1.3 oster /* lost a single data unit */
126 1.3 oster /* two cases: (1) parity is not lost. do a normal raid
127 1.3 oster * 5 reconstruct read. (2) parity is lost. do a
128 1.3 oster * reconstruct read using "q". */
129 1.3 oster if (ntfail == 2) { /* also lost redundancy */
130 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
131 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateReadDAG;
132 1.3 oster else
133 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateReadDAG;
134 1.3 oster } else {
135 1.3 oster /* P and Q are ok. But is there a failure in
136 1.3 oster * some unaccessed data unit? */
137 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
138 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
139 1.3 oster else
140 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateReadDAG;
141 1.3 oster }
142 1.3 oster break;
143 1.3 oster case 2:
144 1.3 oster /* lost two data units */
145 1.3 oster /* *infoFunc = PQOneTwo; */
146 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
147 1.3 oster break;
148 1.3 oster }
149 1.3 oster return;
150 1.3 oster }
151 1.3 oster /* a write */
152 1.3 oster switch (ntfail) {
153 1.3 oster case 0: /* fault free */
154 1.3 oster if (rf_suppressLocksAndLargeWrites ||
155 1.3 oster (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
156 1.3 oster (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
157 1.3 oster
158 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateSmallWriteDAG;
159 1.3 oster } else {
160 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQCreateLargeWriteDAG;
161 1.3 oster }
162 1.3 oster break;
163 1.3 oster
164 1.3 oster case 1: /* single disk fault */
165 1.3 oster if (npfail == 1) {
166 1.3 oster RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
167 1.3 oster if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like
168 1.3 oster * normal mode raid5
169 1.3 oster * write. */
170 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
171 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
172 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateSmallWriteDAG;
173 1.3 oster else
174 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateLargeWriteDAG;
175 1.3 oster } else {/* parity died, small write only updating Q */
176 1.3 oster if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
177 1.3 oster || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
178 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateSmallWriteDAG;
179 1.3 oster else
180 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateLargeWriteDAG;
181 1.3 oster }
182 1.3 oster } else { /* data missing. Do a P reconstruct write if
183 1.3 oster * only a single data unit is lost in the
184 1.3 oster * stripe, otherwise a PQ reconstruct write. */
185 1.3 oster if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
186 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
187 1.3 oster else
188 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateWriteDAG;
189 1.3 oster }
190 1.3 oster break;
191 1.3 oster
192 1.3 oster case 2: /* two disk faults */
193 1.3 oster switch (npfail) {
194 1.3 oster case 2: /* both p and q dead */
195 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_011_CreateWriteDAG;
196 1.3 oster break;
197 1.3 oster case 1: /* either p or q and dead data */
198 1.3 oster RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
199 1.3 oster RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
200 1.3 oster if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
201 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateWriteDAG;
202 1.3 oster else
203 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateWriteDAG;
204 1.3 oster break;
205 1.3 oster case 0: /* double data loss */
206 1.5 oster *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
207 1.3 oster break;
208 1.3 oster }
209 1.3 oster break;
210 1.3 oster
211 1.3 oster default: /* more than 2 disk faults */
212 1.3 oster *createFunc = NULL;
213 1.3 oster RF_PANIC();
214 1.3 oster }
215 1.3 oster return;
216 1.3 oster }
217 1.3 oster /*
218 1.3 oster Used as a stop gap info function
219 1.3 oster */
220 1.5 oster #if 0
221 1.3 oster static void
222 1.3 oster PQOne(raidPtr, nSucc, nAnte, asmap)
223 1.3 oster RF_Raid_t *raidPtr;
224 1.3 oster int *nSucc;
225 1.3 oster int *nAnte;
226 1.3 oster RF_AccessStripeMap_t *asmap;
227 1.1 oster {
228 1.3 oster *nSucc = *nAnte = 1;
229 1.1 oster }
230 1.1 oster
231 1.3 oster static void
232 1.3 oster PQOneTwo(raidPtr, nSucc, nAnte, asmap)
233 1.3 oster RF_Raid_t *raidPtr;
234 1.3 oster int *nSucc;
235 1.3 oster int *nAnte;
236 1.3 oster RF_AccessStripeMap_t *asmap;
237 1.3 oster {
238 1.3 oster *nSucc = 1;
239 1.3 oster *nAnte = 2;
240 1.3 oster }
241 1.5 oster #endif
242 1.5 oster
243 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
244 1.1 oster {
245 1.3 oster rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
246 1.3 oster rf_RegularPQFunc, RF_FALSE);
247 1.1 oster }
248 1.1 oster
249 1.3 oster int
250 1.3 oster rf_RegularONQFunc(node)
251 1.3 oster RF_DagNode_t *node;
252 1.3 oster {
253 1.3 oster int np = node->numParams;
254 1.3 oster int d;
255 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
256 1.3 oster int i;
257 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
258 1.3 oster RF_Etimer_t timer;
259 1.3 oster char *qbuf, *qpbuf;
260 1.3 oster char *obuf, *nbuf;
261 1.3 oster RF_PhysDiskAddr_t *old, *new;
262 1.3 oster unsigned long coeff;
263 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
264 1.3 oster
265 1.3 oster RF_ETIMER_START(timer);
266 1.3 oster
267 1.3 oster d = (np - 3) / 4;
268 1.3 oster RF_ASSERT(4 * d + 3 == np);
269 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
270 1.3 oster for (i = 0; i < d; i++) {
271 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
272 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
273 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
274 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
275 1.3 oster RF_ASSERT(new->numSector == old->numSector);
276 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
277 1.3 oster /* the stripe unit within the stripe tells us the coefficient
278 1.3 oster * to use for the multiply. */
279 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
280 1.3 oster /* compute the data unit offset within the column, then add
281 1.3 oster * one */
282 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
283 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
284 1.3 oster QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
285 1.3 oster }
286 1.3 oster
287 1.3 oster RF_ETIMER_STOP(timer);
288 1.3 oster RF_ETIMER_EVAL(timer);
289 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
290 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
291 1.3 oster * I/O in this node */
292 1.3 oster return (0);
293 1.1 oster }
294 1.1 oster /*
295 1.1 oster See the SimpleXORFunc for the difference between a simple and regular func.
296 1.3 oster These Q functions should be used for
297 1.3 oster
298 1.3 oster new q = Q(data,old data,old q)
299 1.1 oster
300 1.3 oster style updates and not for
301 1.1 oster
302 1.1 oster q = ( new data, new data, .... )
303 1.1 oster
304 1.1 oster computations.
305 1.1 oster
306 1.1 oster The simple q takes 2(2d+1)+1 params, where d is the number
307 1.1 oster of stripes written. The order of params is
308 1.1 oster old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
309 1.1 oster [2d] old q pda_0, old q buffer
310 1.1 oster [2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d
311 1.1 oster raidPtr
312 1.1 oster */
313 1.1 oster
314 1.3 oster int
315 1.3 oster rf_SimpleONQFunc(node)
316 1.3 oster RF_DagNode_t *node;
317 1.3 oster {
318 1.3 oster int np = node->numParams;
319 1.3 oster int d;
320 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
321 1.3 oster int i;
322 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
323 1.3 oster RF_Etimer_t timer;
324 1.3 oster char *qbuf;
325 1.3 oster char *obuf, *nbuf;
326 1.3 oster RF_PhysDiskAddr_t *old, *new;
327 1.3 oster unsigned long coeff;
328 1.3 oster
329 1.3 oster RF_ETIMER_START(timer);
330 1.3 oster
331 1.3 oster d = (np - 3) / 4;
332 1.3 oster RF_ASSERT(4 * d + 3 == np);
333 1.3 oster qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
334 1.3 oster for (i = 0; i < d; i++) {
335 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
336 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
337 1.3 oster new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
338 1.3 oster nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
339 1.3 oster RF_ASSERT(new->numSector == old->numSector);
340 1.3 oster RF_ASSERT(new->raidAddress == old->raidAddress);
341 1.3 oster /* the stripe unit within the stripe tells us the coefficient
342 1.3 oster * to use for the multiply. */
343 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
344 1.3 oster /* compute the data unit offset within the column, then add
345 1.3 oster * one */
346 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
347 1.3 oster QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
348 1.3 oster }
349 1.3 oster
350 1.3 oster RF_ETIMER_STOP(timer);
351 1.3 oster RF_ETIMER_EVAL(timer);
352 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
353 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
354 1.3 oster * I/O in this node */
355 1.3 oster return (0);
356 1.1 oster }
357 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
358 1.1 oster {
359 1.3 oster rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
360 1.1 oster }
361 1.1 oster
362 1.5 oster static void RegularQSubr(RF_DagNode_t *node, char *qbuf);
363 1.5 oster
364 1.3 oster static void
365 1.3 oster RegularQSubr(node, qbuf)
366 1.3 oster RF_DagNode_t *node;
367 1.3 oster char *qbuf;
368 1.3 oster {
369 1.3 oster int np = node->numParams;
370 1.3 oster int d;
371 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
372 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
373 1.3 oster int i;
374 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
375 1.3 oster RF_Etimer_t timer;
376 1.3 oster char *obuf, *qpbuf;
377 1.3 oster RF_PhysDiskAddr_t *old;
378 1.3 oster unsigned long coeff;
379 1.3 oster
380 1.3 oster RF_ETIMER_START(timer);
381 1.3 oster
382 1.3 oster d = (np - 1) / 2;
383 1.3 oster RF_ASSERT(2 * d + 1 == np);
384 1.3 oster for (i = 0; i < d; i++) {
385 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
386 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
387 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
388 1.3 oster /* compute the data unit offset within the column, then add
389 1.3 oster * one */
390 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
391 1.3 oster /* the input buffers may not all be aligned with the start of
392 1.3 oster * the stripe. so shift by their sector offset within the
393 1.3 oster * stripe unit */
394 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
395 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
396 1.3 oster }
397 1.3 oster
398 1.3 oster RF_ETIMER_STOP(timer);
399 1.3 oster RF_ETIMER_EVAL(timer);
400 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
401 1.1 oster }
402 1.1 oster /*
403 1.1 oster used in degraded writes.
404 1.1 oster */
405 1.1 oster
406 1.5 oster static void DegrQSubr(RF_DagNode_t *node);
407 1.5 oster
408 1.3 oster static void
409 1.3 oster DegrQSubr(node)
410 1.3 oster RF_DagNode_t *node;
411 1.3 oster {
412 1.3 oster int np = node->numParams;
413 1.3 oster int d;
414 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
415 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
416 1.3 oster int i;
417 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
418 1.3 oster RF_Etimer_t timer;
419 1.3 oster char *qbuf = node->results[1];
420 1.3 oster char *obuf, *qpbuf;
421 1.3 oster RF_PhysDiskAddr_t *old;
422 1.3 oster unsigned long coeff;
423 1.3 oster unsigned fail_start;
424 1.3 oster int j;
425 1.3 oster
426 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
427 1.3 oster fail_start = old->startSector % secPerSU;
428 1.3 oster
429 1.3 oster RF_ETIMER_START(timer);
430 1.3 oster
431 1.3 oster d = (np - 2) / 2;
432 1.3 oster RF_ASSERT(2 * d + 2 == np);
433 1.3 oster for (i = 0; i < d; i++) {
434 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
435 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
436 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
437 1.3 oster /* compute the data unit offset within the column, then add
438 1.3 oster * one */
439 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
440 1.3 oster /* the input buffers may not all be aligned with the start of
441 1.3 oster * the stripe. so shift by their sector offset within the
442 1.3 oster * stripe unit */
443 1.3 oster j = old->startSector % secPerSU;
444 1.3 oster RF_ASSERT(j >= fail_start);
445 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
446 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
447 1.3 oster }
448 1.3 oster
449 1.3 oster RF_ETIMER_STOP(timer);
450 1.3 oster RF_ETIMER_EVAL(timer);
451 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
452 1.1 oster }
453 1.1 oster /*
454 1.1 oster Called by large write code to compute the new parity and the new q.
455 1.3 oster
456 1.1 oster structure of the params:
457 1.1 oster
458 1.1 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
459 1.3 oster raidPtr
460 1.1 oster
461 1.1 oster for a total of 2d+1 arguments.
462 1.1 oster The result buffers results[0], results[1] are the buffers for the p and q,
463 1.1 oster respectively.
464 1.1 oster
465 1.1 oster We compute Q first, then compute P. The P calculation may try to reuse
466 1.1 oster one of the input buffers for its output, so if we computed P first, we would
467 1.1 oster corrupt the input for the q calculation.
468 1.1 oster */
469 1.1 oster
470 1.3 oster int
471 1.3 oster rf_RegularPQFunc(node)
472 1.3 oster RF_DagNode_t *node;
473 1.3 oster {
474 1.3 oster RegularQSubr(node, node->results[1]);
475 1.3 oster return (rf_RegularXorFunc(node)); /* does the wakeup */
476 1.3 oster }
477 1.3 oster
478 1.3 oster int
479 1.3 oster rf_RegularQFunc(node)
480 1.3 oster RF_DagNode_t *node;
481 1.3 oster {
482 1.3 oster /* Almost ... adjust Qsubr args */
483 1.3 oster RegularQSubr(node, node->results[0]);
484 1.3 oster rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
485 1.3 oster * I/O in this node */
486 1.3 oster return (0);
487 1.1 oster }
488 1.1 oster /*
489 1.1 oster Called by singly degraded write code to compute the new parity and the new q.
490 1.3 oster
491 1.1 oster structure of the params:
492 1.1 oster
493 1.3 oster pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
494 1.3 oster failedPDA raidPtr
495 1.1 oster
496 1.1 oster for a total of 2d+2 arguments.
497 1.1 oster The result buffers results[0], results[1] are the buffers for the parity and q,
498 1.1 oster respectively.
499 1.1 oster
500 1.1 oster We compute Q first, then compute parity. The parity calculation may try to reuse
501 1.1 oster one of the input buffers for its output, so if we computed parity first, we would
502 1.1 oster corrupt the input for the q calculation.
503 1.1 oster
504 1.1 oster We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
505 1.1 oster */
506 1.1 oster
507 1.3 oster void
508 1.3 oster rf_Degraded_100_PQFunc(node)
509 1.3 oster RF_DagNode_t *node;
510 1.3 oster {
511 1.3 oster int np = node->numParams;
512 1.3 oster
513 1.3 oster RF_ASSERT(np >= 2);
514 1.3 oster DegrQSubr(node);
515 1.3 oster rf_RecoveryXorFunc(node);
516 1.1 oster }
517 1.1 oster
518 1.1 oster
519 1.1 oster /*
520 1.1 oster The two below are used when reading a stripe with a single lost data unit.
521 1.1 oster The parameters are
522 1.1 oster
523 1.1 oster pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
524 1.1 oster
525 1.1 oster and results[0] contains the data buffer. Which is originally zero-filled.
526 1.3 oster
527 1.1 oster */
528 1.1 oster
529 1.1 oster /* this Q func is used by the degraded-mode dag functions to recover lost data.
530 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
531 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
532 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
533 1.1 oster * the other PDAs in the parameter list to determine where within the target
534 1.1 oster * buffer the corresponding data should be xored.
535 1.1 oster *
536 1.3 oster * Recall the basic equation is
537 1.3 oster *
538 1.1 oster * Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256
539 1.1 oster *
540 1.1 oster * so to recover data_j we need
541 1.1 oster *
542 1.1 oster * J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
543 1.1 oster *
544 1.1 oster * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
545 1.1 oster * copying Q into it. Then we need to do a table lookup to convert to solve
546 1.1 oster * data_j /= J
547 1.3 oster *
548 1.3 oster *
549 1.1 oster */
550 1.3 oster int
551 1.3 oster rf_RecoveryQFunc(node)
552 1.3 oster RF_DagNode_t *node;
553 1.3 oster {
554 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
555 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
556 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
557 1.3 oster int i;
558 1.3 oster RF_PhysDiskAddr_t *pda;
559 1.3 oster RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
560 1.3 oster char *srcbuf, *destbuf;
561 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
562 1.3 oster RF_Etimer_t timer;
563 1.3 oster unsigned long coeff;
564 1.3 oster
565 1.3 oster RF_ETIMER_START(timer);
566 1.3 oster /* start by copying Q into the buffer */
567 1.3 oster bcopy(node->params[node->numParams - 3].p, node->results[0],
568 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
569 1.3 oster for (i = 0; i < node->numParams - 4; i += 2) {
570 1.3 oster RF_ASSERT(node->params[i + 1].p != node->results[0]);
571 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
572 1.3 oster srcbuf = (char *) node->params[i + 1].p;
573 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
574 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
575 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
576 1.3 oster /* compute the data unit offset within the column */
577 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
578 1.3 oster rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
579 1.3 oster }
580 1.3 oster /* Do the nasty inversion now */
581 1.3 oster coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol);
582 1.3 oster rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
583 1.3 oster RF_ETIMER_STOP(timer);
584 1.3 oster RF_ETIMER_EVAL(timer);
585 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
586 1.3 oster rf_GenericWakeupFunc(node, 0);
587 1.3 oster return (0);
588 1.3 oster }
589 1.3 oster
590 1.3 oster int
591 1.3 oster rf_RecoveryPQFunc(node)
592 1.3 oster RF_DagNode_t *node;
593 1.1 oster {
594 1.6 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
595 1.6 oster printf("raid%d: Recovery from PQ not implemented.\n",raidPtr->raidid);
596 1.3 oster return (1);
597 1.1 oster }
598 1.1 oster /*
599 1.3 oster Degraded write Q subroutine.
600 1.1 oster Used when P is dead.
601 1.3 oster Large-write style Q computation.
602 1.1 oster Parameters
603 1.1 oster
604 1.1 oster (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
605 1.1 oster
606 1.1 oster We ignore failedPDA.
607 1.1 oster
608 1.1 oster This is a "simple style" recovery func.
609 1.1 oster */
610 1.1 oster
611 1.3 oster void
612 1.3 oster rf_PQ_DegradedWriteQFunc(node)
613 1.3 oster RF_DagNode_t *node;
614 1.3 oster {
615 1.3 oster int np = node->numParams;
616 1.3 oster int d;
617 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
618 1.3 oster unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
619 1.3 oster int i;
620 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
621 1.3 oster RF_Etimer_t timer;
622 1.3 oster char *qbuf = node->results[0];
623 1.3 oster char *obuf, *qpbuf;
624 1.3 oster RF_PhysDiskAddr_t *old;
625 1.3 oster unsigned long coeff;
626 1.3 oster int fail_start, j;
627 1.3 oster
628 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
629 1.3 oster fail_start = old->startSector % secPerSU;
630 1.3 oster
631 1.3 oster RF_ETIMER_START(timer);
632 1.3 oster
633 1.3 oster d = (np - 2) / 2;
634 1.3 oster RF_ASSERT(2 * d + 2 == np);
635 1.3 oster
636 1.3 oster for (i = 0; i < d; i++) {
637 1.3 oster old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
638 1.3 oster obuf = (char *) node->params[2 * i + 1].p;
639 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
640 1.3 oster /* compute the data unit offset within the column, then add
641 1.3 oster * one */
642 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
643 1.3 oster j = old->startSector % secPerSU;
644 1.3 oster RF_ASSERT(j >= fail_start);
645 1.3 oster qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
646 1.3 oster rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
647 1.3 oster }
648 1.3 oster
649 1.3 oster RF_ETIMER_STOP(timer);
650 1.3 oster RF_ETIMER_EVAL(timer);
651 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
652 1.3 oster rf_GenericWakeupFunc(node, 0);
653 1.1 oster }
654 1.1 oster
655 1.1 oster
656 1.1 oster
657 1.1 oster
658 1.1 oster /* Q computations */
659 1.1 oster
660 1.1 oster /*
661 1.1 oster coeff - colummn;
662 1.1 oster
663 1.1 oster compute dest ^= qfor[28-coeff][rn[coeff+1] a]
664 1.1 oster
665 1.1 oster on 5-bit basis;
666 1.1 oster length in bytes;
667 1.1 oster */
668 1.1 oster
669 1.3 oster void
670 1.3 oster rf_IncQ(dest, buf, length, coeff)
671 1.3 oster unsigned long *dest;
672 1.3 oster unsigned long *buf;
673 1.3 oster unsigned length;
674 1.3 oster unsigned coeff;
675 1.3 oster {
676 1.3 oster unsigned long a, d, new;
677 1.3 oster unsigned long a1, a2;
678 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
679 1.3 oster unsigned r = rf_rn[coeff + 1];
680 1.1 oster
681 1.1 oster #define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
682 1.1 oster #define INSERT(a,i) (a << (5L*i))
683 1.1 oster
684 1.3 oster length /= 8;
685 1.3 oster /* 13 5 bit quants in a 64 bit word */
686 1.3 oster while (length) {
687 1.3 oster a = *buf++;
688 1.3 oster d = *dest;
689 1.3 oster a1 = EXTRACT(a, 0) ^ r;
690 1.3 oster a2 = EXTRACT(a, 1) ^ r;
691 1.3 oster new = INSERT(a2, 1) | a1;
692 1.3 oster a1 = EXTRACT(a, 2) ^ r;
693 1.3 oster a2 = EXTRACT(a, 3) ^ r;
694 1.3 oster a1 = q[a1];
695 1.3 oster a2 = q[a2];
696 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
697 1.3 oster a1 = EXTRACT(a, 4) ^ r;
698 1.3 oster a2 = EXTRACT(a, 5) ^ r;
699 1.3 oster a1 = q[a1];
700 1.3 oster a2 = q[a2];
701 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
702 1.3 oster a1 = EXTRACT(a, 5) ^ r;
703 1.3 oster a2 = EXTRACT(a, 6) ^ r;
704 1.3 oster a1 = q[a1];
705 1.3 oster a2 = q[a2];
706 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
707 1.1 oster #if RF_LONGSHIFT > 2
708 1.3 oster a1 = EXTRACT(a, 7) ^ r;
709 1.3 oster a2 = EXTRACT(a, 8) ^ r;
710 1.3 oster a1 = q[a1];
711 1.3 oster a2 = q[a2];
712 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
713 1.3 oster a1 = EXTRACT(a, 9) ^ r;
714 1.3 oster a2 = EXTRACT(a, 10) ^ r;
715 1.3 oster a1 = q[a1];
716 1.3 oster a2 = q[a2];
717 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
718 1.3 oster a1 = EXTRACT(a, 11) ^ r;
719 1.3 oster a2 = EXTRACT(a, 12) ^ r;
720 1.3 oster a1 = q[a1];
721 1.3 oster a2 = q[a2];
722 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
723 1.3 oster #endif /* RF_LONGSHIFT > 2 */
724 1.3 oster d ^= new;
725 1.3 oster *dest++ = d;
726 1.3 oster length--;
727 1.3 oster }
728 1.1 oster }
729 1.3 oster /*
730 1.3 oster compute
731 1.1 oster
732 1.1 oster dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
733 1.1 oster
734 1.1 oster on a five bit basis.
735 1.1 oster optimization: compute old ^ new on 64 bit basis.
736 1.1 oster
737 1.1 oster length in bytes.
738 1.1 oster */
739 1.1 oster
740 1.3 oster static void
741 1.3 oster QDelta(
742 1.3 oster char *dest,
743 1.3 oster char *obuf,
744 1.3 oster char *nbuf,
745 1.3 oster unsigned length,
746 1.3 oster unsigned char coeff)
747 1.3 oster {
748 1.3 oster unsigned long a, d, new;
749 1.3 oster unsigned long a1, a2;
750 1.3 oster unsigned int *q = &(rf_qfor[28 - coeff][0]);
751 1.5 oster unsigned int r = rf_rn[coeff + 1];
752 1.5 oster
753 1.5 oster r = a1 = a2 = new = d = a = 0; /* XXX for now... */
754 1.5 oster q = NULL; /* XXX for now */
755 1.1 oster
756 1.2 oster #ifdef _KERNEL
757 1.3 oster /* PQ in kernel currently not supported because the encoding/decoding
758 1.3 oster * table is not present */
759 1.9 thorpej memset(dest, 0, length);
760 1.3 oster #else /* KERNEL */
761 1.3 oster /* this code probably doesn't work and should be rewritten -wvcii */
762 1.3 oster /* 13 5 bit quants in a 64 bit word */
763 1.3 oster length /= 8;
764 1.3 oster while (length) {
765 1.3 oster a = *obuf++; /* XXX need to reorg to avoid cache conflicts */
766 1.3 oster a ^= *nbuf++;
767 1.3 oster d = *dest;
768 1.3 oster a1 = EXTRACT(a, 0) ^ r;
769 1.3 oster a2 = EXTRACT(a, 1) ^ r;
770 1.3 oster a1 = q[a1];
771 1.3 oster a2 = q[a2];
772 1.3 oster new = INSERT(a2, 1) | a1;
773 1.3 oster a1 = EXTRACT(a, 2) ^ r;
774 1.3 oster a2 = EXTRACT(a, 3) ^ r;
775 1.3 oster a1 = q[a1];
776 1.3 oster a2 = q[a2];
777 1.3 oster new = new | INSERT(a1, 2) | INSERT(a2, 3);
778 1.3 oster a1 = EXTRACT(a, 4) ^ r;
779 1.3 oster a2 = EXTRACT(a, 5) ^ r;
780 1.3 oster a1 = q[a1];
781 1.3 oster a2 = q[a2];
782 1.3 oster new = new | INSERT(a1, 4) | INSERT(a2, 5);
783 1.3 oster a1 = EXTRACT(a, 5) ^ r;
784 1.3 oster a2 = EXTRACT(a, 6) ^ r;
785 1.3 oster a1 = q[a1];
786 1.3 oster a2 = q[a2];
787 1.3 oster new = new | INSERT(a1, 5) | INSERT(a2, 6);
788 1.1 oster #if RF_LONGSHIFT > 2
789 1.3 oster a1 = EXTRACT(a, 7) ^ r;
790 1.3 oster a2 = EXTRACT(a, 8) ^ r;
791 1.3 oster a1 = q[a1];
792 1.3 oster a2 = q[a2];
793 1.3 oster new = new | INSERT(a1, 7) | INSERT(a2, 8);
794 1.3 oster a1 = EXTRACT(a, 9) ^ r;
795 1.3 oster a2 = EXTRACT(a, 10) ^ r;
796 1.3 oster a1 = q[a1];
797 1.3 oster a2 = q[a2];
798 1.3 oster new = new | INSERT(a1, 9) | INSERT(a2, 10);
799 1.3 oster a1 = EXTRACT(a, 11) ^ r;
800 1.3 oster a2 = EXTRACT(a, 12) ^ r;
801 1.3 oster a1 = q[a1];
802 1.3 oster a2 = q[a2];
803 1.3 oster new = new | INSERT(a1, 11) | INSERT(a2, 12);
804 1.3 oster #endif /* RF_LONGSHIFT > 2 */
805 1.3 oster d ^= new;
806 1.3 oster *dest++ = d;
807 1.3 oster length--;
808 1.3 oster }
809 1.3 oster #endif /* _KERNEL */
810 1.1 oster }
811 1.1 oster /*
812 1.1 oster recover columns a and b from the given p and q into
813 1.1 oster bufs abuf and bbuf. All bufs are word aligned.
814 1.1 oster Length is in bytes.
815 1.1 oster */
816 1.3 oster
817 1.1 oster
818 1.1 oster /*
819 1.1 oster * XXX
820 1.1 oster *
821 1.1 oster * Everything about this seems wrong.
822 1.1 oster */
823 1.3 oster void
824 1.3 oster rf_PQ_recover(pbuf, qbuf, abuf, bbuf, length, coeff_a, coeff_b)
825 1.3 oster unsigned long *pbuf;
826 1.3 oster unsigned long *qbuf;
827 1.3 oster unsigned long *abuf;
828 1.3 oster unsigned long *bbuf;
829 1.3 oster unsigned length;
830 1.3 oster unsigned coeff_a;
831 1.3 oster unsigned coeff_b;
832 1.3 oster {
833 1.3 oster unsigned long p, q, a, a0, a1;
834 1.3 oster int col = (29 * coeff_a) + coeff_b;
835 1.3 oster unsigned char *q0 = &(rf_qinv[col][0]);
836 1.3 oster
837 1.3 oster length /= 8;
838 1.3 oster while (length) {
839 1.3 oster p = *pbuf++;
840 1.3 oster q = *qbuf++;
841 1.3 oster a0 = EXTRACT(p, 0);
842 1.3 oster a1 = EXTRACT(q, 0);
843 1.3 oster a = q0[a0 << 5 | a1];
844 1.1 oster #define MF(i) \
845 1.1 oster a0 = EXTRACT(p,i); \
846 1.1 oster a1 = EXTRACT(q,i); \
847 1.1 oster a = a | INSERT(q0[a0<<5 | a1],i)
848 1.1 oster
849 1.3 oster MF(1);
850 1.3 oster MF(2);
851 1.3 oster MF(3);
852 1.3 oster MF(4);
853 1.3 oster MF(5);
854 1.3 oster MF(6);
855 1.1 oster #if 0
856 1.3 oster MF(7);
857 1.3 oster MF(8);
858 1.3 oster MF(9);
859 1.3 oster MF(10);
860 1.3 oster MF(11);
861 1.3 oster MF(12);
862 1.3 oster #endif /* 0 */
863 1.3 oster *abuf++ = a;
864 1.3 oster *bbuf++ = a ^ p;
865 1.3 oster length--;
866 1.3 oster }
867 1.1 oster }
868 1.3 oster /*
869 1.1 oster Lost parity and a data column. Recover that data column.
870 1.1 oster Assume col coeff is lost. Let q the contents of Q after
871 1.1 oster all surviving data columns have been q-xored out of it.
872 1.1 oster Then we have the equation
873 1.1 oster
874 1.1 oster q[28-coeff][a_i ^ r_i+1] = q
875 1.1 oster
876 1.3 oster but q is cyclic with period 31.
877 1.1 oster So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
878 1.1 oster q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
879 1.1 oster
880 1.1 oster so a_i = r_{coeff+1} ^ q[3+coeff][q]
881 1.1 oster
882 1.1 oster The routine is passed q buffer and the buffer
883 1.1 oster the data is to be recoverd into. They can be the same.
884 1.1 oster */
885 1.1 oster
886 1.1 oster
887 1.3 oster
888 1.3 oster static void
889 1.3 oster rf_InvertQ(
890 1.3 oster unsigned long *qbuf,
891 1.3 oster unsigned long *abuf,
892 1.3 oster unsigned length,
893 1.3 oster unsigned coeff)
894 1.3 oster {
895 1.3 oster unsigned long a, new;
896 1.3 oster unsigned long a1, a2;
897 1.3 oster unsigned int *q = &(rf_qfor[3 + coeff][0]);
898 1.3 oster unsigned r = rf_rn[coeff + 1];
899 1.3 oster
900 1.3 oster /* 13 5 bit quants in a 64 bit word */
901 1.3 oster length /= 8;
902 1.3 oster while (length) {
903 1.3 oster a = *qbuf++;
904 1.3 oster a1 = EXTRACT(a, 0);
905 1.3 oster a2 = EXTRACT(a, 1);
906 1.3 oster a1 = r ^ q[a1];
907 1.3 oster a2 = r ^ q[a2];
908 1.3 oster new = INSERT(a2, 1) | a1;
909 1.1 oster #define M(i,j) \
910 1.1 oster a1 = EXTRACT(a,i); \
911 1.1 oster a2 = EXTRACT(a,j); \
912 1.1 oster a1 = r ^ q[a1]; \
913 1.1 oster a2 = r ^ q[a2]; \
914 1.1 oster new = new | INSERT(a1,i) | INSERT(a2,j)
915 1.1 oster
916 1.3 oster M(2, 3);
917 1.3 oster M(4, 5);
918 1.3 oster M(5, 6);
919 1.1 oster #if RF_LONGSHIFT > 2
920 1.3 oster M(7, 8);
921 1.3 oster M(9, 10);
922 1.3 oster M(11, 12);
923 1.3 oster #endif /* RF_LONGSHIFT > 2 */
924 1.3 oster *abuf++ = new;
925 1.3 oster length--;
926 1.3 oster }
927 1.1 oster }
928 1.3 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) ||
929 1.3 oster * (RF_INCLUDE_RAID6 > 0) */
930