rf_pqdegdags.c revision 1.6 1 1.6 thorpej /* $NetBSD: rf_pqdegdags.c,v 1.6 2001/07/18 06:45:34 thorpej Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Daniel Stodolsky
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * rf_pqdegdags.c
31 1.3 oster * Degraded mode dags for double fault cases.
32 1.1 oster */
33 1.1 oster
34 1.1 oster
35 1.1 oster #include "rf_archs.h"
36 1.1 oster
37 1.1 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
38 1.1 oster
39 1.1 oster #include "rf_types.h"
40 1.1 oster #include "rf_raid.h"
41 1.1 oster #include "rf_dag.h"
42 1.5 oster #include "rf_dagdegrd.h"
43 1.5 oster #include "rf_dagdegwr.h"
44 1.1 oster #include "rf_dagfuncs.h"
45 1.1 oster #include "rf_dagutils.h"
46 1.1 oster #include "rf_etimer.h"
47 1.1 oster #include "rf_acctrace.h"
48 1.1 oster #include "rf_general.h"
49 1.1 oster #include "rf_pqdegdags.h"
50 1.1 oster #include "rf_pq.h"
51 1.1 oster
52 1.3 oster static void
53 1.3 oster applyPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, RF_PhysDiskAddr_t * ppda,
54 1.3 oster RF_PhysDiskAddr_t * qpda, void *bp);
55 1.1 oster
56 1.1 oster /*
57 1.3 oster Two data drives have failed, and we are doing a read that covers one of them.
58 1.3 oster We may also be reading some of the surviving drives.
59 1.3 oster
60 1.1 oster
61 1.1 oster *****************************************************************************************
62 1.1 oster *
63 1.1 oster * creates a DAG to perform a degraded-mode read of data within one stripe.
64 1.1 oster * This DAG is as follows:
65 1.1 oster *
66 1.1 oster * Hdr
67 1.1 oster * |
68 1.1 oster * Block
69 1.1 oster * / / \ \ \ \
70 1.1 oster * Rud ... Rud Rrd ... Rrd Rp Rq
71 1.1 oster * | \ | \ | \ | \ | \ | \
72 1.1 oster *
73 1.1 oster * | |
74 1.1 oster * Unblock X
75 1.1 oster * \ /
76 1.1 oster * ------ T ------
77 1.1 oster *
78 1.1 oster * Each R node is a successor of the L node
79 1.1 oster * One successor arc from each R node goes to U, and the other to X
80 1.1 oster * There is one Rud for each chunk of surviving user data requested by the user,
81 1.1 oster * and one Rrd for each chunk of surviving user data _not_ being read by the user
82 1.1 oster * R = read, ud = user data, rd = recovery (surviving) data, p = P data, q = Qdata
83 1.1 oster * X = pq recovery node, T = terminate
84 1.1 oster *
85 1.1 oster * The block & unblock nodes are leftovers from a previous version. They
86 1.1 oster * do nothing, but I haven't deleted them because it would be a tremendous
87 1.1 oster * effort to put them back in.
88 1.1 oster *
89 1.1 oster * Note: The target buffer for the XOR node is set to the actual user buffer where the
90 1.1 oster * failed data is supposed to end up. This buffer is zero'd by the code here. Thus,
91 1.1 oster * if you create a degraded read dag, use it, and then re-use, you have to be sure to
92 1.1 oster * zero the target buffer prior to the re-use.
93 1.1 oster *
94 1.1 oster * Every buffer read is passed to the pq recovery node, whose job it is to sort out whats
95 1.1 oster * needs and what's not.
96 1.1 oster ****************************************************************************************/
97 1.1 oster /* init a disk node with 2 successors and one predecessor */
98 1.1 oster #define INIT_DISK_NODE(node,name) \
99 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
100 1.1 oster (node)->succedents[0] = unblockNode; \
101 1.1 oster (node)->succedents[1] = recoveryNode; \
102 1.1 oster (node)->antecedents[0] = blockNode; \
103 1.1 oster (node)->antType[0] = rf_control
104 1.1 oster
105 1.1 oster #define DISK_NODE_PARAMS(_node_,_p_) \
106 1.1 oster (_node_).params[0].p = _p_ ; \
107 1.1 oster (_node_).params[1].p = (_p_)->bufPtr; \
108 1.1 oster (_node_).params[2].v = parityStripeID; \
109 1.1 oster (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
110 1.1 oster
111 1.1 oster #define DISK_NODE_PDA(node) ((node)->params[0].p)
112 1.1 oster
113 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead)
114 1.1 oster {
115 1.3 oster rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList,
116 1.3 oster "Rq", "PQ Recovery", rf_PQDoubleRecoveryFunc);
117 1.1 oster }
118 1.3 oster
119 1.3 oster static void
120 1.3 oster applyPDA(raidPtr, pda, ppda, qpda, bp)
121 1.3 oster RF_Raid_t *raidPtr;
122 1.3 oster RF_PhysDiskAddr_t *pda;
123 1.3 oster RF_PhysDiskAddr_t *ppda;
124 1.3 oster RF_PhysDiskAddr_t *qpda;
125 1.3 oster void *bp;
126 1.1 oster {
127 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
128 1.3 oster RF_RaidAddr_t s0off = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
129 1.3 oster RF_SectorCount_t s0len = ppda->numSector, len;
130 1.3 oster RF_SectorNum_t suoffset;
131 1.3 oster unsigned coeff;
132 1.3 oster char *pbuf = ppda->bufPtr;
133 1.3 oster char *qbuf = qpda->bufPtr;
134 1.3 oster char *buf;
135 1.3 oster int delta;
136 1.3 oster
137 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
138 1.3 oster len = pda->numSector;
139 1.3 oster /* see if pda intersects a recovery pda */
140 1.3 oster if ((suoffset < s0off + s0len) && (suoffset + len > s0off)) {
141 1.3 oster buf = pda->bufPtr;
142 1.3 oster coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
143 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
144 1.3 oster
145 1.3 oster if (suoffset < s0off) {
146 1.3 oster delta = s0off - suoffset;
147 1.3 oster buf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
148 1.3 oster suoffset = s0off;
149 1.3 oster len -= delta;
150 1.3 oster }
151 1.3 oster if (suoffset > s0off) {
152 1.3 oster delta = suoffset - s0off;
153 1.3 oster pbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
154 1.3 oster qbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
155 1.3 oster }
156 1.3 oster if ((suoffset + len) > (s0len + s0off))
157 1.3 oster len = s0len + s0off - suoffset;
158 1.3 oster
159 1.3 oster /* src, dest, len */
160 1.3 oster rf_bxor(buf, pbuf, rf_RaidAddressToByte(raidPtr, len), bp);
161 1.3 oster
162 1.3 oster /* dest, src, len, coeff */
163 1.3 oster rf_IncQ((unsigned long *) qbuf, (unsigned long *) buf, rf_RaidAddressToByte(raidPtr, len), coeff);
164 1.1 oster }
165 1.1 oster }
166 1.1 oster /*
167 1.1 oster Recover data in the case of a double failure. There can be two
168 1.1 oster result buffers, one for each chunk of data trying to be recovered.
169 1.1 oster The params are pda's that have not been range restricted or otherwise
170 1.1 oster politely massaged - this should be done here. The last params are the
171 1.1 oster pdas of P and Q, followed by the raidPtr. The list can look like
172 1.1 oster
173 1.1 oster pda, pda, ... , p pda, q pda, raidptr, asm
174 1.3 oster
175 1.1 oster or
176 1.1 oster
177 1.1 oster pda, pda, ... , p_1 pda, p_2 pda, q_1 pda, q_2 pda, raidptr, asm
178 1.1 oster
179 1.1 oster depending on wether two chunks of recovery data were required.
180 1.1 oster
181 1.1 oster The second condition only arises if there are two failed buffers
182 1.1 oster whose lengths do not add up a stripe unit.
183 1.1 oster */
184 1.1 oster
185 1.1 oster
186 1.3 oster int
187 1.3 oster rf_PQDoubleRecoveryFunc(node)
188 1.3 oster RF_DagNode_t *node;
189 1.1 oster {
190 1.3 oster int np = node->numParams;
191 1.3 oster RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
192 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
193 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
194 1.3 oster int d, i;
195 1.3 oster unsigned coeff;
196 1.3 oster RF_RaidAddr_t sosAddr, suoffset;
197 1.3 oster RF_SectorCount_t len, secPerSU = layoutPtr->sectorsPerStripeUnit;
198 1.3 oster int two = 0;
199 1.3 oster RF_PhysDiskAddr_t *ppda, *ppda2, *qpda, *qpda2, *pda, npda;
200 1.3 oster char *buf;
201 1.3 oster int numDataCol = layoutPtr->numDataCol;
202 1.3 oster RF_Etimer_t timer;
203 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
204 1.3 oster
205 1.3 oster RF_ETIMER_START(timer);
206 1.3 oster
207 1.3 oster if (asmap->failedPDAs[1] &&
208 1.3 oster (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
209 1.3 oster RF_ASSERT(0);
210 1.3 oster ppda = node->params[np - 6].p;
211 1.3 oster ppda2 = node->params[np - 5].p;
212 1.3 oster qpda = node->params[np - 4].p;
213 1.3 oster qpda2 = node->params[np - 3].p;
214 1.3 oster d = (np - 6);
215 1.3 oster two = 1;
216 1.3 oster } else {
217 1.3 oster ppda = node->params[np - 4].p;
218 1.3 oster qpda = node->params[np - 3].p;
219 1.3 oster d = (np - 4);
220 1.3 oster }
221 1.3 oster
222 1.3 oster for (i = 0; i < d; i++) {
223 1.3 oster pda = node->params[i].p;
224 1.3 oster buf = pda->bufPtr;
225 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
226 1.3 oster len = pda->numSector;
227 1.3 oster coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
228 1.3 oster /* compute the data unit offset within the column */
229 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
230 1.3 oster /* see if pda intersects a recovery pda */
231 1.3 oster applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
232 1.3 oster if (two)
233 1.3 oster applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
234 1.1 oster }
235 1.3 oster
236 1.3 oster /* ok, we got the parity back to the point where we can recover. We
237 1.3 oster * now need to determine the coeff of the columns that need to be
238 1.3 oster * recovered. We can also only need to recover a single stripe unit. */
239 1.3 oster
240 1.3 oster if (asmap->failedPDAs[1] == NULL) { /* only a single stripe unit
241 1.3 oster * to recover. */
242 1.3 oster pda = asmap->failedPDAs[0];
243 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
244 1.3 oster /* need to determine the column of the other failed disk */
245 1.3 oster coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
246 1.3 oster /* compute the data unit offset within the column */
247 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
248 1.3 oster for (i = 0; i < numDataCol; i++) {
249 1.3 oster npda.raidAddress = sosAddr + (i * secPerSU);
250 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
251 1.3 oster /* skip over dead disks */
252 1.3 oster if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
253 1.3 oster if (i != coeff)
254 1.3 oster break;
255 1.3 oster }
256 1.3 oster RF_ASSERT(i < numDataCol);
257 1.3 oster RF_ASSERT(two == 0);
258 1.3 oster /* recover the data. Since we need only want to recover one
259 1.3 oster * column, we overwrite the parity with the other one. */
260 1.3 oster if (coeff < i) /* recovering 'a' */
261 1.3 oster rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) pda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
262 1.3 oster else /* recovering 'b' */
263 1.3 oster rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) pda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
264 1.3 oster } else
265 1.3 oster RF_PANIC();
266 1.3 oster
267 1.3 oster RF_ETIMER_STOP(timer);
268 1.3 oster RF_ETIMER_EVAL(timer);
269 1.3 oster if (tracerec)
270 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
271 1.3 oster rf_GenericWakeupFunc(node, 0);
272 1.3 oster return (0);
273 1.1 oster }
274 1.1 oster
275 1.3 oster int
276 1.3 oster rf_PQWriteDoubleRecoveryFunc(node)
277 1.3 oster RF_DagNode_t *node;
278 1.1 oster {
279 1.3 oster /* The situation:
280 1.3 oster *
281 1.3 oster * We are doing a write that hits only one failed data unit. The other
282 1.3 oster * failed data unit is not being overwritten, so we need to generate
283 1.3 oster * it.
284 1.3 oster *
285 1.3 oster * For the moment, we assume all the nonfailed data being written is in
286 1.3 oster * the shadow of the failed data unit. (i.e,, either a single data
287 1.3 oster * unit write or the entire failed stripe unit is being overwritten. )
288 1.3 oster *
289 1.3 oster * Recovery strategy: apply the recovery data to the parity and q. Use P
290 1.3 oster * & Q to recover the second failed data unit in P. Zero fill Q, then
291 1.3 oster * apply the recovered data to p. Then apply the data being written to
292 1.3 oster * the failed drive. Then walk through the surviving drives, applying
293 1.3 oster * new data when it exists, othewise the recovery data. Quite a mess.
294 1.3 oster *
295 1.3 oster *
296 1.3 oster * The params
297 1.3 oster *
298 1.3 oster * read pda0, read pda1, ... read pda (numDataCol-3), write pda0, ... ,
299 1.3 oster * write pda (numStripeUnitAccess - numDataFailed), failed pda,
300 1.3 oster * raidPtr, asmap */
301 1.3 oster
302 1.3 oster int np = node->numParams;
303 1.3 oster RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
304 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
305 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
306 1.3 oster int i;
307 1.3 oster RF_RaidAddr_t sosAddr;
308 1.3 oster unsigned coeff;
309 1.3 oster RF_StripeCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
310 1.3 oster RF_PhysDiskAddr_t *ppda, *qpda, *pda, npda;
311 1.3 oster int numDataCol = layoutPtr->numDataCol;
312 1.3 oster RF_Etimer_t timer;
313 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
314 1.3 oster
315 1.3 oster RF_ASSERT(node->numResults == 2);
316 1.3 oster RF_ASSERT(asmap->failedPDAs[1] == NULL);
317 1.3 oster RF_ETIMER_START(timer);
318 1.3 oster ppda = node->results[0];
319 1.3 oster qpda = node->results[1];
320 1.3 oster /* apply the recovery data */
321 1.3 oster for (i = 0; i < numDataCol - 2; i++)
322 1.3 oster applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
323 1.3 oster
324 1.3 oster /* determine the other failed data unit */
325 1.3 oster pda = asmap->failedPDAs[0];
326 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
327 1.3 oster /* need to determine the column of the other failed disk */
328 1.3 oster coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
329 1.3 oster /* compute the data unit offset within the column */
330 1.3 oster coeff = (coeff % raidPtr->Layout.numDataCol);
331 1.3 oster for (i = 0; i < numDataCol; i++) {
332 1.3 oster npda.raidAddress = sosAddr + (i * secPerSU);
333 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
334 1.3 oster /* skip over dead disks */
335 1.3 oster if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
336 1.3 oster if (i != coeff)
337 1.3 oster break;
338 1.3 oster }
339 1.3 oster RF_ASSERT(i < numDataCol);
340 1.3 oster /* recover the data. The column we want to recover we write over the
341 1.3 oster * parity. The column we don't care about we dump in q. */
342 1.3 oster if (coeff < i) /* recovering 'a' */
343 1.3 oster rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
344 1.3 oster else /* recovering 'b' */
345 1.3 oster rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
346 1.3 oster
347 1.3 oster /* OK. The valid data is in P. Zero fill Q, then inc it into it. */
348 1.6 thorpej memset(qpda->bufPtr, 0, rf_RaidAddressToByte(raidPtr, qpda->numSector));
349 1.3 oster rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), i);
350 1.3 oster
351 1.3 oster /* now apply all the write data to the buffer */
352 1.3 oster /* single stripe unit write case: the failed data is only thing we are
353 1.3 oster * writing. */
354 1.3 oster RF_ASSERT(asmap->numStripeUnitsAccessed == 1);
355 1.3 oster /* dest, src, len, coeff */
356 1.3 oster rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) asmap->failedPDAs[0]->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), coeff);
357 1.3 oster rf_bxor(asmap->failedPDAs[0]->bufPtr, ppda->bufPtr, rf_RaidAddressToByte(raidPtr, ppda->numSector), node->dagHdr->bp);
358 1.3 oster
359 1.3 oster /* now apply all the recovery data */
360 1.3 oster for (i = 0; i < numDataCol - 2; i++)
361 1.3 oster applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
362 1.3 oster
363 1.3 oster RF_ETIMER_STOP(timer);
364 1.3 oster RF_ETIMER_EVAL(timer);
365 1.3 oster if (tracerec)
366 1.3 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
367 1.1 oster
368 1.3 oster rf_GenericWakeupFunc(node, 0);
369 1.3 oster return (0);
370 1.1 oster }
371 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite)
372 1.1 oster {
373 1.3 oster RF_PANIC();
374 1.1 oster }
375 1.1 oster /*
376 1.1 oster Two lost data unit write case.
377 1.1 oster
378 1.1 oster There are really two cases here:
379 1.1 oster
380 1.3 oster (1) The write completely covers the two lost data units.
381 1.1 oster In that case, a reconstruct write that doesn't write the
382 1.1 oster failed data units will do the correct thing. So in this case,
383 1.1 oster the dag looks like
384 1.1 oster
385 1.1 oster full stripe read of surviving data units (not being overwriten)
386 1.1 oster write new data (ignoring failed units) compute P&Q
387 1.1 oster write P&Q
388 1.1 oster
389 1.1 oster
390 1.1 oster (2) The write does not completely cover both failed data units
391 1.3 oster (but touches at least one of them). Then we need to do the
392 1.1 oster equivalent of a reconstruct read to recover the missing data
393 1.3 oster unit from the other stripe.
394 1.3 oster
395 1.1 oster For any data we are writing that is not in the "shadow"
396 1.1 oster of the failed units, we need to do a four cycle update.
397 1.1 oster PANIC on this case. for now
398 1.1 oster
399 1.1 oster */
400 1.1 oster
401 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG)
402 1.1 oster {
403 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
404 1.3 oster RF_SectorCount_t sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
405 1.3 oster int sum;
406 1.3 oster int nf = asmap->numDataFailed;
407 1.3 oster
408 1.3 oster sum = asmap->failedPDAs[0]->numSector;
409 1.3 oster if (nf == 2)
410 1.3 oster sum += asmap->failedPDAs[1]->numSector;
411 1.3 oster
412 1.3 oster if ((nf == 2) && (sum == (2 * sectorsPerSU))) {
413 1.3 oster /* large write case */
414 1.3 oster rf_PQ_DDLargeWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
415 1.3 oster return;
416 1.3 oster }
417 1.3 oster if ((nf == asmap->numStripeUnitsAccessed) || (sum >= sectorsPerSU)) {
418 1.3 oster /* small write case, no user data not in shadow */
419 1.3 oster rf_PQ_DDSimpleSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
420 1.3 oster return;
421 1.3 oster }
422 1.3 oster RF_PANIC();
423 1.1 oster }
424 1.1 oster RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite)
425 1.1 oster {
426 1.3 oster rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList, "Rq", "Wq", "PQ Recovery", rf_PQWriteDoubleRecoveryFunc);
427 1.1 oster }
428 1.3 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) ||
429 1.3 oster * (RF_INCLUDE_RAID6 > 0) */
430