rf_raid1.c revision 1.14 1 1.14 oster /* $NetBSD: rf_raid1.c,v 1.14 2003/12/29 02:38:18 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*****************************************************************************
30 1.1 oster *
31 1.1 oster * rf_raid1.c -- implements RAID Level 1
32 1.1 oster *
33 1.1 oster *****************************************************************************/
34 1.8 lukem
35 1.8 lukem #include <sys/cdefs.h>
36 1.14 oster __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.14 2003/12/29 02:38:18 oster Exp $");
37 1.1 oster
38 1.1 oster #include "rf_raid.h"
39 1.1 oster #include "rf_raid1.h"
40 1.1 oster #include "rf_dag.h"
41 1.1 oster #include "rf_dagffrd.h"
42 1.1 oster #include "rf_dagffwr.h"
43 1.1 oster #include "rf_dagdegrd.h"
44 1.1 oster #include "rf_dagutils.h"
45 1.1 oster #include "rf_dagfuncs.h"
46 1.1 oster #include "rf_diskqueue.h"
47 1.1 oster #include "rf_general.h"
48 1.1 oster #include "rf_utils.h"
49 1.1 oster #include "rf_parityscan.h"
50 1.1 oster #include "rf_mcpair.h"
51 1.1 oster #include "rf_layout.h"
52 1.1 oster #include "rf_map.h"
53 1.1 oster #include "rf_engine.h"
54 1.1 oster #include "rf_reconbuffer.h"
55 1.1 oster
56 1.1 oster typedef struct RF_Raid1ConfigInfo_s {
57 1.3 oster RF_RowCol_t **stripeIdentifier;
58 1.3 oster } RF_Raid1ConfigInfo_t;
59 1.1 oster /* start of day code specific to RAID level 1 */
60 1.3 oster int
61 1.3 oster rf_ConfigureRAID1(
62 1.3 oster RF_ShutdownList_t ** listp,
63 1.3 oster RF_Raid_t * raidPtr,
64 1.3 oster RF_Config_t * cfgPtr)
65 1.1 oster {
66 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
67 1.3 oster RF_Raid1ConfigInfo_t *info;
68 1.3 oster RF_RowCol_t i;
69 1.3 oster
70 1.3 oster /* create a RAID level 1 configuration structure */
71 1.3 oster RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
72 1.3 oster if (info == NULL)
73 1.3 oster return (ENOMEM);
74 1.3 oster layoutPtr->layoutSpecificInfo = (void *) info;
75 1.3 oster
76 1.3 oster /* ... and fill it in. */
77 1.3 oster info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
78 1.3 oster if (info->stripeIdentifier == NULL)
79 1.3 oster return (ENOMEM);
80 1.3 oster for (i = 0; i < (raidPtr->numCol / 2); i++) {
81 1.3 oster info->stripeIdentifier[i][0] = (2 * i);
82 1.3 oster info->stripeIdentifier[i][1] = (2 * i) + 1;
83 1.3 oster }
84 1.3 oster
85 1.3 oster /* this implementation of RAID level 1 uses one row of numCol disks
86 1.3 oster * and allows multiple (numCol / 2) stripes per row. A stripe
87 1.3 oster * consists of a single data unit and a single parity (mirror) unit.
88 1.3 oster * stripe id = raidAddr / stripeUnitSize */
89 1.3 oster raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
90 1.3 oster layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
91 1.3 oster layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
92 1.3 oster layoutPtr->numDataCol = 1;
93 1.3 oster layoutPtr->numParityCol = 1;
94 1.3 oster return (0);
95 1.1 oster }
96 1.1 oster
97 1.1 oster
98 1.1 oster /* returns the physical disk location of the primary copy in the mirror pair */
99 1.3 oster void
100 1.3 oster rf_MapSectorRAID1(
101 1.3 oster RF_Raid_t * raidPtr,
102 1.3 oster RF_RaidAddr_t raidSector,
103 1.3 oster RF_RowCol_t * col,
104 1.3 oster RF_SectorNum_t * diskSector,
105 1.3 oster int remap)
106 1.1 oster {
107 1.3 oster RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
108 1.3 oster RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
109 1.1 oster
110 1.3 oster *col = 2 * mirrorPair;
111 1.3 oster *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
112 1.1 oster }
113 1.1 oster
114 1.1 oster
115 1.1 oster /* Map Parity
116 1.1 oster *
117 1.1 oster * returns the physical disk location of the secondary copy in the mirror
118 1.1 oster * pair
119 1.1 oster */
120 1.3 oster void
121 1.3 oster rf_MapParityRAID1(
122 1.3 oster RF_Raid_t * raidPtr,
123 1.3 oster RF_RaidAddr_t raidSector,
124 1.3 oster RF_RowCol_t * col,
125 1.3 oster RF_SectorNum_t * diskSector,
126 1.3 oster int remap)
127 1.1 oster {
128 1.3 oster RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
129 1.3 oster RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
130 1.1 oster
131 1.3 oster *col = (2 * mirrorPair) + 1;
132 1.1 oster
133 1.3 oster *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
134 1.1 oster }
135 1.1 oster
136 1.1 oster
137 1.1 oster /* IdentifyStripeRAID1
138 1.1 oster *
139 1.1 oster * returns a list of disks for a given redundancy group
140 1.1 oster */
141 1.3 oster void
142 1.3 oster rf_IdentifyStripeRAID1(
143 1.3 oster RF_Raid_t * raidPtr,
144 1.3 oster RF_RaidAddr_t addr,
145 1.14 oster RF_RowCol_t ** diskids)
146 1.1 oster {
147 1.3 oster RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
148 1.3 oster RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
149 1.3 oster RF_ASSERT(stripeID >= 0);
150 1.3 oster RF_ASSERT(addr >= 0);
151 1.3 oster *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
152 1.3 oster RF_ASSERT(*diskids);
153 1.1 oster }
154 1.1 oster
155 1.1 oster
156 1.1 oster /* MapSIDToPSIDRAID1
157 1.1 oster *
158 1.1 oster * maps a logical stripe to a stripe in the redundant array
159 1.1 oster */
160 1.3 oster void
161 1.3 oster rf_MapSIDToPSIDRAID1(
162 1.3 oster RF_RaidLayout_t * layoutPtr,
163 1.3 oster RF_StripeNum_t stripeID,
164 1.3 oster RF_StripeNum_t * psID,
165 1.3 oster RF_ReconUnitNum_t * which_ru)
166 1.1 oster {
167 1.3 oster *which_ru = 0;
168 1.3 oster *psID = stripeID;
169 1.1 oster }
170 1.1 oster
171 1.1 oster
172 1.1 oster
173 1.1 oster /******************************************************************************
174 1.1 oster * select a graph to perform a single-stripe access
175 1.1 oster *
176 1.1 oster * Parameters: raidPtr - description of the physical array
177 1.1 oster * type - type of operation (read or write) requested
178 1.1 oster * asmap - logical & physical addresses for this access
179 1.1 oster * createFunc - name of function to use to create the graph
180 1.1 oster *****************************************************************************/
181 1.1 oster
182 1.3 oster void
183 1.3 oster rf_RAID1DagSelect(
184 1.3 oster RF_Raid_t * raidPtr,
185 1.3 oster RF_IoType_t type,
186 1.3 oster RF_AccessStripeMap_t * asmap,
187 1.3 oster RF_VoidFuncPtr * createFunc)
188 1.1 oster {
189 1.14 oster RF_RowCol_t fcol, oc;
190 1.3 oster RF_PhysDiskAddr_t *failedPDA;
191 1.5 oster int prior_recon;
192 1.3 oster RF_RowStatus_t rstat;
193 1.3 oster RF_SectorNum_t oo;
194 1.3 oster
195 1.3 oster
196 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
197 1.3 oster
198 1.3 oster if (asmap->numDataFailed + asmap->numParityFailed > 1) {
199 1.3 oster RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
200 1.3 oster *createFunc = NULL;
201 1.3 oster return;
202 1.3 oster }
203 1.3 oster if (asmap->numDataFailed + asmap->numParityFailed) {
204 1.3 oster /*
205 1.3 oster * We've got a fault. Re-map to spare space, iff applicable.
206 1.3 oster * Shouldn't the arch-independent code do this for us?
207 1.3 oster * Anyway, it turns out if we don't do this here, then when
208 1.3 oster * we're reconstructing, writes go only to the surviving
209 1.3 oster * original disk, and aren't reflected on the reconstructed
210 1.3 oster * spare. Oops. --jimz
211 1.3 oster */
212 1.3 oster failedPDA = asmap->failedPDAs[0];
213 1.3 oster fcol = failedPDA->col;
214 1.14 oster rstat = raidPtr->status;
215 1.3 oster prior_recon = (rstat == rf_rs_reconfigured) || (
216 1.3 oster (rstat == rf_rs_reconstructing) ?
217 1.14 oster rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
218 1.3 oster );
219 1.3 oster if (prior_recon) {
220 1.3 oster oc = fcol;
221 1.3 oster oo = failedPDA->startSector;
222 1.3 oster /*
223 1.3 oster * If we did distributed sparing, we'd monkey with that here.
224 1.3 oster * But we don't, so we'll
225 1.3 oster */
226 1.14 oster failedPDA->col = raidPtr->Disks[fcol].spareCol;
227 1.3 oster /*
228 1.3 oster * Redirect other components, iff necessary. This looks
229 1.3 oster * pretty suspicious to me, but it's what the raid5
230 1.3 oster * DAG select does.
231 1.3 oster */
232 1.3 oster if (asmap->parityInfo->next) {
233 1.3 oster if (failedPDA == asmap->parityInfo) {
234 1.3 oster failedPDA->next->col = failedPDA->col;
235 1.3 oster } else {
236 1.3 oster if (failedPDA == asmap->parityInfo->next) {
237 1.3 oster asmap->parityInfo->col = failedPDA->col;
238 1.3 oster }
239 1.3 oster }
240 1.3 oster }
241 1.3 oster if (rf_dagDebug || rf_mapDebug) {
242 1.14 oster printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
243 1.14 oster raidPtr->raidid, type, oc,
244 1.14 oster (long) oo,
245 1.5 oster failedPDA->col,
246 1.5 oster (long) failedPDA->startSector);
247 1.3 oster }
248 1.3 oster asmap->numDataFailed = asmap->numParityFailed = 0;
249 1.3 oster }
250 1.3 oster }
251 1.3 oster if (type == RF_IO_TYPE_READ) {
252 1.3 oster if (asmap->numDataFailed == 0)
253 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
254 1.3 oster else
255 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
256 1.3 oster } else {
257 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
258 1.3 oster }
259 1.1 oster }
260 1.1 oster
261 1.3 oster int
262 1.3 oster rf_VerifyParityRAID1(
263 1.3 oster RF_Raid_t * raidPtr,
264 1.3 oster RF_RaidAddr_t raidAddr,
265 1.3 oster RF_PhysDiskAddr_t * parityPDA,
266 1.3 oster int correct_it,
267 1.3 oster RF_RaidAccessFlags_t flags)
268 1.1 oster {
269 1.5 oster int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
270 1.13 oster RF_DagNode_t *blockNode, *wrBlock;
271 1.3 oster RF_DagHeader_t *rd_dag_h, *wr_dag_h;
272 1.3 oster RF_AccessStripeMapHeader_t *asm_h;
273 1.3 oster RF_AllocListElem_t *allocList;
274 1.3 oster RF_AccTraceEntry_t tracerec;
275 1.3 oster RF_ReconUnitNum_t which_ru;
276 1.3 oster RF_RaidLayout_t *layoutPtr;
277 1.3 oster RF_AccessStripeMap_t *aasm;
278 1.3 oster RF_SectorCount_t nsector;
279 1.3 oster RF_RaidAddr_t startAddr;
280 1.3 oster char *buf, *buf1, *buf2;
281 1.3 oster RF_PhysDiskAddr_t *pda;
282 1.3 oster RF_StripeNum_t psID;
283 1.3 oster RF_MCPair_t *mcpair;
284 1.3 oster
285 1.3 oster layoutPtr = &raidPtr->Layout;
286 1.3 oster startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
287 1.3 oster nsector = parityPDA->numSector;
288 1.3 oster nbytes = rf_RaidAddressToByte(raidPtr, nsector);
289 1.3 oster psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
290 1.3 oster
291 1.3 oster asm_h = NULL;
292 1.3 oster rd_dag_h = wr_dag_h = NULL;
293 1.3 oster mcpair = NULL;
294 1.3 oster
295 1.3 oster ret = RF_PARITY_COULD_NOT_VERIFY;
296 1.3 oster
297 1.3 oster rf_MakeAllocList(allocList);
298 1.3 oster if (allocList == NULL)
299 1.3 oster return (RF_PARITY_COULD_NOT_VERIFY);
300 1.3 oster mcpair = rf_AllocMCPair();
301 1.3 oster if (mcpair == NULL)
302 1.3 oster goto done;
303 1.3 oster RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
304 1.3 oster stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
305 1.3 oster bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
306 1.3 oster RF_MallocAndAdd(buf, bcount, (char *), allocList);
307 1.3 oster if (buf == NULL)
308 1.3 oster goto done;
309 1.10 oster #if RF_DEBUG_VERIFYPARITY
310 1.3 oster if (rf_verifyParityDebug) {
311 1.5 oster printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
312 1.5 oster raidPtr->raidid, (long) buf, bcount, (long) buf,
313 1.5 oster (long) buf + bcount);
314 1.3 oster }
315 1.10 oster #endif
316 1.3 oster /*
317 1.3 oster * Generate a DAG which will read the entire stripe- then we can
318 1.3 oster * just compare data chunks versus "parity" chunks.
319 1.3 oster */
320 1.3 oster
321 1.3 oster rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
322 1.3 oster rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
323 1.3 oster RF_IO_NORMAL_PRIORITY);
324 1.3 oster if (rd_dag_h == NULL)
325 1.3 oster goto done;
326 1.3 oster blockNode = rd_dag_h->succedents[0];
327 1.3 oster
328 1.3 oster /*
329 1.3 oster * Map the access to physical disk addresses (PDAs)- this will
330 1.3 oster * get us both a list of data addresses, and "parity" addresses
331 1.3 oster * (which are really mirror copies).
332 1.3 oster */
333 1.3 oster asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
334 1.3 oster buf, RF_DONT_REMAP);
335 1.3 oster aasm = asm_h->stripeMap;
336 1.3 oster
337 1.3 oster buf1 = buf;
338 1.3 oster /*
339 1.3 oster * Loop through the data blocks, setting up read nodes for each.
340 1.3 oster */
341 1.3 oster for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
342 1.3 oster RF_ASSERT(pda);
343 1.3 oster
344 1.3 oster rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
345 1.3 oster
346 1.3 oster RF_ASSERT(pda->numSector != 0);
347 1.3 oster if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
348 1.3 oster /* cannot verify parity with dead disk */
349 1.3 oster goto done;
350 1.3 oster }
351 1.3 oster pda->bufPtr = buf1;
352 1.3 oster blockNode->succedents[i]->params[0].p = pda;
353 1.3 oster blockNode->succedents[i]->params[1].p = buf1;
354 1.3 oster blockNode->succedents[i]->params[2].v = psID;
355 1.3 oster blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
356 1.3 oster buf1 += nbytes;
357 1.3 oster }
358 1.3 oster RF_ASSERT(pda == NULL);
359 1.3 oster /*
360 1.3 oster * keep i, buf1 running
361 1.3 oster *
362 1.3 oster * Loop through parity blocks, setting up read nodes for each.
363 1.3 oster */
364 1.3 oster for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
365 1.3 oster RF_ASSERT(pda);
366 1.3 oster rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
367 1.3 oster RF_ASSERT(pda->numSector != 0);
368 1.3 oster if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
369 1.3 oster /* cannot verify parity with dead disk */
370 1.3 oster goto done;
371 1.3 oster }
372 1.3 oster pda->bufPtr = buf1;
373 1.3 oster blockNode->succedents[i]->params[0].p = pda;
374 1.3 oster blockNode->succedents[i]->params[1].p = buf1;
375 1.3 oster blockNode->succedents[i]->params[2].v = psID;
376 1.3 oster blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
377 1.3 oster buf1 += nbytes;
378 1.3 oster }
379 1.3 oster RF_ASSERT(pda == NULL);
380 1.3 oster
381 1.6 thorpej memset((char *) &tracerec, 0, sizeof(tracerec));
382 1.3 oster rd_dag_h->tracerec = &tracerec;
383 1.3 oster
384 1.9 oster #if 0
385 1.3 oster if (rf_verifyParityDebug > 1) {
386 1.5 oster printf("raid%d: RAID1 parity verify read dag:\n",
387 1.5 oster raidPtr->raidid);
388 1.3 oster rf_PrintDAGList(rd_dag_h);
389 1.3 oster }
390 1.9 oster #endif
391 1.3 oster RF_LOCK_MUTEX(mcpair->mutex);
392 1.3 oster mcpair->flag = 0;
393 1.3 oster rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
394 1.3 oster (void *) mcpair);
395 1.3 oster while (mcpair->flag == 0) {
396 1.3 oster RF_WAIT_MCPAIR(mcpair);
397 1.3 oster }
398 1.3 oster RF_UNLOCK_MUTEX(mcpair->mutex);
399 1.3 oster
400 1.3 oster if (rd_dag_h->status != rf_enable) {
401 1.3 oster RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
402 1.3 oster ret = RF_PARITY_COULD_NOT_VERIFY;
403 1.3 oster goto done;
404 1.3 oster }
405 1.3 oster /*
406 1.3 oster * buf1 is the beginning of the data blocks chunk
407 1.3 oster * buf2 is the beginning of the parity blocks chunk
408 1.3 oster */
409 1.3 oster buf1 = buf;
410 1.3 oster buf2 = buf + (nbytes * layoutPtr->numDataCol);
411 1.3 oster ret = RF_PARITY_OKAY;
412 1.3 oster /*
413 1.3 oster * bbufs is "bad bufs"- an array whose entries are the data
414 1.3 oster * column numbers where we had miscompares. (That is, column 0
415 1.3 oster * and column 1 of the array are mirror copies, and are considered
416 1.3 oster * "data column 0" for this purpose).
417 1.3 oster */
418 1.3 oster RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
419 1.3 oster allocList);
420 1.3 oster nbad = 0;
421 1.3 oster /*
422 1.3 oster * Check data vs "parity" (mirror copy).
423 1.3 oster */
424 1.3 oster for (i = 0; i < layoutPtr->numDataCol; i++) {
425 1.10 oster #if RF_DEBUG_VERIFYPARITY
426 1.3 oster if (rf_verifyParityDebug) {
427 1.5 oster printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
428 1.5 oster raidPtr->raidid, nbytes, i, (long) buf1,
429 1.5 oster (long) buf2, (long) buf);
430 1.3 oster }
431 1.10 oster #endif
432 1.7 thorpej ret = memcmp(buf1, buf2, nbytes);
433 1.3 oster if (ret) {
434 1.10 oster #if RF_DEBUG_VERIFYPARITY
435 1.3 oster if (rf_verifyParityDebug > 1) {
436 1.3 oster for (j = 0; j < nbytes; j++) {
437 1.3 oster if (buf1[j] != buf2[j])
438 1.3 oster break;
439 1.3 oster }
440 1.3 oster printf("psid=%ld j=%d\n", (long) psID, j);
441 1.3 oster printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
442 1.3 oster buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
443 1.3 oster printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
444 1.3 oster buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
445 1.3 oster }
446 1.3 oster if (rf_verifyParityDebug) {
447 1.5 oster printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
448 1.3 oster }
449 1.10 oster #endif
450 1.3 oster /*
451 1.3 oster * Parity is bad. Keep track of which columns were bad.
452 1.3 oster */
453 1.3 oster if (bbufs)
454 1.3 oster bbufs[nbad] = i;
455 1.3 oster nbad++;
456 1.3 oster ret = RF_PARITY_BAD;
457 1.3 oster }
458 1.3 oster buf1 += nbytes;
459 1.3 oster buf2 += nbytes;
460 1.3 oster }
461 1.3 oster
462 1.3 oster if ((ret != RF_PARITY_OKAY) && correct_it) {
463 1.3 oster ret = RF_PARITY_COULD_NOT_CORRECT;
464 1.10 oster #if RF_DEBUG_VERIFYPARITY
465 1.3 oster if (rf_verifyParityDebug) {
466 1.5 oster printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
467 1.3 oster }
468 1.10 oster #endif
469 1.3 oster if (bbufs == NULL)
470 1.3 oster goto done;
471 1.3 oster /*
472 1.3 oster * Make a DAG with one write node for each bad unit. We'll simply
473 1.3 oster * write the contents of the data unit onto the parity unit for
474 1.3 oster * correction. (It's possible that the mirror copy was the correct
475 1.3 oster * copy, and that we're spooging good data by writing bad over it,
476 1.3 oster * but there's no way we can know that.
477 1.3 oster */
478 1.3 oster wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
479 1.3 oster rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
480 1.3 oster RF_IO_NORMAL_PRIORITY);
481 1.3 oster if (wr_dag_h == NULL)
482 1.3 oster goto done;
483 1.3 oster wrBlock = wr_dag_h->succedents[0];
484 1.3 oster /*
485 1.3 oster * Fill in a write node for each bad compare.
486 1.3 oster */
487 1.3 oster for (i = 0; i < nbad; i++) {
488 1.3 oster j = i + layoutPtr->numDataCol;
489 1.3 oster pda = blockNode->succedents[j]->params[0].p;
490 1.3 oster pda->bufPtr = blockNode->succedents[i]->params[1].p;
491 1.3 oster wrBlock->succedents[i]->params[0].p = pda;
492 1.3 oster wrBlock->succedents[i]->params[1].p = pda->bufPtr;
493 1.3 oster wrBlock->succedents[i]->params[2].v = psID;
494 1.3 oster wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
495 1.3 oster }
496 1.6 thorpej memset((char *) &tracerec, 0, sizeof(tracerec));
497 1.3 oster wr_dag_h->tracerec = &tracerec;
498 1.9 oster #if 0
499 1.3 oster if (rf_verifyParityDebug > 1) {
500 1.3 oster printf("Parity verify write dag:\n");
501 1.3 oster rf_PrintDAGList(wr_dag_h);
502 1.3 oster }
503 1.9 oster #endif
504 1.3 oster RF_LOCK_MUTEX(mcpair->mutex);
505 1.3 oster mcpair->flag = 0;
506 1.3 oster /* fire off the write DAG */
507 1.3 oster rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
508 1.3 oster (void *) mcpair);
509 1.3 oster while (!mcpair->flag) {
510 1.3 oster RF_WAIT_COND(mcpair->cond, mcpair->mutex);
511 1.3 oster }
512 1.3 oster RF_UNLOCK_MUTEX(mcpair->mutex);
513 1.3 oster if (wr_dag_h->status != rf_enable) {
514 1.3 oster RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
515 1.3 oster goto done;
516 1.3 oster }
517 1.3 oster ret = RF_PARITY_CORRECTED;
518 1.3 oster }
519 1.1 oster done:
520 1.3 oster /*
521 1.3 oster * All done. We might've gotten here without doing part of the function,
522 1.3 oster * so cleanup what we have to and return our running status.
523 1.3 oster */
524 1.3 oster if (asm_h)
525 1.3 oster rf_FreeAccessStripeMap(asm_h);
526 1.3 oster if (rd_dag_h)
527 1.3 oster rf_FreeDAG(rd_dag_h);
528 1.3 oster if (wr_dag_h)
529 1.3 oster rf_FreeDAG(wr_dag_h);
530 1.3 oster if (mcpair)
531 1.3 oster rf_FreeMCPair(mcpair);
532 1.3 oster rf_FreeAllocList(allocList);
533 1.10 oster #if RF_DEBUG_VERIFYPARITY
534 1.3 oster if (rf_verifyParityDebug) {
535 1.5 oster printf("raid%d: RAID1 parity verify, returning %d\n",
536 1.5 oster raidPtr->raidid, ret);
537 1.3 oster }
538 1.10 oster #endif
539 1.3 oster return (ret);
540 1.1 oster }
541 1.1 oster
542 1.3 oster int
543 1.3 oster rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
544 1.3 oster RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
545 1.3 oster int keep_it; /* whether we can keep this buffer or we have
546 1.3 oster * to return it */
547 1.3 oster int use_committed; /* whether to use a committed or an available
548 1.3 oster * recon buffer */
549 1.1 oster {
550 1.3 oster RF_ReconParityStripeStatus_t *pssPtr;
551 1.3 oster RF_ReconCtrl_t *reconCtrlPtr;
552 1.5 oster int retcode, created;
553 1.3 oster RF_CallbackDesc_t *cb, *p;
554 1.3 oster RF_ReconBuffer_t *t;
555 1.3 oster RF_Raid_t *raidPtr;
556 1.3 oster caddr_t ta;
557 1.3 oster
558 1.3 oster retcode = 0;
559 1.3 oster created = 0;
560 1.3 oster
561 1.3 oster raidPtr = rbuf->raidPtr;
562 1.14 oster reconCtrlPtr = raidPtr->reconControl;
563 1.3 oster
564 1.3 oster RF_ASSERT(rbuf);
565 1.3 oster RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
566 1.3 oster
567 1.11 oster #if RF_DEBUG_RECON
568 1.3 oster if (rf_reconbufferDebug) {
569 1.14 oster printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
570 1.14 oster raidPtr->raidid, rbuf->col,
571 1.5 oster (long) rbuf->parityStripeID, rbuf->which_ru,
572 1.5 oster (long) rbuf->failedDiskSectorOffset);
573 1.3 oster }
574 1.10 oster #endif
575 1.3 oster if (rf_reconDebug) {
576 1.3 oster printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
577 1.3 oster (long) rbuf->parityStripeID, (long) rbuf->buffer);
578 1.3 oster printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
579 1.3 oster (long) rbuf->parityStripeID,
580 1.3 oster rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
581 1.3 oster rbuf->buffer[4]);
582 1.3 oster }
583 1.14 oster RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
584 1.3 oster
585 1.3 oster RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
586 1.3 oster
587 1.3 oster pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
588 1.3 oster rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
589 1.3 oster RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
590 1.3 oster * an rbuf for it */
591 1.3 oster
592 1.3 oster /*
593 1.3 oster * Since this is simple mirroring, the first submission for a stripe is also
594 1.3 oster * treated as the last.
595 1.3 oster */
596 1.3 oster
597 1.3 oster t = NULL;
598 1.3 oster if (keep_it) {
599 1.11 oster #if RF_DEBUG_RECON
600 1.3 oster if (rf_reconbufferDebug) {
601 1.5 oster printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
602 1.5 oster raidPtr->raidid);
603 1.3 oster }
604 1.10 oster #endif
605 1.3 oster t = rbuf;
606 1.3 oster } else {
607 1.3 oster if (use_committed) {
608 1.11 oster #if RF_DEBUG_RECON
609 1.3 oster if (rf_reconbufferDebug) {
610 1.5 oster printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
611 1.3 oster }
612 1.10 oster #endif
613 1.3 oster t = reconCtrlPtr->committedRbufs;
614 1.3 oster RF_ASSERT(t);
615 1.3 oster reconCtrlPtr->committedRbufs = t->next;
616 1.3 oster t->next = NULL;
617 1.3 oster } else
618 1.3 oster if (reconCtrlPtr->floatingRbufs) {
619 1.11 oster #if RF_DEBUG_RECON
620 1.3 oster if (rf_reconbufferDebug) {
621 1.5 oster printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
622 1.3 oster }
623 1.10 oster #endif
624 1.3 oster t = reconCtrlPtr->floatingRbufs;
625 1.3 oster reconCtrlPtr->floatingRbufs = t->next;
626 1.3 oster t->next = NULL;
627 1.3 oster }
628 1.3 oster }
629 1.3 oster if (t == NULL) {
630 1.11 oster #if RF_DEBUG_RECON
631 1.3 oster if (rf_reconbufferDebug) {
632 1.5 oster printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
633 1.3 oster }
634 1.10 oster #endif
635 1.3 oster RF_ASSERT((keep_it == 0) && (use_committed == 0));
636 1.3 oster raidPtr->procsInBufWait++;
637 1.3 oster if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
638 1.3 oster && (raidPtr->numFullReconBuffers == 0)) {
639 1.3 oster /* ruh-ro */
640 1.3 oster RF_ERRORMSG("Buffer wait deadlock\n");
641 1.14 oster rf_PrintPSStatusTable(raidPtr);
642 1.3 oster RF_PANIC();
643 1.3 oster }
644 1.3 oster pssPtr->flags |= RF_PSS_BUFFERWAIT;
645 1.3 oster cb = rf_AllocCallbackDesc();
646 1.3 oster cb->col = rbuf->col;
647 1.3 oster cb->callbackArg.v = rbuf->parityStripeID;
648 1.3 oster cb->callbackArg2.v = rbuf->which_ru;
649 1.3 oster cb->next = NULL;
650 1.3 oster if (reconCtrlPtr->bufferWaitList == NULL) {
651 1.3 oster /* we are the wait list- lucky us */
652 1.3 oster reconCtrlPtr->bufferWaitList = cb;
653 1.3 oster } else {
654 1.3 oster /* append to wait list */
655 1.3 oster for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
656 1.3 oster p->next = cb;
657 1.3 oster }
658 1.3 oster retcode = 1;
659 1.3 oster goto out;
660 1.3 oster }
661 1.3 oster if (t != rbuf) {
662 1.3 oster t->col = reconCtrlPtr->fcol;
663 1.3 oster t->parityStripeID = rbuf->parityStripeID;
664 1.3 oster t->which_ru = rbuf->which_ru;
665 1.3 oster t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
666 1.3 oster t->spCol = rbuf->spCol;
667 1.3 oster t->spOffset = rbuf->spOffset;
668 1.3 oster /* Swap buffers. DANCE! */
669 1.3 oster ta = t->buffer;
670 1.3 oster t->buffer = rbuf->buffer;
671 1.3 oster rbuf->buffer = ta;
672 1.3 oster }
673 1.3 oster /*
674 1.3 oster * Use the rbuf we've been given as the target.
675 1.3 oster */
676 1.3 oster RF_ASSERT(pssPtr->rbuf == NULL);
677 1.3 oster pssPtr->rbuf = t;
678 1.3 oster
679 1.3 oster t->count = 1;
680 1.3 oster /*
681 1.3 oster * Below, we use 1 for numDataCol (which is equal to the count in the
682 1.3 oster * previous line), so we'll always be done.
683 1.3 oster */
684 1.3 oster rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
685 1.1 oster
686 1.1 oster out:
687 1.14 oster RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
688 1.3 oster RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
689 1.11 oster #if RF_DEBUG_RECON
690 1.3 oster if (rf_reconbufferDebug) {
691 1.5 oster printf("raid%d: RAID1 rbuf submission: returning %d\n",
692 1.5 oster raidPtr->raidid, retcode);
693 1.3 oster }
694 1.10 oster #endif
695 1.3 oster return (retcode);
696 1.1 oster }
697