rf_raid1.c revision 1.39 1 1.39 oster /* $NetBSD: rf_raid1.c,v 1.39 2021/07/23 22:34:12 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*****************************************************************************
30 1.1 oster *
31 1.1 oster * rf_raid1.c -- implements RAID Level 1
32 1.1 oster *
33 1.1 oster *****************************************************************************/
34 1.8 lukem
35 1.8 lukem #include <sys/cdefs.h>
36 1.39 oster __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.39 2021/07/23 22:34:12 oster Exp $");
37 1.1 oster
38 1.1 oster #include "rf_raid.h"
39 1.1 oster #include "rf_raid1.h"
40 1.1 oster #include "rf_dag.h"
41 1.1 oster #include "rf_dagffrd.h"
42 1.1 oster #include "rf_dagffwr.h"
43 1.1 oster #include "rf_dagdegrd.h"
44 1.1 oster #include "rf_dagutils.h"
45 1.1 oster #include "rf_dagfuncs.h"
46 1.1 oster #include "rf_diskqueue.h"
47 1.1 oster #include "rf_general.h"
48 1.1 oster #include "rf_utils.h"
49 1.1 oster #include "rf_parityscan.h"
50 1.1 oster #include "rf_mcpair.h"
51 1.1 oster #include "rf_layout.h"
52 1.1 oster #include "rf_map.h"
53 1.1 oster #include "rf_engine.h"
54 1.1 oster #include "rf_reconbuffer.h"
55 1.1 oster
56 1.1 oster typedef struct RF_Raid1ConfigInfo_s {
57 1.3 oster RF_RowCol_t **stripeIdentifier;
58 1.3 oster } RF_Raid1ConfigInfo_t;
59 1.1 oster /* start of day code specific to RAID level 1 */
60 1.25 perry int
61 1.29 christos rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
62 1.29 christos RF_Config_t *cfgPtr)
63 1.1 oster {
64 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
65 1.3 oster RF_Raid1ConfigInfo_t *info;
66 1.3 oster RF_RowCol_t i;
67 1.3 oster
68 1.39 oster /* Sanity check the number of columns... */
69 1.39 oster if (raidPtr->numCol < 2 || raidPtr->numCol % 2 != 0) {
70 1.39 oster return (EINVAL);
71 1.39 oster }
72 1.39 oster
73 1.3 oster /* create a RAID level 1 configuration structure */
74 1.36 christos info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
75 1.3 oster if (info == NULL)
76 1.3 oster return (ENOMEM);
77 1.3 oster layoutPtr->layoutSpecificInfo = (void *) info;
78 1.3 oster
79 1.3 oster /* ... and fill it in. */
80 1.3 oster info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
81 1.3 oster if (info->stripeIdentifier == NULL)
82 1.3 oster return (ENOMEM);
83 1.3 oster for (i = 0; i < (raidPtr->numCol / 2); i++) {
84 1.3 oster info->stripeIdentifier[i][0] = (2 * i);
85 1.3 oster info->stripeIdentifier[i][1] = (2 * i) + 1;
86 1.3 oster }
87 1.3 oster
88 1.3 oster /* this implementation of RAID level 1 uses one row of numCol disks
89 1.3 oster * and allows multiple (numCol / 2) stripes per row. A stripe
90 1.3 oster * consists of a single data unit and a single parity (mirror) unit.
91 1.3 oster * stripe id = raidAddr / stripeUnitSize */
92 1.3 oster raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
93 1.3 oster layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
94 1.3 oster layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
95 1.3 oster layoutPtr->numDataCol = 1;
96 1.3 oster layoutPtr->numParityCol = 1;
97 1.3 oster return (0);
98 1.1 oster }
99 1.1 oster
100 1.1 oster
101 1.1 oster /* returns the physical disk location of the primary copy in the mirror pair */
102 1.25 perry void
103 1.15 oster rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
104 1.28 christos RF_RowCol_t *col, RF_SectorNum_t *diskSector,
105 1.29 christos int remap)
106 1.1 oster {
107 1.3 oster RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
108 1.3 oster RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
109 1.1 oster
110 1.3 oster *col = 2 * mirrorPair;
111 1.3 oster *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
112 1.1 oster }
113 1.1 oster
114 1.1 oster
115 1.1 oster /* Map Parity
116 1.1 oster *
117 1.1 oster * returns the physical disk location of the secondary copy in the mirror
118 1.1 oster * pair
119 1.1 oster */
120 1.25 perry void
121 1.15 oster rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
122 1.28 christos RF_RowCol_t *col, RF_SectorNum_t *diskSector,
123 1.29 christos int remap)
124 1.1 oster {
125 1.3 oster RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
126 1.3 oster RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
127 1.1 oster
128 1.3 oster *col = (2 * mirrorPair) + 1;
129 1.1 oster
130 1.3 oster *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
131 1.1 oster }
132 1.1 oster
133 1.1 oster
134 1.1 oster /* IdentifyStripeRAID1
135 1.1 oster *
136 1.1 oster * returns a list of disks for a given redundancy group
137 1.1 oster */
138 1.25 perry void
139 1.15 oster rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
140 1.15 oster RF_RowCol_t **diskids)
141 1.1 oster {
142 1.3 oster RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
143 1.3 oster RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
144 1.3 oster RF_ASSERT(stripeID >= 0);
145 1.3 oster RF_ASSERT(addr >= 0);
146 1.3 oster *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
147 1.3 oster RF_ASSERT(*diskids);
148 1.1 oster }
149 1.1 oster
150 1.1 oster
151 1.1 oster /* MapSIDToPSIDRAID1
152 1.1 oster *
153 1.1 oster * maps a logical stripe to a stripe in the redundant array
154 1.1 oster */
155 1.25 perry void
156 1.29 christos rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr,
157 1.28 christos RF_StripeNum_t stripeID,
158 1.15 oster RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
159 1.1 oster {
160 1.3 oster *which_ru = 0;
161 1.3 oster *psID = stripeID;
162 1.1 oster }
163 1.1 oster
164 1.1 oster
165 1.1 oster
166 1.1 oster /******************************************************************************
167 1.1 oster * select a graph to perform a single-stripe access
168 1.1 oster *
169 1.1 oster * Parameters: raidPtr - description of the physical array
170 1.1 oster * type - type of operation (read or write) requested
171 1.1 oster * asmap - logical & physical addresses for this access
172 1.1 oster * createFunc - name of function to use to create the graph
173 1.1 oster *****************************************************************************/
174 1.1 oster
175 1.25 perry void
176 1.15 oster rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
177 1.15 oster RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
178 1.1 oster {
179 1.35 martin RF_RowCol_t fcol, oc __unused;
180 1.3 oster RF_PhysDiskAddr_t *failedPDA;
181 1.5 oster int prior_recon;
182 1.3 oster RF_RowStatus_t rstat;
183 1.35 martin RF_SectorNum_t oo __unused;
184 1.3 oster
185 1.3 oster
186 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
187 1.3 oster
188 1.3 oster if (asmap->numDataFailed + asmap->numParityFailed > 1) {
189 1.23 oster #if RF_DEBUG_DAG
190 1.25 perry if (rf_dagDebug)
191 1.16 oster RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
192 1.23 oster #endif
193 1.3 oster *createFunc = NULL;
194 1.3 oster return;
195 1.3 oster }
196 1.3 oster if (asmap->numDataFailed + asmap->numParityFailed) {
197 1.3 oster /*
198 1.3 oster * We've got a fault. Re-map to spare space, iff applicable.
199 1.3 oster * Shouldn't the arch-independent code do this for us?
200 1.3 oster * Anyway, it turns out if we don't do this here, then when
201 1.3 oster * we're reconstructing, writes go only to the surviving
202 1.3 oster * original disk, and aren't reflected on the reconstructed
203 1.3 oster * spare. Oops. --jimz
204 1.3 oster */
205 1.3 oster failedPDA = asmap->failedPDAs[0];
206 1.3 oster fcol = failedPDA->col;
207 1.14 oster rstat = raidPtr->status;
208 1.3 oster prior_recon = (rstat == rf_rs_reconfigured) || (
209 1.3 oster (rstat == rf_rs_reconstructing) ?
210 1.14 oster rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
211 1.3 oster );
212 1.3 oster if (prior_recon) {
213 1.3 oster oc = fcol;
214 1.3 oster oo = failedPDA->startSector;
215 1.3 oster /*
216 1.3 oster * If we did distributed sparing, we'd monkey with that here.
217 1.3 oster * But we don't, so we'll
218 1.3 oster */
219 1.14 oster failedPDA->col = raidPtr->Disks[fcol].spareCol;
220 1.3 oster /*
221 1.3 oster * Redirect other components, iff necessary. This looks
222 1.3 oster * pretty suspicious to me, but it's what the raid5
223 1.3 oster * DAG select does.
224 1.3 oster */
225 1.3 oster if (asmap->parityInfo->next) {
226 1.3 oster if (failedPDA == asmap->parityInfo) {
227 1.3 oster failedPDA->next->col = failedPDA->col;
228 1.3 oster } else {
229 1.3 oster if (failedPDA == asmap->parityInfo->next) {
230 1.3 oster asmap->parityInfo->col = failedPDA->col;
231 1.3 oster }
232 1.3 oster }
233 1.3 oster }
234 1.23 oster #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
235 1.3 oster if (rf_dagDebug || rf_mapDebug) {
236 1.14 oster printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
237 1.25 perry raidPtr->raidid, type, oc,
238 1.25 perry (long) oo,
239 1.5 oster failedPDA->col,
240 1.5 oster (long) failedPDA->startSector);
241 1.3 oster }
242 1.23 oster #endif
243 1.3 oster asmap->numDataFailed = asmap->numParityFailed = 0;
244 1.3 oster }
245 1.3 oster }
246 1.3 oster if (type == RF_IO_TYPE_READ) {
247 1.3 oster if (asmap->numDataFailed == 0)
248 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
249 1.3 oster else
250 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
251 1.3 oster } else {
252 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
253 1.3 oster }
254 1.1 oster }
255 1.1 oster
256 1.25 perry int
257 1.15 oster rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
258 1.15 oster RF_PhysDiskAddr_t *parityPDA, int correct_it,
259 1.15 oster RF_RaidAccessFlags_t flags)
260 1.1 oster {
261 1.5 oster int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
262 1.13 oster RF_DagNode_t *blockNode, *wrBlock;
263 1.3 oster RF_DagHeader_t *rd_dag_h, *wr_dag_h;
264 1.3 oster RF_AccessStripeMapHeader_t *asm_h;
265 1.3 oster RF_AllocListElem_t *allocList;
266 1.19 oster #if RF_ACC_TRACE > 0
267 1.3 oster RF_AccTraceEntry_t tracerec;
268 1.19 oster #endif
269 1.3 oster RF_ReconUnitNum_t which_ru;
270 1.3 oster RF_RaidLayout_t *layoutPtr;
271 1.3 oster RF_AccessStripeMap_t *aasm;
272 1.3 oster RF_SectorCount_t nsector;
273 1.3 oster RF_RaidAddr_t startAddr;
274 1.26 christos char *bf, *buf1, *buf2;
275 1.3 oster RF_PhysDiskAddr_t *pda;
276 1.3 oster RF_StripeNum_t psID;
277 1.3 oster RF_MCPair_t *mcpair;
278 1.3 oster
279 1.3 oster layoutPtr = &raidPtr->Layout;
280 1.3 oster startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
281 1.3 oster nsector = parityPDA->numSector;
282 1.3 oster nbytes = rf_RaidAddressToByte(raidPtr, nsector);
283 1.3 oster psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
284 1.3 oster
285 1.3 oster asm_h = NULL;
286 1.3 oster rd_dag_h = wr_dag_h = NULL;
287 1.3 oster mcpair = NULL;
288 1.3 oster
289 1.3 oster ret = RF_PARITY_COULD_NOT_VERIFY;
290 1.3 oster
291 1.3 oster rf_MakeAllocList(allocList);
292 1.3 oster if (allocList == NULL)
293 1.3 oster return (RF_PARITY_COULD_NOT_VERIFY);
294 1.38 oster mcpair = rf_AllocMCPair(raidPtr);
295 1.3 oster if (mcpair == NULL)
296 1.3 oster goto done;
297 1.3 oster RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
298 1.3 oster stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
299 1.3 oster bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
300 1.36 christos bf = RF_MallocAndAdd(bcount, allocList);
301 1.26 christos if (bf == NULL)
302 1.3 oster goto done;
303 1.10 oster #if RF_DEBUG_VERIFYPARITY
304 1.3 oster if (rf_verifyParityDebug) {
305 1.5 oster printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
306 1.26 christos raidPtr->raidid, (long) bf, bcount, (long) bf,
307 1.26 christos (long) bf + bcount);
308 1.3 oster }
309 1.10 oster #endif
310 1.3 oster /*
311 1.3 oster * Generate a DAG which will read the entire stripe- then we can
312 1.3 oster * just compare data chunks versus "parity" chunks.
313 1.3 oster */
314 1.3 oster
315 1.26 christos rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, bf,
316 1.3 oster rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
317 1.3 oster RF_IO_NORMAL_PRIORITY);
318 1.3 oster if (rd_dag_h == NULL)
319 1.3 oster goto done;
320 1.3 oster blockNode = rd_dag_h->succedents[0];
321 1.3 oster
322 1.3 oster /*
323 1.3 oster * Map the access to physical disk addresses (PDAs)- this will
324 1.3 oster * get us both a list of data addresses, and "parity" addresses
325 1.3 oster * (which are really mirror copies).
326 1.3 oster */
327 1.3 oster asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
328 1.26 christos bf, RF_DONT_REMAP);
329 1.3 oster aasm = asm_h->stripeMap;
330 1.3 oster
331 1.26 christos buf1 = bf;
332 1.3 oster /*
333 1.3 oster * Loop through the data blocks, setting up read nodes for each.
334 1.3 oster */
335 1.3 oster for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
336 1.3 oster RF_ASSERT(pda);
337 1.3 oster
338 1.3 oster rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
339 1.3 oster
340 1.3 oster RF_ASSERT(pda->numSector != 0);
341 1.3 oster if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
342 1.3 oster /* cannot verify parity with dead disk */
343 1.3 oster goto done;
344 1.3 oster }
345 1.3 oster pda->bufPtr = buf1;
346 1.3 oster blockNode->succedents[i]->params[0].p = pda;
347 1.3 oster blockNode->succedents[i]->params[1].p = buf1;
348 1.3 oster blockNode->succedents[i]->params[2].v = psID;
349 1.17 oster blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
350 1.3 oster buf1 += nbytes;
351 1.3 oster }
352 1.3 oster RF_ASSERT(pda == NULL);
353 1.3 oster /*
354 1.3 oster * keep i, buf1 running
355 1.3 oster *
356 1.3 oster * Loop through parity blocks, setting up read nodes for each.
357 1.3 oster */
358 1.3 oster for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
359 1.3 oster RF_ASSERT(pda);
360 1.3 oster rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
361 1.3 oster RF_ASSERT(pda->numSector != 0);
362 1.3 oster if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
363 1.3 oster /* cannot verify parity with dead disk */
364 1.3 oster goto done;
365 1.3 oster }
366 1.3 oster pda->bufPtr = buf1;
367 1.3 oster blockNode->succedents[i]->params[0].p = pda;
368 1.3 oster blockNode->succedents[i]->params[1].p = buf1;
369 1.3 oster blockNode->succedents[i]->params[2].v = psID;
370 1.17 oster blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
371 1.3 oster buf1 += nbytes;
372 1.3 oster }
373 1.3 oster RF_ASSERT(pda == NULL);
374 1.3 oster
375 1.19 oster #if RF_ACC_TRACE > 0
376 1.36 christos memset(&tracerec, 0, sizeof(tracerec));
377 1.3 oster rd_dag_h->tracerec = &tracerec;
378 1.19 oster #endif
379 1.9 oster #if 0
380 1.3 oster if (rf_verifyParityDebug > 1) {
381 1.25 perry printf("raid%d: RAID1 parity verify read dag:\n",
382 1.5 oster raidPtr->raidid);
383 1.3 oster rf_PrintDAGList(rd_dag_h);
384 1.3 oster }
385 1.9 oster #endif
386 1.33 mrg RF_LOCK_MCPAIR(mcpair);
387 1.3 oster mcpair->flag = 0;
388 1.33 mrg RF_UNLOCK_MCPAIR(mcpair);
389 1.18 oster
390 1.3 oster rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
391 1.3 oster (void *) mcpair);
392 1.18 oster
393 1.33 mrg RF_LOCK_MCPAIR(mcpair);
394 1.3 oster while (mcpair->flag == 0) {
395 1.3 oster RF_WAIT_MCPAIR(mcpair);
396 1.3 oster }
397 1.33 mrg RF_UNLOCK_MCPAIR(mcpair);
398 1.3 oster
399 1.3 oster if (rd_dag_h->status != rf_enable) {
400 1.3 oster RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
401 1.3 oster ret = RF_PARITY_COULD_NOT_VERIFY;
402 1.3 oster goto done;
403 1.3 oster }
404 1.3 oster /*
405 1.3 oster * buf1 is the beginning of the data blocks chunk
406 1.3 oster * buf2 is the beginning of the parity blocks chunk
407 1.3 oster */
408 1.26 christos buf1 = bf;
409 1.26 christos buf2 = bf + (nbytes * layoutPtr->numDataCol);
410 1.3 oster ret = RF_PARITY_OKAY;
411 1.3 oster /*
412 1.3 oster * bbufs is "bad bufs"- an array whose entries are the data
413 1.3 oster * column numbers where we had miscompares. (That is, column 0
414 1.3 oster * and column 1 of the array are mirror copies, and are considered
415 1.3 oster * "data column 0" for this purpose).
416 1.3 oster */
417 1.36 christos bbufs = RF_MallocAndAdd(layoutPtr->numParityCol * sizeof(*bbufs),
418 1.3 oster allocList);
419 1.3 oster nbad = 0;
420 1.3 oster /*
421 1.3 oster * Check data vs "parity" (mirror copy).
422 1.3 oster */
423 1.3 oster for (i = 0; i < layoutPtr->numDataCol; i++) {
424 1.10 oster #if RF_DEBUG_VERIFYPARITY
425 1.3 oster if (rf_verifyParityDebug) {
426 1.5 oster printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
427 1.25 perry raidPtr->raidid, nbytes, i, (long) buf1,
428 1.26 christos (long) buf2, (long) bf);
429 1.3 oster }
430 1.10 oster #endif
431 1.7 thorpej ret = memcmp(buf1, buf2, nbytes);
432 1.3 oster if (ret) {
433 1.10 oster #if RF_DEBUG_VERIFYPARITY
434 1.3 oster if (rf_verifyParityDebug > 1) {
435 1.3 oster for (j = 0; j < nbytes; j++) {
436 1.3 oster if (buf1[j] != buf2[j])
437 1.3 oster break;
438 1.3 oster }
439 1.3 oster printf("psid=%ld j=%d\n", (long) psID, j);
440 1.3 oster printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
441 1.3 oster buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
442 1.3 oster printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
443 1.3 oster buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
444 1.3 oster }
445 1.3 oster if (rf_verifyParityDebug) {
446 1.5 oster printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
447 1.3 oster }
448 1.10 oster #endif
449 1.3 oster /*
450 1.3 oster * Parity is bad. Keep track of which columns were bad.
451 1.3 oster */
452 1.3 oster if (bbufs)
453 1.3 oster bbufs[nbad] = i;
454 1.3 oster nbad++;
455 1.3 oster ret = RF_PARITY_BAD;
456 1.3 oster }
457 1.3 oster buf1 += nbytes;
458 1.3 oster buf2 += nbytes;
459 1.3 oster }
460 1.3 oster
461 1.3 oster if ((ret != RF_PARITY_OKAY) && correct_it) {
462 1.3 oster ret = RF_PARITY_COULD_NOT_CORRECT;
463 1.10 oster #if RF_DEBUG_VERIFYPARITY
464 1.3 oster if (rf_verifyParityDebug) {
465 1.5 oster printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
466 1.3 oster }
467 1.10 oster #endif
468 1.3 oster if (bbufs == NULL)
469 1.3 oster goto done;
470 1.3 oster /*
471 1.3 oster * Make a DAG with one write node for each bad unit. We'll simply
472 1.3 oster * write the contents of the data unit onto the parity unit for
473 1.3 oster * correction. (It's possible that the mirror copy was the correct
474 1.3 oster * copy, and that we're spooging good data by writing bad over it,
475 1.3 oster * but there's no way we can know that.
476 1.3 oster */
477 1.26 christos wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, bf,
478 1.3 oster rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
479 1.3 oster RF_IO_NORMAL_PRIORITY);
480 1.3 oster if (wr_dag_h == NULL)
481 1.3 oster goto done;
482 1.3 oster wrBlock = wr_dag_h->succedents[0];
483 1.3 oster /*
484 1.3 oster * Fill in a write node for each bad compare.
485 1.3 oster */
486 1.3 oster for (i = 0; i < nbad; i++) {
487 1.3 oster j = i + layoutPtr->numDataCol;
488 1.3 oster pda = blockNode->succedents[j]->params[0].p;
489 1.3 oster pda->bufPtr = blockNode->succedents[i]->params[1].p;
490 1.3 oster wrBlock->succedents[i]->params[0].p = pda;
491 1.3 oster wrBlock->succedents[i]->params[1].p = pda->bufPtr;
492 1.3 oster wrBlock->succedents[i]->params[2].v = psID;
493 1.32 oster wrBlock->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
494 1.3 oster }
495 1.19 oster #if RF_ACC_TRACE > 0
496 1.36 christos memset(&tracerec, 0, sizeof(tracerec));
497 1.3 oster wr_dag_h->tracerec = &tracerec;
498 1.19 oster #endif
499 1.9 oster #if 0
500 1.3 oster if (rf_verifyParityDebug > 1) {
501 1.3 oster printf("Parity verify write dag:\n");
502 1.3 oster rf_PrintDAGList(wr_dag_h);
503 1.3 oster }
504 1.9 oster #endif
505 1.33 mrg RF_LOCK_MCPAIR(mcpair);
506 1.3 oster mcpair->flag = 0;
507 1.33 mrg RF_UNLOCK_MCPAIR(mcpair);
508 1.20 oster
509 1.3 oster /* fire off the write DAG */
510 1.3 oster rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
511 1.3 oster (void *) mcpair);
512 1.20 oster
513 1.33 mrg RF_LOCK_MCPAIR(mcpair);
514 1.3 oster while (!mcpair->flag) {
515 1.33 mrg RF_WAIT_MCPAIR(mcpair);
516 1.3 oster }
517 1.33 mrg RF_UNLOCK_MCPAIR(mcpair);
518 1.3 oster if (wr_dag_h->status != rf_enable) {
519 1.3 oster RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
520 1.3 oster goto done;
521 1.3 oster }
522 1.3 oster ret = RF_PARITY_CORRECTED;
523 1.3 oster }
524 1.1 oster done:
525 1.3 oster /*
526 1.3 oster * All done. We might've gotten here without doing part of the function,
527 1.3 oster * so cleanup what we have to and return our running status.
528 1.3 oster */
529 1.3 oster if (asm_h)
530 1.38 oster rf_FreeAccessStripeMap(raidPtr, asm_h);
531 1.3 oster if (rd_dag_h)
532 1.3 oster rf_FreeDAG(rd_dag_h);
533 1.3 oster if (wr_dag_h)
534 1.3 oster rf_FreeDAG(wr_dag_h);
535 1.3 oster if (mcpair)
536 1.38 oster rf_FreeMCPair(raidPtr, mcpair);
537 1.3 oster rf_FreeAllocList(allocList);
538 1.10 oster #if RF_DEBUG_VERIFYPARITY
539 1.3 oster if (rf_verifyParityDebug) {
540 1.25 perry printf("raid%d: RAID1 parity verify, returning %d\n",
541 1.5 oster raidPtr->raidid, ret);
542 1.3 oster }
543 1.10 oster #endif
544 1.3 oster return (ret);
545 1.1 oster }
546 1.1 oster
547 1.25 perry /* rbuf - the recon buffer to submit
548 1.15 oster * keep_it - whether we can keep this buffer or we have to return it
549 1.15 oster * use_committed - whether to use a committed or an available recon buffer
550 1.15 oster */
551 1.15 oster
552 1.25 perry int
553 1.15 oster rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
554 1.15 oster int use_committed)
555 1.1 oster {
556 1.3 oster RF_ReconParityStripeStatus_t *pssPtr;
557 1.3 oster RF_ReconCtrl_t *reconCtrlPtr;
558 1.21 oster int retcode;
559 1.37 christos RF_CallbackValueDesc_t *cb, *p;
560 1.3 oster RF_ReconBuffer_t *t;
561 1.3 oster RF_Raid_t *raidPtr;
562 1.30 christos void *ta;
563 1.3 oster
564 1.3 oster retcode = 0;
565 1.3 oster
566 1.3 oster raidPtr = rbuf->raidPtr;
567 1.14 oster reconCtrlPtr = raidPtr->reconControl;
568 1.3 oster
569 1.3 oster RF_ASSERT(rbuf);
570 1.3 oster RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
571 1.3 oster
572 1.11 oster #if RF_DEBUG_RECON
573 1.3 oster if (rf_reconbufferDebug) {
574 1.14 oster printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
575 1.25 perry raidPtr->raidid, rbuf->col,
576 1.5 oster (long) rbuf->parityStripeID, rbuf->which_ru,
577 1.5 oster (long) rbuf->failedDiskSectorOffset);
578 1.3 oster }
579 1.10 oster #endif
580 1.3 oster if (rf_reconDebug) {
581 1.30 christos unsigned char *b = rbuf->buffer;
582 1.3 oster printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
583 1.3 oster (long) rbuf->parityStripeID, (long) rbuf->buffer);
584 1.3 oster printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
585 1.30 christos (long)rbuf->parityStripeID, b[0], b[1], b[2], b[3], b[4]);
586 1.3 oster }
587 1.14 oster RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
588 1.3 oster
589 1.34 mrg rf_lock_mutex2(reconCtrlPtr->rb_mutex);
590 1.24 oster while(reconCtrlPtr->rb_lock) {
591 1.34 mrg rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
592 1.24 oster }
593 1.24 oster reconCtrlPtr->rb_lock = 1;
594 1.34 mrg rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
595 1.3 oster
596 1.3 oster pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
597 1.21 oster rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL);
598 1.3 oster RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
599 1.3 oster * an rbuf for it */
600 1.3 oster
601 1.3 oster /*
602 1.3 oster * Since this is simple mirroring, the first submission for a stripe is also
603 1.3 oster * treated as the last.
604 1.3 oster */
605 1.3 oster
606 1.3 oster t = NULL;
607 1.3 oster if (keep_it) {
608 1.11 oster #if RF_DEBUG_RECON
609 1.3 oster if (rf_reconbufferDebug) {
610 1.25 perry printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
611 1.5 oster raidPtr->raidid);
612 1.3 oster }
613 1.10 oster #endif
614 1.3 oster t = rbuf;
615 1.3 oster } else {
616 1.3 oster if (use_committed) {
617 1.11 oster #if RF_DEBUG_RECON
618 1.3 oster if (rf_reconbufferDebug) {
619 1.5 oster printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
620 1.3 oster }
621 1.10 oster #endif
622 1.3 oster t = reconCtrlPtr->committedRbufs;
623 1.3 oster RF_ASSERT(t);
624 1.3 oster reconCtrlPtr->committedRbufs = t->next;
625 1.3 oster t->next = NULL;
626 1.3 oster } else
627 1.3 oster if (reconCtrlPtr->floatingRbufs) {
628 1.11 oster #if RF_DEBUG_RECON
629 1.3 oster if (rf_reconbufferDebug) {
630 1.5 oster printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
631 1.3 oster }
632 1.10 oster #endif
633 1.3 oster t = reconCtrlPtr->floatingRbufs;
634 1.3 oster reconCtrlPtr->floatingRbufs = t->next;
635 1.3 oster t->next = NULL;
636 1.3 oster }
637 1.3 oster }
638 1.3 oster if (t == NULL) {
639 1.11 oster #if RF_DEBUG_RECON
640 1.3 oster if (rf_reconbufferDebug) {
641 1.5 oster printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
642 1.3 oster }
643 1.10 oster #endif
644 1.3 oster RF_ASSERT((keep_it == 0) && (use_committed == 0));
645 1.3 oster raidPtr->procsInBufWait++;
646 1.3 oster if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
647 1.3 oster && (raidPtr->numFullReconBuffers == 0)) {
648 1.3 oster /* ruh-ro */
649 1.3 oster RF_ERRORMSG("Buffer wait deadlock\n");
650 1.14 oster rf_PrintPSStatusTable(raidPtr);
651 1.3 oster RF_PANIC();
652 1.3 oster }
653 1.3 oster pssPtr->flags |= RF_PSS_BUFFERWAIT;
654 1.38 oster cb = rf_AllocCallbackValueDesc(raidPtr);
655 1.3 oster cb->col = rbuf->col;
656 1.37 christos cb->v = rbuf->parityStripeID;
657 1.3 oster cb->next = NULL;
658 1.3 oster if (reconCtrlPtr->bufferWaitList == NULL) {
659 1.3 oster /* we are the wait list- lucky us */
660 1.3 oster reconCtrlPtr->bufferWaitList = cb;
661 1.3 oster } else {
662 1.3 oster /* append to wait list */
663 1.3 oster for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
664 1.3 oster p->next = cb;
665 1.3 oster }
666 1.3 oster retcode = 1;
667 1.3 oster goto out;
668 1.3 oster }
669 1.3 oster if (t != rbuf) {
670 1.3 oster t->col = reconCtrlPtr->fcol;
671 1.3 oster t->parityStripeID = rbuf->parityStripeID;
672 1.3 oster t->which_ru = rbuf->which_ru;
673 1.3 oster t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
674 1.3 oster t->spCol = rbuf->spCol;
675 1.3 oster t->spOffset = rbuf->spOffset;
676 1.3 oster /* Swap buffers. DANCE! */
677 1.3 oster ta = t->buffer;
678 1.3 oster t->buffer = rbuf->buffer;
679 1.3 oster rbuf->buffer = ta;
680 1.3 oster }
681 1.3 oster /*
682 1.3 oster * Use the rbuf we've been given as the target.
683 1.3 oster */
684 1.3 oster RF_ASSERT(pssPtr->rbuf == NULL);
685 1.3 oster pssPtr->rbuf = t;
686 1.3 oster
687 1.3 oster t->count = 1;
688 1.3 oster /*
689 1.3 oster * Below, we use 1 for numDataCol (which is equal to the count in the
690 1.3 oster * previous line), so we'll always be done.
691 1.3 oster */
692 1.3 oster rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
693 1.1 oster
694 1.1 oster out:
695 1.14 oster RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
696 1.34 mrg rf_lock_mutex2(reconCtrlPtr->rb_mutex);
697 1.24 oster reconCtrlPtr->rb_lock = 0;
698 1.34 mrg rf_broadcast_cond2(reconCtrlPtr->rb_cv);
699 1.34 mrg rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
700 1.11 oster #if RF_DEBUG_RECON
701 1.3 oster if (rf_reconbufferDebug) {
702 1.25 perry printf("raid%d: RAID1 rbuf submission: returning %d\n",
703 1.5 oster raidPtr->raidid, retcode);
704 1.3 oster }
705 1.10 oster #endif
706 1.3 oster return (retcode);
707 1.1 oster }
708 1.31 oster
709 1.31 oster RF_HeadSepLimit_t
710 1.31 oster rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t *raidPtr)
711 1.31 oster {
712 1.31 oster return (10);
713 1.31 oster }
714 1.31 oster
715