Home | History | Annotate | Line # | Download | only in raidframe
rf_raid1.c revision 1.5.8.1
      1  1.5.8.1  lukem /*	$NetBSD: rf_raid1.c,v 1.5.8.1 2001/08/03 04:13:28 lukem Exp $	*/
      2      1.1  oster /*
      3      1.1  oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4      1.1  oster  * All rights reserved.
      5      1.1  oster  *
      6      1.1  oster  * Author: William V. Courtright II
      7      1.1  oster  *
      8      1.1  oster  * Permission to use, copy, modify and distribute this software and
      9      1.1  oster  * its documentation is hereby granted, provided that both the copyright
     10      1.1  oster  * notice and this permission notice appear in all copies of the
     11      1.1  oster  * software, derivative works or modified versions, and any portions
     12      1.1  oster  * thereof, and that both notices appear in supporting documentation.
     13      1.1  oster  *
     14      1.1  oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15      1.1  oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16      1.1  oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17      1.1  oster  *
     18      1.1  oster  * Carnegie Mellon requests users of this software to return to
     19      1.1  oster  *
     20      1.1  oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21      1.1  oster  *  School of Computer Science
     22      1.1  oster  *  Carnegie Mellon University
     23      1.1  oster  *  Pittsburgh PA 15213-3890
     24      1.1  oster  *
     25      1.1  oster  * any improvements or extensions that they make and grant Carnegie the
     26      1.1  oster  * rights to redistribute these changes.
     27      1.1  oster  */
     28      1.1  oster 
     29      1.1  oster /*****************************************************************************
     30      1.1  oster  *
     31      1.1  oster  * rf_raid1.c -- implements RAID Level 1
     32      1.1  oster  *
     33      1.1  oster  *****************************************************************************/
     34      1.1  oster 
     35      1.1  oster #include "rf_raid.h"
     36      1.1  oster #include "rf_raid1.h"
     37      1.1  oster #include "rf_dag.h"
     38      1.1  oster #include "rf_dagffrd.h"
     39      1.1  oster #include "rf_dagffwr.h"
     40      1.1  oster #include "rf_dagdegrd.h"
     41      1.1  oster #include "rf_dagutils.h"
     42      1.1  oster #include "rf_dagfuncs.h"
     43      1.1  oster #include "rf_diskqueue.h"
     44      1.1  oster #include "rf_general.h"
     45      1.1  oster #include "rf_utils.h"
     46      1.1  oster #include "rf_parityscan.h"
     47      1.1  oster #include "rf_mcpair.h"
     48      1.1  oster #include "rf_layout.h"
     49      1.1  oster #include "rf_map.h"
     50      1.1  oster #include "rf_engine.h"
     51      1.1  oster #include "rf_reconbuffer.h"
     52      1.1  oster 
     53      1.1  oster typedef struct RF_Raid1ConfigInfo_s {
     54      1.3  oster 	RF_RowCol_t **stripeIdentifier;
     55      1.3  oster }       RF_Raid1ConfigInfo_t;
     56      1.1  oster /* start of day code specific to RAID level 1 */
     57      1.3  oster int
     58      1.3  oster rf_ConfigureRAID1(
     59      1.3  oster     RF_ShutdownList_t ** listp,
     60      1.3  oster     RF_Raid_t * raidPtr,
     61      1.3  oster     RF_Config_t * cfgPtr)
     62      1.1  oster {
     63      1.3  oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     64      1.3  oster 	RF_Raid1ConfigInfo_t *info;
     65      1.3  oster 	RF_RowCol_t i;
     66      1.3  oster 
     67      1.3  oster 	/* create a RAID level 1 configuration structure */
     68      1.3  oster 	RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
     69      1.3  oster 	if (info == NULL)
     70      1.3  oster 		return (ENOMEM);
     71      1.3  oster 	layoutPtr->layoutSpecificInfo = (void *) info;
     72      1.3  oster 
     73      1.3  oster 	/* ... and fill it in. */
     74      1.3  oster 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
     75      1.3  oster 	if (info->stripeIdentifier == NULL)
     76      1.3  oster 		return (ENOMEM);
     77      1.3  oster 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
     78      1.3  oster 		info->stripeIdentifier[i][0] = (2 * i);
     79      1.3  oster 		info->stripeIdentifier[i][1] = (2 * i) + 1;
     80      1.3  oster 	}
     81      1.3  oster 
     82      1.3  oster 	RF_ASSERT(raidPtr->numRow == 1);
     83      1.3  oster 
     84      1.3  oster 	/* this implementation of RAID level 1 uses one row of numCol disks
     85      1.3  oster 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
     86      1.3  oster 	 * consists of a single data unit and a single parity (mirror) unit.
     87      1.3  oster 	 * stripe id = raidAddr / stripeUnitSize */
     88      1.3  oster 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
     89      1.3  oster 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
     90      1.3  oster 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
     91      1.3  oster 	layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
     92      1.3  oster 	layoutPtr->numDataCol = 1;
     93      1.3  oster 	layoutPtr->numParityCol = 1;
     94      1.3  oster 	return (0);
     95      1.1  oster }
     96      1.1  oster 
     97      1.1  oster 
     98      1.1  oster /* returns the physical disk location of the primary copy in the mirror pair */
     99      1.3  oster void
    100      1.3  oster rf_MapSectorRAID1(
    101      1.3  oster     RF_Raid_t * raidPtr,
    102      1.3  oster     RF_RaidAddr_t raidSector,
    103      1.3  oster     RF_RowCol_t * row,
    104      1.3  oster     RF_RowCol_t * col,
    105      1.3  oster     RF_SectorNum_t * diskSector,
    106      1.3  oster     int remap)
    107      1.1  oster {
    108      1.3  oster 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    109      1.3  oster 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    110      1.1  oster 
    111      1.3  oster 	*row = 0;
    112      1.3  oster 	*col = 2 * mirrorPair;
    113      1.3  oster 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    114      1.1  oster }
    115      1.1  oster 
    116      1.1  oster 
    117      1.1  oster /* Map Parity
    118      1.1  oster  *
    119      1.1  oster  * returns the physical disk location of the secondary copy in the mirror
    120      1.1  oster  * pair
    121      1.1  oster  */
    122      1.3  oster void
    123      1.3  oster rf_MapParityRAID1(
    124      1.3  oster     RF_Raid_t * raidPtr,
    125      1.3  oster     RF_RaidAddr_t raidSector,
    126      1.3  oster     RF_RowCol_t * row,
    127      1.3  oster     RF_RowCol_t * col,
    128      1.3  oster     RF_SectorNum_t * diskSector,
    129      1.3  oster     int remap)
    130      1.1  oster {
    131      1.3  oster 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    132      1.3  oster 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    133      1.1  oster 
    134      1.3  oster 	*row = 0;
    135      1.3  oster 	*col = (2 * mirrorPair) + 1;
    136      1.1  oster 
    137      1.3  oster 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    138      1.1  oster }
    139      1.1  oster 
    140      1.1  oster 
    141      1.1  oster /* IdentifyStripeRAID1
    142      1.1  oster  *
    143      1.1  oster  * returns a list of disks for a given redundancy group
    144      1.1  oster  */
    145      1.3  oster void
    146      1.3  oster rf_IdentifyStripeRAID1(
    147      1.3  oster     RF_Raid_t * raidPtr,
    148      1.3  oster     RF_RaidAddr_t addr,
    149      1.3  oster     RF_RowCol_t ** diskids,
    150      1.3  oster     RF_RowCol_t * outRow)
    151      1.1  oster {
    152      1.3  oster 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
    153      1.3  oster 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
    154      1.3  oster 	RF_ASSERT(stripeID >= 0);
    155      1.3  oster 	RF_ASSERT(addr >= 0);
    156      1.3  oster 	*outRow = 0;
    157      1.3  oster 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
    158      1.3  oster 	RF_ASSERT(*diskids);
    159      1.1  oster }
    160      1.1  oster 
    161      1.1  oster 
    162      1.1  oster /* MapSIDToPSIDRAID1
    163      1.1  oster  *
    164      1.1  oster  * maps a logical stripe to a stripe in the redundant array
    165      1.1  oster  */
    166      1.3  oster void
    167      1.3  oster rf_MapSIDToPSIDRAID1(
    168      1.3  oster     RF_RaidLayout_t * layoutPtr,
    169      1.3  oster     RF_StripeNum_t stripeID,
    170      1.3  oster     RF_StripeNum_t * psID,
    171      1.3  oster     RF_ReconUnitNum_t * which_ru)
    172      1.1  oster {
    173      1.3  oster 	*which_ru = 0;
    174      1.3  oster 	*psID = stripeID;
    175      1.1  oster }
    176      1.1  oster 
    177      1.1  oster 
    178      1.1  oster 
    179      1.1  oster /******************************************************************************
    180      1.1  oster  * select a graph to perform a single-stripe access
    181      1.1  oster  *
    182      1.1  oster  * Parameters:  raidPtr    - description of the physical array
    183      1.1  oster  *              type       - type of operation (read or write) requested
    184      1.1  oster  *              asmap      - logical & physical addresses for this access
    185      1.1  oster  *              createFunc - name of function to use to create the graph
    186      1.1  oster  *****************************************************************************/
    187      1.1  oster 
    188      1.3  oster void
    189      1.3  oster rf_RAID1DagSelect(
    190      1.3  oster     RF_Raid_t * raidPtr,
    191      1.3  oster     RF_IoType_t type,
    192      1.3  oster     RF_AccessStripeMap_t * asmap,
    193      1.3  oster     RF_VoidFuncPtr * createFunc)
    194      1.1  oster {
    195      1.3  oster 	RF_RowCol_t frow, fcol, or, oc;
    196      1.3  oster 	RF_PhysDiskAddr_t *failedPDA;
    197      1.5  oster 	int     prior_recon;
    198      1.3  oster 	RF_RowStatus_t rstat;
    199      1.3  oster 	RF_SectorNum_t oo;
    200      1.3  oster 
    201      1.3  oster 
    202      1.3  oster 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    203      1.3  oster 
    204      1.3  oster 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
    205      1.3  oster 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    206      1.3  oster 		*createFunc = NULL;
    207      1.3  oster 		return;
    208      1.3  oster 	}
    209      1.3  oster 	if (asmap->numDataFailed + asmap->numParityFailed) {
    210      1.3  oster 		/*
    211      1.3  oster 	         * We've got a fault. Re-map to spare space, iff applicable.
    212      1.3  oster 	         * Shouldn't the arch-independent code do this for us?
    213      1.3  oster 	         * Anyway, it turns out if we don't do this here, then when
    214      1.3  oster 	         * we're reconstructing, writes go only to the surviving
    215      1.3  oster 	         * original disk, and aren't reflected on the reconstructed
    216      1.3  oster 	         * spare. Oops. --jimz
    217      1.3  oster 	         */
    218      1.3  oster 		failedPDA = asmap->failedPDAs[0];
    219      1.3  oster 		frow = failedPDA->row;
    220      1.3  oster 		fcol = failedPDA->col;
    221      1.3  oster 		rstat = raidPtr->status[frow];
    222      1.3  oster 		prior_recon = (rstat == rf_rs_reconfigured) || (
    223      1.3  oster 		    (rstat == rf_rs_reconstructing) ?
    224      1.3  oster 		    rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
    225      1.3  oster 		    );
    226      1.3  oster 		if (prior_recon) {
    227      1.3  oster 			or = frow;
    228      1.3  oster 			oc = fcol;
    229      1.3  oster 			oo = failedPDA->startSector;
    230      1.3  oster 			/*
    231      1.3  oster 		         * If we did distributed sparing, we'd monkey with that here.
    232      1.3  oster 		         * But we don't, so we'll
    233      1.3  oster 		         */
    234      1.3  oster 			failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
    235      1.3  oster 			failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
    236      1.3  oster 			/*
    237      1.3  oster 		         * Redirect other components, iff necessary. This looks
    238      1.3  oster 		         * pretty suspicious to me, but it's what the raid5
    239      1.3  oster 		         * DAG select does.
    240      1.3  oster 		         */
    241      1.3  oster 			if (asmap->parityInfo->next) {
    242      1.3  oster 				if (failedPDA == asmap->parityInfo) {
    243      1.3  oster 					failedPDA->next->row = failedPDA->row;
    244      1.3  oster 					failedPDA->next->col = failedPDA->col;
    245      1.3  oster 				} else {
    246      1.3  oster 					if (failedPDA == asmap->parityInfo->next) {
    247      1.3  oster 						asmap->parityInfo->row = failedPDA->row;
    248      1.3  oster 						asmap->parityInfo->col = failedPDA->col;
    249      1.3  oster 					}
    250      1.3  oster 				}
    251      1.3  oster 			}
    252      1.3  oster 			if (rf_dagDebug || rf_mapDebug) {
    253      1.5  oster 				printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
    254      1.5  oster 				       raidPtr->raidid, type, or, oc,
    255      1.5  oster 				       (long) oo, failedPDA->row,
    256      1.5  oster 				       failedPDA->col,
    257      1.5  oster 				       (long) failedPDA->startSector);
    258      1.3  oster 			}
    259      1.3  oster 			asmap->numDataFailed = asmap->numParityFailed = 0;
    260      1.3  oster 		}
    261      1.3  oster 	}
    262      1.3  oster 	if (type == RF_IO_TYPE_READ) {
    263      1.3  oster 		if (asmap->numDataFailed == 0)
    264      1.3  oster 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
    265      1.3  oster 		else
    266      1.3  oster 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
    267      1.3  oster 	} else {
    268      1.3  oster 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
    269      1.3  oster 	}
    270      1.1  oster }
    271      1.1  oster 
    272      1.3  oster int
    273      1.3  oster rf_VerifyParityRAID1(
    274      1.3  oster     RF_Raid_t * raidPtr,
    275      1.3  oster     RF_RaidAddr_t raidAddr,
    276      1.3  oster     RF_PhysDiskAddr_t * parityPDA,
    277      1.3  oster     int correct_it,
    278      1.3  oster     RF_RaidAccessFlags_t flags)
    279      1.1  oster {
    280      1.5  oster 	int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
    281      1.3  oster 	RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
    282      1.3  oster 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
    283      1.3  oster 	RF_AccessStripeMapHeader_t *asm_h;
    284      1.3  oster 	RF_AllocListElem_t *allocList;
    285      1.3  oster 	RF_AccTraceEntry_t tracerec;
    286      1.3  oster 	RF_ReconUnitNum_t which_ru;
    287      1.3  oster 	RF_RaidLayout_t *layoutPtr;
    288      1.3  oster 	RF_AccessStripeMap_t *aasm;
    289      1.3  oster 	RF_SectorCount_t nsector;
    290      1.3  oster 	RF_RaidAddr_t startAddr;
    291      1.3  oster 	char   *buf, *buf1, *buf2;
    292      1.3  oster 	RF_PhysDiskAddr_t *pda;
    293      1.3  oster 	RF_StripeNum_t psID;
    294      1.3  oster 	RF_MCPair_t *mcpair;
    295      1.3  oster 
    296      1.3  oster 	layoutPtr = &raidPtr->Layout;
    297      1.3  oster 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    298      1.3  oster 	nsector = parityPDA->numSector;
    299      1.3  oster 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
    300      1.3  oster 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
    301      1.3  oster 
    302      1.3  oster 	asm_h = NULL;
    303      1.3  oster 	rd_dag_h = wr_dag_h = NULL;
    304      1.3  oster 	mcpair = NULL;
    305      1.3  oster 
    306      1.3  oster 	ret = RF_PARITY_COULD_NOT_VERIFY;
    307      1.3  oster 
    308      1.3  oster 	rf_MakeAllocList(allocList);
    309      1.3  oster 	if (allocList == NULL)
    310      1.3  oster 		return (RF_PARITY_COULD_NOT_VERIFY);
    311      1.3  oster 	mcpair = rf_AllocMCPair();
    312      1.3  oster 	if (mcpair == NULL)
    313      1.3  oster 		goto done;
    314      1.3  oster 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
    315      1.3  oster 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    316      1.3  oster 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
    317      1.3  oster 	RF_MallocAndAdd(buf, bcount, (char *), allocList);
    318      1.3  oster 	if (buf == NULL)
    319      1.3  oster 		goto done;
    320      1.3  oster 	if (rf_verifyParityDebug) {
    321      1.5  oster 		printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
    322      1.5  oster 		       raidPtr->raidid, (long) buf, bcount, (long) buf,
    323      1.5  oster 		       (long) buf + bcount);
    324      1.3  oster 	}
    325      1.3  oster 	/*
    326      1.3  oster          * Generate a DAG which will read the entire stripe- then we can
    327      1.3  oster          * just compare data chunks versus "parity" chunks.
    328      1.3  oster          */
    329      1.3  oster 
    330      1.3  oster 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
    331      1.3  oster 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
    332      1.3  oster 	    RF_IO_NORMAL_PRIORITY);
    333      1.3  oster 	if (rd_dag_h == NULL)
    334      1.3  oster 		goto done;
    335      1.3  oster 	blockNode = rd_dag_h->succedents[0];
    336      1.3  oster 	unblockNode = blockNode->succedents[0]->succedents[0];
    337      1.3  oster 
    338      1.3  oster 	/*
    339      1.3  oster          * Map the access to physical disk addresses (PDAs)- this will
    340      1.3  oster          * get us both a list of data addresses, and "parity" addresses
    341      1.3  oster          * (which are really mirror copies).
    342      1.3  oster          */
    343      1.3  oster 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
    344      1.3  oster 	    buf, RF_DONT_REMAP);
    345      1.3  oster 	aasm = asm_h->stripeMap;
    346      1.3  oster 
    347      1.3  oster 	buf1 = buf;
    348      1.3  oster 	/*
    349      1.3  oster          * Loop through the data blocks, setting up read nodes for each.
    350      1.3  oster          */
    351      1.3  oster 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    352      1.3  oster 		RF_ASSERT(pda);
    353      1.3  oster 
    354      1.3  oster 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    355      1.3  oster 
    356      1.3  oster 		RF_ASSERT(pda->numSector != 0);
    357      1.3  oster 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    358      1.3  oster 			/* cannot verify parity with dead disk */
    359      1.3  oster 			goto done;
    360      1.3  oster 		}
    361      1.3  oster 		pda->bufPtr = buf1;
    362      1.3  oster 		blockNode->succedents[i]->params[0].p = pda;
    363      1.3  oster 		blockNode->succedents[i]->params[1].p = buf1;
    364      1.3  oster 		blockNode->succedents[i]->params[2].v = psID;
    365      1.3  oster 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    366      1.3  oster 		buf1 += nbytes;
    367      1.3  oster 	}
    368      1.3  oster 	RF_ASSERT(pda == NULL);
    369      1.3  oster 	/*
    370      1.3  oster          * keep i, buf1 running
    371      1.3  oster          *
    372      1.3  oster          * Loop through parity blocks, setting up read nodes for each.
    373      1.3  oster          */
    374      1.3  oster 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
    375      1.3  oster 		RF_ASSERT(pda);
    376      1.3  oster 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    377      1.3  oster 		RF_ASSERT(pda->numSector != 0);
    378      1.3  oster 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    379      1.3  oster 			/* cannot verify parity with dead disk */
    380      1.3  oster 			goto done;
    381      1.3  oster 		}
    382      1.3  oster 		pda->bufPtr = buf1;
    383      1.3  oster 		blockNode->succedents[i]->params[0].p = pda;
    384      1.3  oster 		blockNode->succedents[i]->params[1].p = buf1;
    385      1.3  oster 		blockNode->succedents[i]->params[2].v = psID;
    386      1.3  oster 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    387      1.3  oster 		buf1 += nbytes;
    388      1.3  oster 	}
    389      1.3  oster 	RF_ASSERT(pda == NULL);
    390      1.3  oster 
    391  1.5.8.1  lukem 	memset((char *) &tracerec, 0, sizeof(tracerec));
    392      1.3  oster 	rd_dag_h->tracerec = &tracerec;
    393      1.3  oster 
    394      1.3  oster 	if (rf_verifyParityDebug > 1) {
    395      1.5  oster 		printf("raid%d: RAID1 parity verify read dag:\n",
    396      1.5  oster 		       raidPtr->raidid);
    397      1.3  oster 		rf_PrintDAGList(rd_dag_h);
    398      1.3  oster 	}
    399      1.3  oster 	RF_LOCK_MUTEX(mcpair->mutex);
    400      1.3  oster 	mcpair->flag = 0;
    401      1.3  oster 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    402      1.3  oster 	    (void *) mcpair);
    403      1.3  oster 	while (mcpair->flag == 0) {
    404      1.3  oster 		RF_WAIT_MCPAIR(mcpair);
    405      1.3  oster 	}
    406      1.3  oster 	RF_UNLOCK_MUTEX(mcpair->mutex);
    407      1.3  oster 
    408      1.3  oster 	if (rd_dag_h->status != rf_enable) {
    409      1.3  oster 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
    410      1.3  oster 		ret = RF_PARITY_COULD_NOT_VERIFY;
    411      1.3  oster 		goto done;
    412      1.3  oster 	}
    413      1.3  oster 	/*
    414      1.3  oster          * buf1 is the beginning of the data blocks chunk
    415      1.3  oster          * buf2 is the beginning of the parity blocks chunk
    416      1.3  oster          */
    417      1.3  oster 	buf1 = buf;
    418      1.3  oster 	buf2 = buf + (nbytes * layoutPtr->numDataCol);
    419      1.3  oster 	ret = RF_PARITY_OKAY;
    420      1.3  oster 	/*
    421      1.3  oster          * bbufs is "bad bufs"- an array whose entries are the data
    422      1.3  oster          * column numbers where we had miscompares. (That is, column 0
    423      1.3  oster          * and column 1 of the array are mirror copies, and are considered
    424      1.3  oster          * "data column 0" for this purpose).
    425      1.3  oster          */
    426      1.3  oster 	RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
    427      1.3  oster 	    allocList);
    428      1.3  oster 	nbad = 0;
    429      1.3  oster 	/*
    430      1.3  oster          * Check data vs "parity" (mirror copy).
    431      1.3  oster          */
    432      1.3  oster 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    433      1.3  oster 		if (rf_verifyParityDebug) {
    434      1.5  oster 			printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
    435      1.5  oster 			       raidPtr->raidid, nbytes, i, (long) buf1,
    436      1.5  oster 			       (long) buf2, (long) buf);
    437      1.3  oster 		}
    438  1.5.8.1  lukem 		ret = memcmp(buf1, buf2, nbytes);
    439      1.3  oster 		if (ret) {
    440      1.3  oster 			if (rf_verifyParityDebug > 1) {
    441      1.3  oster 				for (j = 0; j < nbytes; j++) {
    442      1.3  oster 					if (buf1[j] != buf2[j])
    443      1.3  oster 						break;
    444      1.3  oster 				}
    445      1.3  oster 				printf("psid=%ld j=%d\n", (long) psID, j);
    446      1.3  oster 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
    447      1.3  oster 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
    448      1.3  oster 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
    449      1.3  oster 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
    450      1.3  oster 			}
    451      1.3  oster 			if (rf_verifyParityDebug) {
    452      1.5  oster 				printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
    453      1.3  oster 			}
    454      1.3  oster 			/*
    455      1.3  oster 		         * Parity is bad. Keep track of which columns were bad.
    456      1.3  oster 		         */
    457      1.3  oster 			if (bbufs)
    458      1.3  oster 				bbufs[nbad] = i;
    459      1.3  oster 			nbad++;
    460      1.3  oster 			ret = RF_PARITY_BAD;
    461      1.3  oster 		}
    462      1.3  oster 		buf1 += nbytes;
    463      1.3  oster 		buf2 += nbytes;
    464      1.3  oster 	}
    465      1.3  oster 
    466      1.3  oster 	if ((ret != RF_PARITY_OKAY) && correct_it) {
    467      1.3  oster 		ret = RF_PARITY_COULD_NOT_CORRECT;
    468      1.3  oster 		if (rf_verifyParityDebug) {
    469      1.5  oster 			printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
    470      1.3  oster 		}
    471      1.3  oster 		if (bbufs == NULL)
    472      1.3  oster 			goto done;
    473      1.3  oster 		/*
    474      1.3  oster 	         * Make a DAG with one write node for each bad unit. We'll simply
    475      1.3  oster 	         * write the contents of the data unit onto the parity unit for
    476      1.3  oster 	         * correction. (It's possible that the mirror copy was the correct
    477      1.3  oster 	         * copy, and that we're spooging good data by writing bad over it,
    478      1.3  oster 	         * but there's no way we can know that.
    479      1.3  oster 	         */
    480      1.3  oster 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
    481      1.3  oster 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
    482      1.3  oster 		    RF_IO_NORMAL_PRIORITY);
    483      1.3  oster 		if (wr_dag_h == NULL)
    484      1.3  oster 			goto done;
    485      1.3  oster 		wrBlock = wr_dag_h->succedents[0];
    486      1.3  oster 		/*
    487      1.3  oster 	         * Fill in a write node for each bad compare.
    488      1.3  oster 	         */
    489      1.3  oster 		for (i = 0; i < nbad; i++) {
    490      1.3  oster 			j = i + layoutPtr->numDataCol;
    491      1.3  oster 			pda = blockNode->succedents[j]->params[0].p;
    492      1.3  oster 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
    493      1.3  oster 			wrBlock->succedents[i]->params[0].p = pda;
    494      1.3  oster 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
    495      1.3  oster 			wrBlock->succedents[i]->params[2].v = psID;
    496      1.3  oster 			wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    497      1.3  oster 		}
    498  1.5.8.1  lukem 		memset((char *) &tracerec, 0, sizeof(tracerec));
    499      1.3  oster 		wr_dag_h->tracerec = &tracerec;
    500      1.3  oster 		if (rf_verifyParityDebug > 1) {
    501      1.3  oster 			printf("Parity verify write dag:\n");
    502      1.3  oster 			rf_PrintDAGList(wr_dag_h);
    503      1.3  oster 		}
    504      1.3  oster 		RF_LOCK_MUTEX(mcpair->mutex);
    505      1.3  oster 		mcpair->flag = 0;
    506      1.3  oster 		/* fire off the write DAG */
    507      1.3  oster 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    508      1.3  oster 		    (void *) mcpair);
    509      1.3  oster 		while (!mcpair->flag) {
    510      1.3  oster 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    511      1.3  oster 		}
    512      1.3  oster 		RF_UNLOCK_MUTEX(mcpair->mutex);
    513      1.3  oster 		if (wr_dag_h->status != rf_enable) {
    514      1.3  oster 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
    515      1.3  oster 			goto done;
    516      1.3  oster 		}
    517      1.3  oster 		ret = RF_PARITY_CORRECTED;
    518      1.3  oster 	}
    519      1.1  oster done:
    520      1.3  oster 	/*
    521      1.3  oster          * All done. We might've gotten here without doing part of the function,
    522      1.3  oster          * so cleanup what we have to and return our running status.
    523      1.3  oster          */
    524      1.3  oster 	if (asm_h)
    525      1.3  oster 		rf_FreeAccessStripeMap(asm_h);
    526      1.3  oster 	if (rd_dag_h)
    527      1.3  oster 		rf_FreeDAG(rd_dag_h);
    528      1.3  oster 	if (wr_dag_h)
    529      1.3  oster 		rf_FreeDAG(wr_dag_h);
    530      1.3  oster 	if (mcpair)
    531      1.3  oster 		rf_FreeMCPair(mcpair);
    532      1.3  oster 	rf_FreeAllocList(allocList);
    533      1.3  oster 	if (rf_verifyParityDebug) {
    534      1.5  oster 		printf("raid%d: RAID1 parity verify, returning %d\n",
    535      1.5  oster 		       raidPtr->raidid, ret);
    536      1.3  oster 	}
    537      1.3  oster 	return (ret);
    538      1.1  oster }
    539      1.1  oster 
    540      1.3  oster int
    541      1.3  oster rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
    542      1.3  oster 	RF_ReconBuffer_t *rbuf;	/* the recon buffer to submit */
    543      1.3  oster 	int     keep_it;	/* whether we can keep this buffer or we have
    544      1.3  oster 				 * to return it */
    545      1.3  oster 	int     use_committed;	/* whether to use a committed or an available
    546      1.3  oster 				 * recon buffer */
    547      1.1  oster {
    548      1.3  oster 	RF_ReconParityStripeStatus_t *pssPtr;
    549      1.3  oster 	RF_ReconCtrl_t *reconCtrlPtr;
    550      1.3  oster 	RF_RaidLayout_t *layoutPtr;
    551      1.5  oster 	int     retcode, created;
    552      1.3  oster 	RF_CallbackDesc_t *cb, *p;
    553      1.3  oster 	RF_ReconBuffer_t *t;
    554      1.3  oster 	RF_Raid_t *raidPtr;
    555      1.3  oster 	caddr_t ta;
    556      1.3  oster 
    557      1.3  oster 	retcode = 0;
    558      1.3  oster 	created = 0;
    559      1.3  oster 
    560      1.3  oster 	raidPtr = rbuf->raidPtr;
    561      1.3  oster 	layoutPtr = &raidPtr->Layout;
    562      1.3  oster 	reconCtrlPtr = raidPtr->reconControl[rbuf->row];
    563      1.3  oster 
    564      1.3  oster 	RF_ASSERT(rbuf);
    565      1.3  oster 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
    566      1.3  oster 
    567      1.3  oster 	if (rf_reconbufferDebug) {
    568      1.5  oster 		printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
    569      1.5  oster 		       raidPtr->raidid, rbuf->row, rbuf->col,
    570      1.5  oster 		       (long) rbuf->parityStripeID, rbuf->which_ru,
    571      1.5  oster 		       (long) rbuf->failedDiskSectorOffset);
    572      1.3  oster 	}
    573      1.3  oster 	if (rf_reconDebug) {
    574      1.3  oster 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
    575      1.3  oster 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
    576      1.3  oster 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
    577      1.3  oster 		    (long) rbuf->parityStripeID,
    578      1.3  oster 		    rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
    579      1.3  oster 		    rbuf->buffer[4]);
    580      1.3  oster 	}
    581      1.3  oster 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
    582      1.3  oster 
    583      1.3  oster 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
    584      1.3  oster 
    585      1.3  oster 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
    586      1.3  oster 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
    587      1.3  oster 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
    588      1.3  oster 				 * an rbuf for it */
    589      1.3  oster 
    590      1.3  oster 	/*
    591      1.3  oster          * Since this is simple mirroring, the first submission for a stripe is also
    592      1.3  oster          * treated as the last.
    593      1.3  oster          */
    594      1.3  oster 
    595      1.3  oster 	t = NULL;
    596      1.3  oster 	if (keep_it) {
    597      1.3  oster 		if (rf_reconbufferDebug) {
    598      1.5  oster 			printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
    599      1.5  oster 			       raidPtr->raidid);
    600      1.3  oster 		}
    601      1.3  oster 		t = rbuf;
    602      1.3  oster 	} else {
    603      1.3  oster 		if (use_committed) {
    604      1.3  oster 			if (rf_reconbufferDebug) {
    605      1.5  oster 				printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
    606      1.3  oster 			}
    607      1.3  oster 			t = reconCtrlPtr->committedRbufs;
    608      1.3  oster 			RF_ASSERT(t);
    609      1.3  oster 			reconCtrlPtr->committedRbufs = t->next;
    610      1.3  oster 			t->next = NULL;
    611      1.3  oster 		} else
    612      1.3  oster 			if (reconCtrlPtr->floatingRbufs) {
    613      1.3  oster 				if (rf_reconbufferDebug) {
    614      1.5  oster 					printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
    615      1.3  oster 				}
    616      1.3  oster 				t = reconCtrlPtr->floatingRbufs;
    617      1.3  oster 				reconCtrlPtr->floatingRbufs = t->next;
    618      1.3  oster 				t->next = NULL;
    619      1.3  oster 			}
    620      1.3  oster 	}
    621      1.3  oster 	if (t == NULL) {
    622      1.3  oster 		if (rf_reconbufferDebug) {
    623      1.5  oster 			printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
    624      1.3  oster 		}
    625      1.3  oster 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
    626      1.3  oster 		raidPtr->procsInBufWait++;
    627      1.3  oster 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
    628      1.3  oster 		    && (raidPtr->numFullReconBuffers == 0)) {
    629      1.3  oster 			/* ruh-ro */
    630      1.3  oster 			RF_ERRORMSG("Buffer wait deadlock\n");
    631      1.3  oster 			rf_PrintPSStatusTable(raidPtr, rbuf->row);
    632      1.3  oster 			RF_PANIC();
    633      1.3  oster 		}
    634      1.3  oster 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
    635      1.3  oster 		cb = rf_AllocCallbackDesc();
    636      1.3  oster 		cb->row = rbuf->row;
    637      1.3  oster 		cb->col = rbuf->col;
    638      1.3  oster 		cb->callbackArg.v = rbuf->parityStripeID;
    639      1.3  oster 		cb->callbackArg2.v = rbuf->which_ru;
    640      1.3  oster 		cb->next = NULL;
    641      1.3  oster 		if (reconCtrlPtr->bufferWaitList == NULL) {
    642      1.3  oster 			/* we are the wait list- lucky us */
    643      1.3  oster 			reconCtrlPtr->bufferWaitList = cb;
    644      1.3  oster 		} else {
    645      1.3  oster 			/* append to wait list */
    646      1.3  oster 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
    647      1.3  oster 			p->next = cb;
    648      1.3  oster 		}
    649      1.3  oster 		retcode = 1;
    650      1.3  oster 		goto out;
    651      1.3  oster 	}
    652      1.3  oster 	if (t != rbuf) {
    653      1.3  oster 		t->row = rbuf->row;
    654      1.3  oster 		t->col = reconCtrlPtr->fcol;
    655      1.3  oster 		t->parityStripeID = rbuf->parityStripeID;
    656      1.3  oster 		t->which_ru = rbuf->which_ru;
    657      1.3  oster 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
    658      1.3  oster 		t->spRow = rbuf->spRow;
    659      1.3  oster 		t->spCol = rbuf->spCol;
    660      1.3  oster 		t->spOffset = rbuf->spOffset;
    661      1.3  oster 		/* Swap buffers. DANCE! */
    662      1.3  oster 		ta = t->buffer;
    663      1.3  oster 		t->buffer = rbuf->buffer;
    664      1.3  oster 		rbuf->buffer = ta;
    665      1.3  oster 	}
    666      1.3  oster 	/*
    667      1.3  oster          * Use the rbuf we've been given as the target.
    668      1.3  oster          */
    669      1.3  oster 	RF_ASSERT(pssPtr->rbuf == NULL);
    670      1.3  oster 	pssPtr->rbuf = t;
    671      1.3  oster 
    672      1.3  oster 	t->count = 1;
    673      1.3  oster 	/*
    674      1.3  oster          * Below, we use 1 for numDataCol (which is equal to the count in the
    675      1.3  oster          * previous line), so we'll always be done.
    676      1.3  oster          */
    677      1.3  oster 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
    678      1.1  oster 
    679      1.1  oster out:
    680      1.3  oster 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
    681      1.3  oster 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
    682      1.3  oster 	if (rf_reconbufferDebug) {
    683      1.5  oster 		printf("raid%d: RAID1 rbuf submission: returning %d\n",
    684      1.5  oster 		       raidPtr->raidid, retcode);
    685      1.3  oster 	}
    686      1.3  oster 	return (retcode);
    687      1.1  oster }
    688