rf_raid1.c revision 1.12 1 /* $NetBSD: rf_raid1.c,v 1.12 2002/09/23 02:40:09 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_raid1.c -- implements RAID Level 1
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.12 2002/09/23 02:40:09 oster Exp $");
37
38 #include "rf_raid.h"
39 #include "rf_raid1.h"
40 #include "rf_dag.h"
41 #include "rf_dagffrd.h"
42 #include "rf_dagffwr.h"
43 #include "rf_dagdegrd.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_diskqueue.h"
47 #include "rf_general.h"
48 #include "rf_utils.h"
49 #include "rf_parityscan.h"
50 #include "rf_mcpair.h"
51 #include "rf_layout.h"
52 #include "rf_map.h"
53 #include "rf_engine.h"
54 #include "rf_reconbuffer.h"
55
56 typedef struct RF_Raid1ConfigInfo_s {
57 RF_RowCol_t **stripeIdentifier;
58 } RF_Raid1ConfigInfo_t;
59 /* start of day code specific to RAID level 1 */
60 int
61 rf_ConfigureRAID1(
62 RF_ShutdownList_t ** listp,
63 RF_Raid_t * raidPtr,
64 RF_Config_t * cfgPtr)
65 {
66 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
67 RF_Raid1ConfigInfo_t *info;
68 RF_RowCol_t i;
69
70 /* create a RAID level 1 configuration structure */
71 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
72 if (info == NULL)
73 return (ENOMEM);
74 layoutPtr->layoutSpecificInfo = (void *) info;
75
76 /* ... and fill it in. */
77 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
78 if (info->stripeIdentifier == NULL)
79 return (ENOMEM);
80 for (i = 0; i < (raidPtr->numCol / 2); i++) {
81 info->stripeIdentifier[i][0] = (2 * i);
82 info->stripeIdentifier[i][1] = (2 * i) + 1;
83 }
84
85 RF_ASSERT(raidPtr->numRow == 1);
86
87 /* this implementation of RAID level 1 uses one row of numCol disks
88 * and allows multiple (numCol / 2) stripes per row. A stripe
89 * consists of a single data unit and a single parity (mirror) unit.
90 * stripe id = raidAddr / stripeUnitSize */
91 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
92 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
93 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
94 layoutPtr->numDataCol = 1;
95 layoutPtr->numParityCol = 1;
96 return (0);
97 }
98
99
100 /* returns the physical disk location of the primary copy in the mirror pair */
101 void
102 rf_MapSectorRAID1(
103 RF_Raid_t * raidPtr,
104 RF_RaidAddr_t raidSector,
105 RF_RowCol_t * row,
106 RF_RowCol_t * col,
107 RF_SectorNum_t * diskSector,
108 int remap)
109 {
110 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
111 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
112
113 *row = 0;
114 *col = 2 * mirrorPair;
115 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
116 }
117
118
119 /* Map Parity
120 *
121 * returns the physical disk location of the secondary copy in the mirror
122 * pair
123 */
124 void
125 rf_MapParityRAID1(
126 RF_Raid_t * raidPtr,
127 RF_RaidAddr_t raidSector,
128 RF_RowCol_t * row,
129 RF_RowCol_t * col,
130 RF_SectorNum_t * diskSector,
131 int remap)
132 {
133 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
134 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
135
136 *row = 0;
137 *col = (2 * mirrorPair) + 1;
138
139 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
140 }
141
142
143 /* IdentifyStripeRAID1
144 *
145 * returns a list of disks for a given redundancy group
146 */
147 void
148 rf_IdentifyStripeRAID1(
149 RF_Raid_t * raidPtr,
150 RF_RaidAddr_t addr,
151 RF_RowCol_t ** diskids,
152 RF_RowCol_t * outRow)
153 {
154 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
155 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
156 RF_ASSERT(stripeID >= 0);
157 RF_ASSERT(addr >= 0);
158 *outRow = 0;
159 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
160 RF_ASSERT(*diskids);
161 }
162
163
164 /* MapSIDToPSIDRAID1
165 *
166 * maps a logical stripe to a stripe in the redundant array
167 */
168 void
169 rf_MapSIDToPSIDRAID1(
170 RF_RaidLayout_t * layoutPtr,
171 RF_StripeNum_t stripeID,
172 RF_StripeNum_t * psID,
173 RF_ReconUnitNum_t * which_ru)
174 {
175 *which_ru = 0;
176 *psID = stripeID;
177 }
178
179
180
181 /******************************************************************************
182 * select a graph to perform a single-stripe access
183 *
184 * Parameters: raidPtr - description of the physical array
185 * type - type of operation (read or write) requested
186 * asmap - logical & physical addresses for this access
187 * createFunc - name of function to use to create the graph
188 *****************************************************************************/
189
190 void
191 rf_RAID1DagSelect(
192 RF_Raid_t * raidPtr,
193 RF_IoType_t type,
194 RF_AccessStripeMap_t * asmap,
195 RF_VoidFuncPtr * createFunc)
196 {
197 RF_RowCol_t frow, fcol, or, oc;
198 RF_PhysDiskAddr_t *failedPDA;
199 int prior_recon;
200 RF_RowStatus_t rstat;
201 RF_SectorNum_t oo;
202
203
204 RF_ASSERT(RF_IO_IS_R_OR_W(type));
205
206 if (asmap->numDataFailed + asmap->numParityFailed > 1) {
207 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
208 *createFunc = NULL;
209 return;
210 }
211 if (asmap->numDataFailed + asmap->numParityFailed) {
212 /*
213 * We've got a fault. Re-map to spare space, iff applicable.
214 * Shouldn't the arch-independent code do this for us?
215 * Anyway, it turns out if we don't do this here, then when
216 * we're reconstructing, writes go only to the surviving
217 * original disk, and aren't reflected on the reconstructed
218 * spare. Oops. --jimz
219 */
220 failedPDA = asmap->failedPDAs[0];
221 frow = failedPDA->row;
222 fcol = failedPDA->col;
223 rstat = raidPtr->status[frow];
224 prior_recon = (rstat == rf_rs_reconfigured) || (
225 (rstat == rf_rs_reconstructing) ?
226 rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
227 );
228 if (prior_recon) {
229 or = frow;
230 oc = fcol;
231 oo = failedPDA->startSector;
232 /*
233 * If we did distributed sparing, we'd monkey with that here.
234 * But we don't, so we'll
235 */
236 failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
237 failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
238 /*
239 * Redirect other components, iff necessary. This looks
240 * pretty suspicious to me, but it's what the raid5
241 * DAG select does.
242 */
243 if (asmap->parityInfo->next) {
244 if (failedPDA == asmap->parityInfo) {
245 failedPDA->next->row = failedPDA->row;
246 failedPDA->next->col = failedPDA->col;
247 } else {
248 if (failedPDA == asmap->parityInfo->next) {
249 asmap->parityInfo->row = failedPDA->row;
250 asmap->parityInfo->col = failedPDA->col;
251 }
252 }
253 }
254 if (rf_dagDebug || rf_mapDebug) {
255 printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
256 raidPtr->raidid, type, or, oc,
257 (long) oo, failedPDA->row,
258 failedPDA->col,
259 (long) failedPDA->startSector);
260 }
261 asmap->numDataFailed = asmap->numParityFailed = 0;
262 }
263 }
264 if (type == RF_IO_TYPE_READ) {
265 if (asmap->numDataFailed == 0)
266 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
267 else
268 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
269 } else {
270 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
271 }
272 }
273
274 int
275 rf_VerifyParityRAID1(
276 RF_Raid_t * raidPtr,
277 RF_RaidAddr_t raidAddr,
278 RF_PhysDiskAddr_t * parityPDA,
279 int correct_it,
280 RF_RaidAccessFlags_t flags)
281 {
282 int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
283 RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
284 RF_DagHeader_t *rd_dag_h, *wr_dag_h;
285 RF_AccessStripeMapHeader_t *asm_h;
286 RF_AllocListElem_t *allocList;
287 RF_AccTraceEntry_t tracerec;
288 RF_ReconUnitNum_t which_ru;
289 RF_RaidLayout_t *layoutPtr;
290 RF_AccessStripeMap_t *aasm;
291 RF_SectorCount_t nsector;
292 RF_RaidAddr_t startAddr;
293 char *buf, *buf1, *buf2;
294 RF_PhysDiskAddr_t *pda;
295 RF_StripeNum_t psID;
296 RF_MCPair_t *mcpair;
297
298 layoutPtr = &raidPtr->Layout;
299 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
300 nsector = parityPDA->numSector;
301 nbytes = rf_RaidAddressToByte(raidPtr, nsector);
302 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
303
304 asm_h = NULL;
305 rd_dag_h = wr_dag_h = NULL;
306 mcpair = NULL;
307
308 ret = RF_PARITY_COULD_NOT_VERIFY;
309
310 rf_MakeAllocList(allocList);
311 if (allocList == NULL)
312 return (RF_PARITY_COULD_NOT_VERIFY);
313 mcpair = rf_AllocMCPair();
314 if (mcpair == NULL)
315 goto done;
316 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
317 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
318 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
319 RF_MallocAndAdd(buf, bcount, (char *), allocList);
320 if (buf == NULL)
321 goto done;
322 #if RF_DEBUG_VERIFYPARITY
323 if (rf_verifyParityDebug) {
324 printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
325 raidPtr->raidid, (long) buf, bcount, (long) buf,
326 (long) buf + bcount);
327 }
328 #endif
329 /*
330 * Generate a DAG which will read the entire stripe- then we can
331 * just compare data chunks versus "parity" chunks.
332 */
333
334 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
335 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
336 RF_IO_NORMAL_PRIORITY);
337 if (rd_dag_h == NULL)
338 goto done;
339 blockNode = rd_dag_h->succedents[0];
340 unblockNode = blockNode->succedents[0]->succedents[0];
341
342 /*
343 * Map the access to physical disk addresses (PDAs)- this will
344 * get us both a list of data addresses, and "parity" addresses
345 * (which are really mirror copies).
346 */
347 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
348 buf, RF_DONT_REMAP);
349 aasm = asm_h->stripeMap;
350
351 buf1 = buf;
352 /*
353 * Loop through the data blocks, setting up read nodes for each.
354 */
355 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
356 RF_ASSERT(pda);
357
358 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
359
360 RF_ASSERT(pda->numSector != 0);
361 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
362 /* cannot verify parity with dead disk */
363 goto done;
364 }
365 pda->bufPtr = buf1;
366 blockNode->succedents[i]->params[0].p = pda;
367 blockNode->succedents[i]->params[1].p = buf1;
368 blockNode->succedents[i]->params[2].v = psID;
369 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
370 buf1 += nbytes;
371 }
372 RF_ASSERT(pda == NULL);
373 /*
374 * keep i, buf1 running
375 *
376 * Loop through parity blocks, setting up read nodes for each.
377 */
378 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
379 RF_ASSERT(pda);
380 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
381 RF_ASSERT(pda->numSector != 0);
382 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
383 /* cannot verify parity with dead disk */
384 goto done;
385 }
386 pda->bufPtr = buf1;
387 blockNode->succedents[i]->params[0].p = pda;
388 blockNode->succedents[i]->params[1].p = buf1;
389 blockNode->succedents[i]->params[2].v = psID;
390 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
391 buf1 += nbytes;
392 }
393 RF_ASSERT(pda == NULL);
394
395 memset((char *) &tracerec, 0, sizeof(tracerec));
396 rd_dag_h->tracerec = &tracerec;
397
398 #if 0
399 if (rf_verifyParityDebug > 1) {
400 printf("raid%d: RAID1 parity verify read dag:\n",
401 raidPtr->raidid);
402 rf_PrintDAGList(rd_dag_h);
403 }
404 #endif
405 RF_LOCK_MUTEX(mcpair->mutex);
406 mcpair->flag = 0;
407 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
408 (void *) mcpair);
409 while (mcpair->flag == 0) {
410 RF_WAIT_MCPAIR(mcpair);
411 }
412 RF_UNLOCK_MUTEX(mcpair->mutex);
413
414 if (rd_dag_h->status != rf_enable) {
415 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
416 ret = RF_PARITY_COULD_NOT_VERIFY;
417 goto done;
418 }
419 /*
420 * buf1 is the beginning of the data blocks chunk
421 * buf2 is the beginning of the parity blocks chunk
422 */
423 buf1 = buf;
424 buf2 = buf + (nbytes * layoutPtr->numDataCol);
425 ret = RF_PARITY_OKAY;
426 /*
427 * bbufs is "bad bufs"- an array whose entries are the data
428 * column numbers where we had miscompares. (That is, column 0
429 * and column 1 of the array are mirror copies, and are considered
430 * "data column 0" for this purpose).
431 */
432 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
433 allocList);
434 nbad = 0;
435 /*
436 * Check data vs "parity" (mirror copy).
437 */
438 for (i = 0; i < layoutPtr->numDataCol; i++) {
439 #if RF_DEBUG_VERIFYPARITY
440 if (rf_verifyParityDebug) {
441 printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
442 raidPtr->raidid, nbytes, i, (long) buf1,
443 (long) buf2, (long) buf);
444 }
445 #endif
446 ret = memcmp(buf1, buf2, nbytes);
447 if (ret) {
448 #if RF_DEBUG_VERIFYPARITY
449 if (rf_verifyParityDebug > 1) {
450 for (j = 0; j < nbytes; j++) {
451 if (buf1[j] != buf2[j])
452 break;
453 }
454 printf("psid=%ld j=%d\n", (long) psID, j);
455 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
456 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
457 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
458 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
459 }
460 if (rf_verifyParityDebug) {
461 printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
462 }
463 #endif
464 /*
465 * Parity is bad. Keep track of which columns were bad.
466 */
467 if (bbufs)
468 bbufs[nbad] = i;
469 nbad++;
470 ret = RF_PARITY_BAD;
471 }
472 buf1 += nbytes;
473 buf2 += nbytes;
474 }
475
476 if ((ret != RF_PARITY_OKAY) && correct_it) {
477 ret = RF_PARITY_COULD_NOT_CORRECT;
478 #if RF_DEBUG_VERIFYPARITY
479 if (rf_verifyParityDebug) {
480 printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
481 }
482 #endif
483 if (bbufs == NULL)
484 goto done;
485 /*
486 * Make a DAG with one write node for each bad unit. We'll simply
487 * write the contents of the data unit onto the parity unit for
488 * correction. (It's possible that the mirror copy was the correct
489 * copy, and that we're spooging good data by writing bad over it,
490 * but there's no way we can know that.
491 */
492 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
493 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
494 RF_IO_NORMAL_PRIORITY);
495 if (wr_dag_h == NULL)
496 goto done;
497 wrBlock = wr_dag_h->succedents[0];
498 /*
499 * Fill in a write node for each bad compare.
500 */
501 for (i = 0; i < nbad; i++) {
502 j = i + layoutPtr->numDataCol;
503 pda = blockNode->succedents[j]->params[0].p;
504 pda->bufPtr = blockNode->succedents[i]->params[1].p;
505 wrBlock->succedents[i]->params[0].p = pda;
506 wrBlock->succedents[i]->params[1].p = pda->bufPtr;
507 wrBlock->succedents[i]->params[2].v = psID;
508 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
509 }
510 memset((char *) &tracerec, 0, sizeof(tracerec));
511 wr_dag_h->tracerec = &tracerec;
512 #if 0
513 if (rf_verifyParityDebug > 1) {
514 printf("Parity verify write dag:\n");
515 rf_PrintDAGList(wr_dag_h);
516 }
517 #endif
518 RF_LOCK_MUTEX(mcpair->mutex);
519 mcpair->flag = 0;
520 /* fire off the write DAG */
521 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
522 (void *) mcpair);
523 while (!mcpair->flag) {
524 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
525 }
526 RF_UNLOCK_MUTEX(mcpair->mutex);
527 if (wr_dag_h->status != rf_enable) {
528 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
529 goto done;
530 }
531 ret = RF_PARITY_CORRECTED;
532 }
533 done:
534 /*
535 * All done. We might've gotten here without doing part of the function,
536 * so cleanup what we have to and return our running status.
537 */
538 if (asm_h)
539 rf_FreeAccessStripeMap(asm_h);
540 if (rd_dag_h)
541 rf_FreeDAG(rd_dag_h);
542 if (wr_dag_h)
543 rf_FreeDAG(wr_dag_h);
544 if (mcpair)
545 rf_FreeMCPair(mcpair);
546 rf_FreeAllocList(allocList);
547 #if RF_DEBUG_VERIFYPARITY
548 if (rf_verifyParityDebug) {
549 printf("raid%d: RAID1 parity verify, returning %d\n",
550 raidPtr->raidid, ret);
551 }
552 #endif
553 return (ret);
554 }
555
556 int
557 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
558 RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
559 int keep_it; /* whether we can keep this buffer or we have
560 * to return it */
561 int use_committed; /* whether to use a committed or an available
562 * recon buffer */
563 {
564 RF_ReconParityStripeStatus_t *pssPtr;
565 RF_ReconCtrl_t *reconCtrlPtr;
566 RF_RaidLayout_t *layoutPtr;
567 int retcode, created;
568 RF_CallbackDesc_t *cb, *p;
569 RF_ReconBuffer_t *t;
570 RF_Raid_t *raidPtr;
571 caddr_t ta;
572
573 retcode = 0;
574 created = 0;
575
576 raidPtr = rbuf->raidPtr;
577 layoutPtr = &raidPtr->Layout;
578 reconCtrlPtr = raidPtr->reconControl[rbuf->row];
579
580 RF_ASSERT(rbuf);
581 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
582
583 #if RF_DEBUG_RECON
584 if (rf_reconbufferDebug) {
585 printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
586 raidPtr->raidid, rbuf->row, rbuf->col,
587 (long) rbuf->parityStripeID, rbuf->which_ru,
588 (long) rbuf->failedDiskSectorOffset);
589 }
590 #endif
591 if (rf_reconDebug) {
592 printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
593 (long) rbuf->parityStripeID, (long) rbuf->buffer);
594 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
595 (long) rbuf->parityStripeID,
596 rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
597 rbuf->buffer[4]);
598 }
599 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
600
601 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
602
603 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
604 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
605 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
606 * an rbuf for it */
607
608 /*
609 * Since this is simple mirroring, the first submission for a stripe is also
610 * treated as the last.
611 */
612
613 t = NULL;
614 if (keep_it) {
615 #if RF_DEBUG_RECON
616 if (rf_reconbufferDebug) {
617 printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
618 raidPtr->raidid);
619 }
620 #endif
621 t = rbuf;
622 } else {
623 if (use_committed) {
624 #if RF_DEBUG_RECON
625 if (rf_reconbufferDebug) {
626 printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
627 }
628 #endif
629 t = reconCtrlPtr->committedRbufs;
630 RF_ASSERT(t);
631 reconCtrlPtr->committedRbufs = t->next;
632 t->next = NULL;
633 } else
634 if (reconCtrlPtr->floatingRbufs) {
635 #if RF_DEBUG_RECON
636 if (rf_reconbufferDebug) {
637 printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
638 }
639 #endif
640 t = reconCtrlPtr->floatingRbufs;
641 reconCtrlPtr->floatingRbufs = t->next;
642 t->next = NULL;
643 }
644 }
645 if (t == NULL) {
646 #if RF_DEBUG_RECON
647 if (rf_reconbufferDebug) {
648 printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
649 }
650 #endif
651 RF_ASSERT((keep_it == 0) && (use_committed == 0));
652 raidPtr->procsInBufWait++;
653 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
654 && (raidPtr->numFullReconBuffers == 0)) {
655 /* ruh-ro */
656 RF_ERRORMSG("Buffer wait deadlock\n");
657 rf_PrintPSStatusTable(raidPtr, rbuf->row);
658 RF_PANIC();
659 }
660 pssPtr->flags |= RF_PSS_BUFFERWAIT;
661 cb = rf_AllocCallbackDesc();
662 cb->row = rbuf->row;
663 cb->col = rbuf->col;
664 cb->callbackArg.v = rbuf->parityStripeID;
665 cb->callbackArg2.v = rbuf->which_ru;
666 cb->next = NULL;
667 if (reconCtrlPtr->bufferWaitList == NULL) {
668 /* we are the wait list- lucky us */
669 reconCtrlPtr->bufferWaitList = cb;
670 } else {
671 /* append to wait list */
672 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
673 p->next = cb;
674 }
675 retcode = 1;
676 goto out;
677 }
678 if (t != rbuf) {
679 t->row = rbuf->row;
680 t->col = reconCtrlPtr->fcol;
681 t->parityStripeID = rbuf->parityStripeID;
682 t->which_ru = rbuf->which_ru;
683 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
684 t->spRow = rbuf->spRow;
685 t->spCol = rbuf->spCol;
686 t->spOffset = rbuf->spOffset;
687 /* Swap buffers. DANCE! */
688 ta = t->buffer;
689 t->buffer = rbuf->buffer;
690 rbuf->buffer = ta;
691 }
692 /*
693 * Use the rbuf we've been given as the target.
694 */
695 RF_ASSERT(pssPtr->rbuf == NULL);
696 pssPtr->rbuf = t;
697
698 t->count = 1;
699 /*
700 * Below, we use 1 for numDataCol (which is equal to the count in the
701 * previous line), so we'll always be done.
702 */
703 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
704
705 out:
706 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
707 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
708 #if RF_DEBUG_RECON
709 if (rf_reconbufferDebug) {
710 printf("raid%d: RAID1 rbuf submission: returning %d\n",
711 raidPtr->raidid, retcode);
712 }
713 #endif
714 return (retcode);
715 }
716