rf_raid1.c revision 1.13 1 /* $NetBSD: rf_raid1.c,v 1.13 2002/09/23 03:38:51 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_raid1.c -- implements RAID Level 1
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.13 2002/09/23 03:38:51 oster Exp $");
37
38 #include "rf_raid.h"
39 #include "rf_raid1.h"
40 #include "rf_dag.h"
41 #include "rf_dagffrd.h"
42 #include "rf_dagffwr.h"
43 #include "rf_dagdegrd.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_diskqueue.h"
47 #include "rf_general.h"
48 #include "rf_utils.h"
49 #include "rf_parityscan.h"
50 #include "rf_mcpair.h"
51 #include "rf_layout.h"
52 #include "rf_map.h"
53 #include "rf_engine.h"
54 #include "rf_reconbuffer.h"
55
56 typedef struct RF_Raid1ConfigInfo_s {
57 RF_RowCol_t **stripeIdentifier;
58 } RF_Raid1ConfigInfo_t;
59 /* start of day code specific to RAID level 1 */
60 int
61 rf_ConfigureRAID1(
62 RF_ShutdownList_t ** listp,
63 RF_Raid_t * raidPtr,
64 RF_Config_t * cfgPtr)
65 {
66 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
67 RF_Raid1ConfigInfo_t *info;
68 RF_RowCol_t i;
69
70 /* create a RAID level 1 configuration structure */
71 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
72 if (info == NULL)
73 return (ENOMEM);
74 layoutPtr->layoutSpecificInfo = (void *) info;
75
76 /* ... and fill it in. */
77 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
78 if (info->stripeIdentifier == NULL)
79 return (ENOMEM);
80 for (i = 0; i < (raidPtr->numCol / 2); i++) {
81 info->stripeIdentifier[i][0] = (2 * i);
82 info->stripeIdentifier[i][1] = (2 * i) + 1;
83 }
84
85 RF_ASSERT(raidPtr->numRow == 1);
86
87 /* this implementation of RAID level 1 uses one row of numCol disks
88 * and allows multiple (numCol / 2) stripes per row. A stripe
89 * consists of a single data unit and a single parity (mirror) unit.
90 * stripe id = raidAddr / stripeUnitSize */
91 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
92 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
93 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
94 layoutPtr->numDataCol = 1;
95 layoutPtr->numParityCol = 1;
96 return (0);
97 }
98
99
100 /* returns the physical disk location of the primary copy in the mirror pair */
101 void
102 rf_MapSectorRAID1(
103 RF_Raid_t * raidPtr,
104 RF_RaidAddr_t raidSector,
105 RF_RowCol_t * row,
106 RF_RowCol_t * col,
107 RF_SectorNum_t * diskSector,
108 int remap)
109 {
110 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
111 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
112
113 *row = 0;
114 *col = 2 * mirrorPair;
115 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
116 }
117
118
119 /* Map Parity
120 *
121 * returns the physical disk location of the secondary copy in the mirror
122 * pair
123 */
124 void
125 rf_MapParityRAID1(
126 RF_Raid_t * raidPtr,
127 RF_RaidAddr_t raidSector,
128 RF_RowCol_t * row,
129 RF_RowCol_t * col,
130 RF_SectorNum_t * diskSector,
131 int remap)
132 {
133 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
134 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
135
136 *row = 0;
137 *col = (2 * mirrorPair) + 1;
138
139 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
140 }
141
142
143 /* IdentifyStripeRAID1
144 *
145 * returns a list of disks for a given redundancy group
146 */
147 void
148 rf_IdentifyStripeRAID1(
149 RF_Raid_t * raidPtr,
150 RF_RaidAddr_t addr,
151 RF_RowCol_t ** diskids,
152 RF_RowCol_t * outRow)
153 {
154 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
155 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
156 RF_ASSERT(stripeID >= 0);
157 RF_ASSERT(addr >= 0);
158 *outRow = 0;
159 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
160 RF_ASSERT(*diskids);
161 }
162
163
164 /* MapSIDToPSIDRAID1
165 *
166 * maps a logical stripe to a stripe in the redundant array
167 */
168 void
169 rf_MapSIDToPSIDRAID1(
170 RF_RaidLayout_t * layoutPtr,
171 RF_StripeNum_t stripeID,
172 RF_StripeNum_t * psID,
173 RF_ReconUnitNum_t * which_ru)
174 {
175 *which_ru = 0;
176 *psID = stripeID;
177 }
178
179
180
181 /******************************************************************************
182 * select a graph to perform a single-stripe access
183 *
184 * Parameters: raidPtr - description of the physical array
185 * type - type of operation (read or write) requested
186 * asmap - logical & physical addresses for this access
187 * createFunc - name of function to use to create the graph
188 *****************************************************************************/
189
190 void
191 rf_RAID1DagSelect(
192 RF_Raid_t * raidPtr,
193 RF_IoType_t type,
194 RF_AccessStripeMap_t * asmap,
195 RF_VoidFuncPtr * createFunc)
196 {
197 RF_RowCol_t frow, fcol, or, oc;
198 RF_PhysDiskAddr_t *failedPDA;
199 int prior_recon;
200 RF_RowStatus_t rstat;
201 RF_SectorNum_t oo;
202
203
204 RF_ASSERT(RF_IO_IS_R_OR_W(type));
205
206 if (asmap->numDataFailed + asmap->numParityFailed > 1) {
207 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
208 *createFunc = NULL;
209 return;
210 }
211 if (asmap->numDataFailed + asmap->numParityFailed) {
212 /*
213 * We've got a fault. Re-map to spare space, iff applicable.
214 * Shouldn't the arch-independent code do this for us?
215 * Anyway, it turns out if we don't do this here, then when
216 * we're reconstructing, writes go only to the surviving
217 * original disk, and aren't reflected on the reconstructed
218 * spare. Oops. --jimz
219 */
220 failedPDA = asmap->failedPDAs[0];
221 frow = failedPDA->row;
222 fcol = failedPDA->col;
223 rstat = raidPtr->status[frow];
224 prior_recon = (rstat == rf_rs_reconfigured) || (
225 (rstat == rf_rs_reconstructing) ?
226 rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
227 );
228 if (prior_recon) {
229 or = frow;
230 oc = fcol;
231 oo = failedPDA->startSector;
232 /*
233 * If we did distributed sparing, we'd monkey with that here.
234 * But we don't, so we'll
235 */
236 failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
237 failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
238 /*
239 * Redirect other components, iff necessary. This looks
240 * pretty suspicious to me, but it's what the raid5
241 * DAG select does.
242 */
243 if (asmap->parityInfo->next) {
244 if (failedPDA == asmap->parityInfo) {
245 failedPDA->next->row = failedPDA->row;
246 failedPDA->next->col = failedPDA->col;
247 } else {
248 if (failedPDA == asmap->parityInfo->next) {
249 asmap->parityInfo->row = failedPDA->row;
250 asmap->parityInfo->col = failedPDA->col;
251 }
252 }
253 }
254 if (rf_dagDebug || rf_mapDebug) {
255 printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
256 raidPtr->raidid, type, or, oc,
257 (long) oo, failedPDA->row,
258 failedPDA->col,
259 (long) failedPDA->startSector);
260 }
261 asmap->numDataFailed = asmap->numParityFailed = 0;
262 }
263 }
264 if (type == RF_IO_TYPE_READ) {
265 if (asmap->numDataFailed == 0)
266 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
267 else
268 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
269 } else {
270 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
271 }
272 }
273
274 int
275 rf_VerifyParityRAID1(
276 RF_Raid_t * raidPtr,
277 RF_RaidAddr_t raidAddr,
278 RF_PhysDiskAddr_t * parityPDA,
279 int correct_it,
280 RF_RaidAccessFlags_t flags)
281 {
282 int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
283 RF_DagNode_t *blockNode, *wrBlock;
284 RF_DagHeader_t *rd_dag_h, *wr_dag_h;
285 RF_AccessStripeMapHeader_t *asm_h;
286 RF_AllocListElem_t *allocList;
287 RF_AccTraceEntry_t tracerec;
288 RF_ReconUnitNum_t which_ru;
289 RF_RaidLayout_t *layoutPtr;
290 RF_AccessStripeMap_t *aasm;
291 RF_SectorCount_t nsector;
292 RF_RaidAddr_t startAddr;
293 char *buf, *buf1, *buf2;
294 RF_PhysDiskAddr_t *pda;
295 RF_StripeNum_t psID;
296 RF_MCPair_t *mcpair;
297
298 layoutPtr = &raidPtr->Layout;
299 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
300 nsector = parityPDA->numSector;
301 nbytes = rf_RaidAddressToByte(raidPtr, nsector);
302 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
303
304 asm_h = NULL;
305 rd_dag_h = wr_dag_h = NULL;
306 mcpair = NULL;
307
308 ret = RF_PARITY_COULD_NOT_VERIFY;
309
310 rf_MakeAllocList(allocList);
311 if (allocList == NULL)
312 return (RF_PARITY_COULD_NOT_VERIFY);
313 mcpair = rf_AllocMCPair();
314 if (mcpair == NULL)
315 goto done;
316 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
317 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
318 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
319 RF_MallocAndAdd(buf, bcount, (char *), allocList);
320 if (buf == NULL)
321 goto done;
322 #if RF_DEBUG_VERIFYPARITY
323 if (rf_verifyParityDebug) {
324 printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
325 raidPtr->raidid, (long) buf, bcount, (long) buf,
326 (long) buf + bcount);
327 }
328 #endif
329 /*
330 * Generate a DAG which will read the entire stripe- then we can
331 * just compare data chunks versus "parity" chunks.
332 */
333
334 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
335 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
336 RF_IO_NORMAL_PRIORITY);
337 if (rd_dag_h == NULL)
338 goto done;
339 blockNode = rd_dag_h->succedents[0];
340
341 /*
342 * Map the access to physical disk addresses (PDAs)- this will
343 * get us both a list of data addresses, and "parity" addresses
344 * (which are really mirror copies).
345 */
346 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
347 buf, RF_DONT_REMAP);
348 aasm = asm_h->stripeMap;
349
350 buf1 = buf;
351 /*
352 * Loop through the data blocks, setting up read nodes for each.
353 */
354 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
355 RF_ASSERT(pda);
356
357 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
358
359 RF_ASSERT(pda->numSector != 0);
360 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
361 /* cannot verify parity with dead disk */
362 goto done;
363 }
364 pda->bufPtr = buf1;
365 blockNode->succedents[i]->params[0].p = pda;
366 blockNode->succedents[i]->params[1].p = buf1;
367 blockNode->succedents[i]->params[2].v = psID;
368 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
369 buf1 += nbytes;
370 }
371 RF_ASSERT(pda == NULL);
372 /*
373 * keep i, buf1 running
374 *
375 * Loop through parity blocks, setting up read nodes for each.
376 */
377 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
378 RF_ASSERT(pda);
379 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
380 RF_ASSERT(pda->numSector != 0);
381 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
382 /* cannot verify parity with dead disk */
383 goto done;
384 }
385 pda->bufPtr = buf1;
386 blockNode->succedents[i]->params[0].p = pda;
387 blockNode->succedents[i]->params[1].p = buf1;
388 blockNode->succedents[i]->params[2].v = psID;
389 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
390 buf1 += nbytes;
391 }
392 RF_ASSERT(pda == NULL);
393
394 memset((char *) &tracerec, 0, sizeof(tracerec));
395 rd_dag_h->tracerec = &tracerec;
396
397 #if 0
398 if (rf_verifyParityDebug > 1) {
399 printf("raid%d: RAID1 parity verify read dag:\n",
400 raidPtr->raidid);
401 rf_PrintDAGList(rd_dag_h);
402 }
403 #endif
404 RF_LOCK_MUTEX(mcpair->mutex);
405 mcpair->flag = 0;
406 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
407 (void *) mcpair);
408 while (mcpair->flag == 0) {
409 RF_WAIT_MCPAIR(mcpair);
410 }
411 RF_UNLOCK_MUTEX(mcpair->mutex);
412
413 if (rd_dag_h->status != rf_enable) {
414 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
415 ret = RF_PARITY_COULD_NOT_VERIFY;
416 goto done;
417 }
418 /*
419 * buf1 is the beginning of the data blocks chunk
420 * buf2 is the beginning of the parity blocks chunk
421 */
422 buf1 = buf;
423 buf2 = buf + (nbytes * layoutPtr->numDataCol);
424 ret = RF_PARITY_OKAY;
425 /*
426 * bbufs is "bad bufs"- an array whose entries are the data
427 * column numbers where we had miscompares. (That is, column 0
428 * and column 1 of the array are mirror copies, and are considered
429 * "data column 0" for this purpose).
430 */
431 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
432 allocList);
433 nbad = 0;
434 /*
435 * Check data vs "parity" (mirror copy).
436 */
437 for (i = 0; i < layoutPtr->numDataCol; i++) {
438 #if RF_DEBUG_VERIFYPARITY
439 if (rf_verifyParityDebug) {
440 printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
441 raidPtr->raidid, nbytes, i, (long) buf1,
442 (long) buf2, (long) buf);
443 }
444 #endif
445 ret = memcmp(buf1, buf2, nbytes);
446 if (ret) {
447 #if RF_DEBUG_VERIFYPARITY
448 if (rf_verifyParityDebug > 1) {
449 for (j = 0; j < nbytes; j++) {
450 if (buf1[j] != buf2[j])
451 break;
452 }
453 printf("psid=%ld j=%d\n", (long) psID, j);
454 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
455 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
456 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
457 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
458 }
459 if (rf_verifyParityDebug) {
460 printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
461 }
462 #endif
463 /*
464 * Parity is bad. Keep track of which columns were bad.
465 */
466 if (bbufs)
467 bbufs[nbad] = i;
468 nbad++;
469 ret = RF_PARITY_BAD;
470 }
471 buf1 += nbytes;
472 buf2 += nbytes;
473 }
474
475 if ((ret != RF_PARITY_OKAY) && correct_it) {
476 ret = RF_PARITY_COULD_NOT_CORRECT;
477 #if RF_DEBUG_VERIFYPARITY
478 if (rf_verifyParityDebug) {
479 printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
480 }
481 #endif
482 if (bbufs == NULL)
483 goto done;
484 /*
485 * Make a DAG with one write node for each bad unit. We'll simply
486 * write the contents of the data unit onto the parity unit for
487 * correction. (It's possible that the mirror copy was the correct
488 * copy, and that we're spooging good data by writing bad over it,
489 * but there's no way we can know that.
490 */
491 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
492 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
493 RF_IO_NORMAL_PRIORITY);
494 if (wr_dag_h == NULL)
495 goto done;
496 wrBlock = wr_dag_h->succedents[0];
497 /*
498 * Fill in a write node for each bad compare.
499 */
500 for (i = 0; i < nbad; i++) {
501 j = i + layoutPtr->numDataCol;
502 pda = blockNode->succedents[j]->params[0].p;
503 pda->bufPtr = blockNode->succedents[i]->params[1].p;
504 wrBlock->succedents[i]->params[0].p = pda;
505 wrBlock->succedents[i]->params[1].p = pda->bufPtr;
506 wrBlock->succedents[i]->params[2].v = psID;
507 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
508 }
509 memset((char *) &tracerec, 0, sizeof(tracerec));
510 wr_dag_h->tracerec = &tracerec;
511 #if 0
512 if (rf_verifyParityDebug > 1) {
513 printf("Parity verify write dag:\n");
514 rf_PrintDAGList(wr_dag_h);
515 }
516 #endif
517 RF_LOCK_MUTEX(mcpair->mutex);
518 mcpair->flag = 0;
519 /* fire off the write DAG */
520 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
521 (void *) mcpair);
522 while (!mcpair->flag) {
523 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
524 }
525 RF_UNLOCK_MUTEX(mcpair->mutex);
526 if (wr_dag_h->status != rf_enable) {
527 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
528 goto done;
529 }
530 ret = RF_PARITY_CORRECTED;
531 }
532 done:
533 /*
534 * All done. We might've gotten here without doing part of the function,
535 * so cleanup what we have to and return our running status.
536 */
537 if (asm_h)
538 rf_FreeAccessStripeMap(asm_h);
539 if (rd_dag_h)
540 rf_FreeDAG(rd_dag_h);
541 if (wr_dag_h)
542 rf_FreeDAG(wr_dag_h);
543 if (mcpair)
544 rf_FreeMCPair(mcpair);
545 rf_FreeAllocList(allocList);
546 #if RF_DEBUG_VERIFYPARITY
547 if (rf_verifyParityDebug) {
548 printf("raid%d: RAID1 parity verify, returning %d\n",
549 raidPtr->raidid, ret);
550 }
551 #endif
552 return (ret);
553 }
554
555 int
556 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
557 RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
558 int keep_it; /* whether we can keep this buffer or we have
559 * to return it */
560 int use_committed; /* whether to use a committed or an available
561 * recon buffer */
562 {
563 RF_ReconParityStripeStatus_t *pssPtr;
564 RF_ReconCtrl_t *reconCtrlPtr;
565 int retcode, created;
566 RF_CallbackDesc_t *cb, *p;
567 RF_ReconBuffer_t *t;
568 RF_Raid_t *raidPtr;
569 caddr_t ta;
570
571 retcode = 0;
572 created = 0;
573
574 raidPtr = rbuf->raidPtr;
575 reconCtrlPtr = raidPtr->reconControl[rbuf->row];
576
577 RF_ASSERT(rbuf);
578 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
579
580 #if RF_DEBUG_RECON
581 if (rf_reconbufferDebug) {
582 printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
583 raidPtr->raidid, rbuf->row, rbuf->col,
584 (long) rbuf->parityStripeID, rbuf->which_ru,
585 (long) rbuf->failedDiskSectorOffset);
586 }
587 #endif
588 if (rf_reconDebug) {
589 printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
590 (long) rbuf->parityStripeID, (long) rbuf->buffer);
591 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
592 (long) rbuf->parityStripeID,
593 rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
594 rbuf->buffer[4]);
595 }
596 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
597
598 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
599
600 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
601 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
602 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
603 * an rbuf for it */
604
605 /*
606 * Since this is simple mirroring, the first submission for a stripe is also
607 * treated as the last.
608 */
609
610 t = NULL;
611 if (keep_it) {
612 #if RF_DEBUG_RECON
613 if (rf_reconbufferDebug) {
614 printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
615 raidPtr->raidid);
616 }
617 #endif
618 t = rbuf;
619 } else {
620 if (use_committed) {
621 #if RF_DEBUG_RECON
622 if (rf_reconbufferDebug) {
623 printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
624 }
625 #endif
626 t = reconCtrlPtr->committedRbufs;
627 RF_ASSERT(t);
628 reconCtrlPtr->committedRbufs = t->next;
629 t->next = NULL;
630 } else
631 if (reconCtrlPtr->floatingRbufs) {
632 #if RF_DEBUG_RECON
633 if (rf_reconbufferDebug) {
634 printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
635 }
636 #endif
637 t = reconCtrlPtr->floatingRbufs;
638 reconCtrlPtr->floatingRbufs = t->next;
639 t->next = NULL;
640 }
641 }
642 if (t == NULL) {
643 #if RF_DEBUG_RECON
644 if (rf_reconbufferDebug) {
645 printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
646 }
647 #endif
648 RF_ASSERT((keep_it == 0) && (use_committed == 0));
649 raidPtr->procsInBufWait++;
650 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
651 && (raidPtr->numFullReconBuffers == 0)) {
652 /* ruh-ro */
653 RF_ERRORMSG("Buffer wait deadlock\n");
654 rf_PrintPSStatusTable(raidPtr, rbuf->row);
655 RF_PANIC();
656 }
657 pssPtr->flags |= RF_PSS_BUFFERWAIT;
658 cb = rf_AllocCallbackDesc();
659 cb->row = rbuf->row;
660 cb->col = rbuf->col;
661 cb->callbackArg.v = rbuf->parityStripeID;
662 cb->callbackArg2.v = rbuf->which_ru;
663 cb->next = NULL;
664 if (reconCtrlPtr->bufferWaitList == NULL) {
665 /* we are the wait list- lucky us */
666 reconCtrlPtr->bufferWaitList = cb;
667 } else {
668 /* append to wait list */
669 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
670 p->next = cb;
671 }
672 retcode = 1;
673 goto out;
674 }
675 if (t != rbuf) {
676 t->row = rbuf->row;
677 t->col = reconCtrlPtr->fcol;
678 t->parityStripeID = rbuf->parityStripeID;
679 t->which_ru = rbuf->which_ru;
680 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
681 t->spRow = rbuf->spRow;
682 t->spCol = rbuf->spCol;
683 t->spOffset = rbuf->spOffset;
684 /* Swap buffers. DANCE! */
685 ta = t->buffer;
686 t->buffer = rbuf->buffer;
687 rbuf->buffer = ta;
688 }
689 /*
690 * Use the rbuf we've been given as the target.
691 */
692 RF_ASSERT(pssPtr->rbuf == NULL);
693 pssPtr->rbuf = t;
694
695 t->count = 1;
696 /*
697 * Below, we use 1 for numDataCol (which is equal to the count in the
698 * previous line), so we'll always be done.
699 */
700 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
701
702 out:
703 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
704 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
705 #if RF_DEBUG_RECON
706 if (rf_reconbufferDebug) {
707 printf("raid%d: RAID1 rbuf submission: returning %d\n",
708 raidPtr->raidid, retcode);
709 }
710 #endif
711 return (retcode);
712 }
713