Home | History | Annotate | Line # | Download | only in raidframe
rf_raid1.c revision 1.15
      1 /*	$NetBSD: rf_raid1.c,v 1.15 2003/12/30 21:59:03 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_raid1.c -- implements RAID Level 1
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.15 2003/12/30 21:59:03 oster Exp $");
     37 
     38 #include "rf_raid.h"
     39 #include "rf_raid1.h"
     40 #include "rf_dag.h"
     41 #include "rf_dagffrd.h"
     42 #include "rf_dagffwr.h"
     43 #include "rf_dagdegrd.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_diskqueue.h"
     47 #include "rf_general.h"
     48 #include "rf_utils.h"
     49 #include "rf_parityscan.h"
     50 #include "rf_mcpair.h"
     51 #include "rf_layout.h"
     52 #include "rf_map.h"
     53 #include "rf_engine.h"
     54 #include "rf_reconbuffer.h"
     55 
     56 typedef struct RF_Raid1ConfigInfo_s {
     57 	RF_RowCol_t **stripeIdentifier;
     58 }       RF_Raid1ConfigInfo_t;
     59 /* start of day code specific to RAID level 1 */
     60 int
     61 rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
     62 		  RF_Config_t *cfgPtr)
     63 {
     64 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     65 	RF_Raid1ConfigInfo_t *info;
     66 	RF_RowCol_t i;
     67 
     68 	/* create a RAID level 1 configuration structure */
     69 	RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
     70 	if (info == NULL)
     71 		return (ENOMEM);
     72 	layoutPtr->layoutSpecificInfo = (void *) info;
     73 
     74 	/* ... and fill it in. */
     75 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
     76 	if (info->stripeIdentifier == NULL)
     77 		return (ENOMEM);
     78 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
     79 		info->stripeIdentifier[i][0] = (2 * i);
     80 		info->stripeIdentifier[i][1] = (2 * i) + 1;
     81 	}
     82 
     83 	/* this implementation of RAID level 1 uses one row of numCol disks
     84 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
     85 	 * consists of a single data unit and a single parity (mirror) unit.
     86 	 * stripe id = raidAddr / stripeUnitSize */
     87 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
     88 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
     89 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
     90 	layoutPtr->numDataCol = 1;
     91 	layoutPtr->numParityCol = 1;
     92 	return (0);
     93 }
     94 
     95 
     96 /* returns the physical disk location of the primary copy in the mirror pair */
     97 void
     98 rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
     99 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap)
    100 {
    101 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    102 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    103 
    104 	*col = 2 * mirrorPair;
    105 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    106 }
    107 
    108 
    109 /* Map Parity
    110  *
    111  * returns the physical disk location of the secondary copy in the mirror
    112  * pair
    113  */
    114 void
    115 rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
    116 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap)
    117 {
    118 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    119 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    120 
    121 	*col = (2 * mirrorPair) + 1;
    122 
    123 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    124 }
    125 
    126 
    127 /* IdentifyStripeRAID1
    128  *
    129  * returns a list of disks for a given redundancy group
    130  */
    131 void
    132 rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
    133 		       RF_RowCol_t **diskids)
    134 {
    135 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
    136 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
    137 	RF_ASSERT(stripeID >= 0);
    138 	RF_ASSERT(addr >= 0);
    139 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
    140 	RF_ASSERT(*diskids);
    141 }
    142 
    143 
    144 /* MapSIDToPSIDRAID1
    145  *
    146  * maps a logical stripe to a stripe in the redundant array
    147  */
    148 void
    149 rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr, RF_StripeNum_t stripeID,
    150 		     RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
    151 {
    152 	*which_ru = 0;
    153 	*psID = stripeID;
    154 }
    155 
    156 
    157 
    158 /******************************************************************************
    159  * select a graph to perform a single-stripe access
    160  *
    161  * Parameters:  raidPtr    - description of the physical array
    162  *              type       - type of operation (read or write) requested
    163  *              asmap      - logical & physical addresses for this access
    164  *              createFunc - name of function to use to create the graph
    165  *****************************************************************************/
    166 
    167 void
    168 rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
    169 		  RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
    170 {
    171 	RF_RowCol_t fcol, oc;
    172 	RF_PhysDiskAddr_t *failedPDA;
    173 	int     prior_recon;
    174 	RF_RowStatus_t rstat;
    175 	RF_SectorNum_t oo;
    176 
    177 
    178 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    179 
    180 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
    181 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    182 		*createFunc = NULL;
    183 		return;
    184 	}
    185 	if (asmap->numDataFailed + asmap->numParityFailed) {
    186 		/*
    187 	         * We've got a fault. Re-map to spare space, iff applicable.
    188 	         * Shouldn't the arch-independent code do this for us?
    189 	         * Anyway, it turns out if we don't do this here, then when
    190 	         * we're reconstructing, writes go only to the surviving
    191 	         * original disk, and aren't reflected on the reconstructed
    192 	         * spare. Oops. --jimz
    193 	         */
    194 		failedPDA = asmap->failedPDAs[0];
    195 		fcol = failedPDA->col;
    196 		rstat = raidPtr->status;
    197 		prior_recon = (rstat == rf_rs_reconfigured) || (
    198 		    (rstat == rf_rs_reconstructing) ?
    199 		    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    200 		    );
    201 		if (prior_recon) {
    202 			oc = fcol;
    203 			oo = failedPDA->startSector;
    204 			/*
    205 		         * If we did distributed sparing, we'd monkey with that here.
    206 		         * But we don't, so we'll
    207 		         */
    208 			failedPDA->col = raidPtr->Disks[fcol].spareCol;
    209 			/*
    210 		         * Redirect other components, iff necessary. This looks
    211 		         * pretty suspicious to me, but it's what the raid5
    212 		         * DAG select does.
    213 		         */
    214 			if (asmap->parityInfo->next) {
    215 				if (failedPDA == asmap->parityInfo) {
    216 					failedPDA->next->col = failedPDA->col;
    217 				} else {
    218 					if (failedPDA == asmap->parityInfo->next) {
    219 						asmap->parityInfo->col = failedPDA->col;
    220 					}
    221 				}
    222 			}
    223 			if (rf_dagDebug || rf_mapDebug) {
    224 				printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    225 				       raidPtr->raidid, type, oc,
    226 				       (long) oo,
    227 				       failedPDA->col,
    228 				       (long) failedPDA->startSector);
    229 			}
    230 			asmap->numDataFailed = asmap->numParityFailed = 0;
    231 		}
    232 	}
    233 	if (type == RF_IO_TYPE_READ) {
    234 		if (asmap->numDataFailed == 0)
    235 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
    236 		else
    237 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
    238 	} else {
    239 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
    240 	}
    241 }
    242 
    243 int
    244 rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
    245 		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
    246 		     RF_RaidAccessFlags_t flags)
    247 {
    248 	int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
    249 	RF_DagNode_t *blockNode, *wrBlock;
    250 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
    251 	RF_AccessStripeMapHeader_t *asm_h;
    252 	RF_AllocListElem_t *allocList;
    253 	RF_AccTraceEntry_t tracerec;
    254 	RF_ReconUnitNum_t which_ru;
    255 	RF_RaidLayout_t *layoutPtr;
    256 	RF_AccessStripeMap_t *aasm;
    257 	RF_SectorCount_t nsector;
    258 	RF_RaidAddr_t startAddr;
    259 	char   *buf, *buf1, *buf2;
    260 	RF_PhysDiskAddr_t *pda;
    261 	RF_StripeNum_t psID;
    262 	RF_MCPair_t *mcpair;
    263 
    264 	layoutPtr = &raidPtr->Layout;
    265 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    266 	nsector = parityPDA->numSector;
    267 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
    268 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
    269 
    270 	asm_h = NULL;
    271 	rd_dag_h = wr_dag_h = NULL;
    272 	mcpair = NULL;
    273 
    274 	ret = RF_PARITY_COULD_NOT_VERIFY;
    275 
    276 	rf_MakeAllocList(allocList);
    277 	if (allocList == NULL)
    278 		return (RF_PARITY_COULD_NOT_VERIFY);
    279 	mcpair = rf_AllocMCPair();
    280 	if (mcpair == NULL)
    281 		goto done;
    282 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
    283 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    284 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
    285 	RF_MallocAndAdd(buf, bcount, (char *), allocList);
    286 	if (buf == NULL)
    287 		goto done;
    288 #if RF_DEBUG_VERIFYPARITY
    289 	if (rf_verifyParityDebug) {
    290 		printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
    291 		       raidPtr->raidid, (long) buf, bcount, (long) buf,
    292 		       (long) buf + bcount);
    293 	}
    294 #endif
    295 	/*
    296          * Generate a DAG which will read the entire stripe- then we can
    297          * just compare data chunks versus "parity" chunks.
    298          */
    299 
    300 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
    301 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
    302 	    RF_IO_NORMAL_PRIORITY);
    303 	if (rd_dag_h == NULL)
    304 		goto done;
    305 	blockNode = rd_dag_h->succedents[0];
    306 
    307 	/*
    308          * Map the access to physical disk addresses (PDAs)- this will
    309          * get us both a list of data addresses, and "parity" addresses
    310          * (which are really mirror copies).
    311          */
    312 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
    313 	    buf, RF_DONT_REMAP);
    314 	aasm = asm_h->stripeMap;
    315 
    316 	buf1 = buf;
    317 	/*
    318          * Loop through the data blocks, setting up read nodes for each.
    319          */
    320 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    321 		RF_ASSERT(pda);
    322 
    323 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    324 
    325 		RF_ASSERT(pda->numSector != 0);
    326 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    327 			/* cannot verify parity with dead disk */
    328 			goto done;
    329 		}
    330 		pda->bufPtr = buf1;
    331 		blockNode->succedents[i]->params[0].p = pda;
    332 		blockNode->succedents[i]->params[1].p = buf1;
    333 		blockNode->succedents[i]->params[2].v = psID;
    334 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    335 		buf1 += nbytes;
    336 	}
    337 	RF_ASSERT(pda == NULL);
    338 	/*
    339          * keep i, buf1 running
    340          *
    341          * Loop through parity blocks, setting up read nodes for each.
    342          */
    343 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
    344 		RF_ASSERT(pda);
    345 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    346 		RF_ASSERT(pda->numSector != 0);
    347 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    348 			/* cannot verify parity with dead disk */
    349 			goto done;
    350 		}
    351 		pda->bufPtr = buf1;
    352 		blockNode->succedents[i]->params[0].p = pda;
    353 		blockNode->succedents[i]->params[1].p = buf1;
    354 		blockNode->succedents[i]->params[2].v = psID;
    355 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    356 		buf1 += nbytes;
    357 	}
    358 	RF_ASSERT(pda == NULL);
    359 
    360 	memset((char *) &tracerec, 0, sizeof(tracerec));
    361 	rd_dag_h->tracerec = &tracerec;
    362 
    363 #if 0
    364 	if (rf_verifyParityDebug > 1) {
    365 		printf("raid%d: RAID1 parity verify read dag:\n",
    366 		       raidPtr->raidid);
    367 		rf_PrintDAGList(rd_dag_h);
    368 	}
    369 #endif
    370 	RF_LOCK_MUTEX(mcpair->mutex);
    371 	mcpair->flag = 0;
    372 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    373 	    (void *) mcpair);
    374 	while (mcpair->flag == 0) {
    375 		RF_WAIT_MCPAIR(mcpair);
    376 	}
    377 	RF_UNLOCK_MUTEX(mcpair->mutex);
    378 
    379 	if (rd_dag_h->status != rf_enable) {
    380 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
    381 		ret = RF_PARITY_COULD_NOT_VERIFY;
    382 		goto done;
    383 	}
    384 	/*
    385          * buf1 is the beginning of the data blocks chunk
    386          * buf2 is the beginning of the parity blocks chunk
    387          */
    388 	buf1 = buf;
    389 	buf2 = buf + (nbytes * layoutPtr->numDataCol);
    390 	ret = RF_PARITY_OKAY;
    391 	/*
    392          * bbufs is "bad bufs"- an array whose entries are the data
    393          * column numbers where we had miscompares. (That is, column 0
    394          * and column 1 of the array are mirror copies, and are considered
    395          * "data column 0" for this purpose).
    396          */
    397 	RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
    398 	    allocList);
    399 	nbad = 0;
    400 	/*
    401          * Check data vs "parity" (mirror copy).
    402          */
    403 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    404 #if RF_DEBUG_VERIFYPARITY
    405 		if (rf_verifyParityDebug) {
    406 			printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
    407 			       raidPtr->raidid, nbytes, i, (long) buf1,
    408 			       (long) buf2, (long) buf);
    409 		}
    410 #endif
    411 		ret = memcmp(buf1, buf2, nbytes);
    412 		if (ret) {
    413 #if RF_DEBUG_VERIFYPARITY
    414 			if (rf_verifyParityDebug > 1) {
    415 				for (j = 0; j < nbytes; j++) {
    416 					if (buf1[j] != buf2[j])
    417 						break;
    418 				}
    419 				printf("psid=%ld j=%d\n", (long) psID, j);
    420 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
    421 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
    422 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
    423 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
    424 			}
    425 			if (rf_verifyParityDebug) {
    426 				printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
    427 			}
    428 #endif
    429 			/*
    430 		         * Parity is bad. Keep track of which columns were bad.
    431 		         */
    432 			if (bbufs)
    433 				bbufs[nbad] = i;
    434 			nbad++;
    435 			ret = RF_PARITY_BAD;
    436 		}
    437 		buf1 += nbytes;
    438 		buf2 += nbytes;
    439 	}
    440 
    441 	if ((ret != RF_PARITY_OKAY) && correct_it) {
    442 		ret = RF_PARITY_COULD_NOT_CORRECT;
    443 #if RF_DEBUG_VERIFYPARITY
    444 		if (rf_verifyParityDebug) {
    445 			printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
    446 		}
    447 #endif
    448 		if (bbufs == NULL)
    449 			goto done;
    450 		/*
    451 	         * Make a DAG with one write node for each bad unit. We'll simply
    452 	         * write the contents of the data unit onto the parity unit for
    453 	         * correction. (It's possible that the mirror copy was the correct
    454 	         * copy, and that we're spooging good data by writing bad over it,
    455 	         * but there's no way we can know that.
    456 	         */
    457 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
    458 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
    459 		    RF_IO_NORMAL_PRIORITY);
    460 		if (wr_dag_h == NULL)
    461 			goto done;
    462 		wrBlock = wr_dag_h->succedents[0];
    463 		/*
    464 	         * Fill in a write node for each bad compare.
    465 	         */
    466 		for (i = 0; i < nbad; i++) {
    467 			j = i + layoutPtr->numDataCol;
    468 			pda = blockNode->succedents[j]->params[0].p;
    469 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
    470 			wrBlock->succedents[i]->params[0].p = pda;
    471 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
    472 			wrBlock->succedents[i]->params[2].v = psID;
    473 			wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    474 		}
    475 		memset((char *) &tracerec, 0, sizeof(tracerec));
    476 		wr_dag_h->tracerec = &tracerec;
    477 #if 0
    478 		if (rf_verifyParityDebug > 1) {
    479 			printf("Parity verify write dag:\n");
    480 			rf_PrintDAGList(wr_dag_h);
    481 		}
    482 #endif
    483 		RF_LOCK_MUTEX(mcpair->mutex);
    484 		mcpair->flag = 0;
    485 		/* fire off the write DAG */
    486 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    487 		    (void *) mcpair);
    488 		while (!mcpair->flag) {
    489 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    490 		}
    491 		RF_UNLOCK_MUTEX(mcpair->mutex);
    492 		if (wr_dag_h->status != rf_enable) {
    493 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
    494 			goto done;
    495 		}
    496 		ret = RF_PARITY_CORRECTED;
    497 	}
    498 done:
    499 	/*
    500          * All done. We might've gotten here without doing part of the function,
    501          * so cleanup what we have to and return our running status.
    502          */
    503 	if (asm_h)
    504 		rf_FreeAccessStripeMap(asm_h);
    505 	if (rd_dag_h)
    506 		rf_FreeDAG(rd_dag_h);
    507 	if (wr_dag_h)
    508 		rf_FreeDAG(wr_dag_h);
    509 	if (mcpair)
    510 		rf_FreeMCPair(mcpair);
    511 	rf_FreeAllocList(allocList);
    512 #if RF_DEBUG_VERIFYPARITY
    513 	if (rf_verifyParityDebug) {
    514 		printf("raid%d: RAID1 parity verify, returning %d\n",
    515 		       raidPtr->raidid, ret);
    516 	}
    517 #endif
    518 	return (ret);
    519 }
    520 
    521 /* rbuf          - the recon buffer to submit
    522  * keep_it       - whether we can keep this buffer or we have to return it
    523  * use_committed - whether to use a committed or an available recon buffer
    524  */
    525 
    526 int
    527 rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
    528 			  int use_committed)
    529 {
    530 	RF_ReconParityStripeStatus_t *pssPtr;
    531 	RF_ReconCtrl_t *reconCtrlPtr;
    532 	int     retcode, created;
    533 	RF_CallbackDesc_t *cb, *p;
    534 	RF_ReconBuffer_t *t;
    535 	RF_Raid_t *raidPtr;
    536 	caddr_t ta;
    537 
    538 	retcode = 0;
    539 	created = 0;
    540 
    541 	raidPtr = rbuf->raidPtr;
    542 	reconCtrlPtr = raidPtr->reconControl;
    543 
    544 	RF_ASSERT(rbuf);
    545 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
    546 
    547 #if RF_DEBUG_RECON
    548 	if (rf_reconbufferDebug) {
    549 		printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
    550 		       raidPtr->raidid, rbuf->col,
    551 		       (long) rbuf->parityStripeID, rbuf->which_ru,
    552 		       (long) rbuf->failedDiskSectorOffset);
    553 	}
    554 #endif
    555 	if (rf_reconDebug) {
    556 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
    557 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
    558 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
    559 		    (long) rbuf->parityStripeID,
    560 		    rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
    561 		    rbuf->buffer[4]);
    562 	}
    563 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
    564 
    565 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
    566 
    567 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
    568 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
    569 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
    570 				 * an rbuf for it */
    571 
    572 	/*
    573          * Since this is simple mirroring, the first submission for a stripe is also
    574          * treated as the last.
    575          */
    576 
    577 	t = NULL;
    578 	if (keep_it) {
    579 #if RF_DEBUG_RECON
    580 		if (rf_reconbufferDebug) {
    581 			printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
    582 			       raidPtr->raidid);
    583 		}
    584 #endif
    585 		t = rbuf;
    586 	} else {
    587 		if (use_committed) {
    588 #if RF_DEBUG_RECON
    589 			if (rf_reconbufferDebug) {
    590 				printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
    591 			}
    592 #endif
    593 			t = reconCtrlPtr->committedRbufs;
    594 			RF_ASSERT(t);
    595 			reconCtrlPtr->committedRbufs = t->next;
    596 			t->next = NULL;
    597 		} else
    598 			if (reconCtrlPtr->floatingRbufs) {
    599 #if RF_DEBUG_RECON
    600 				if (rf_reconbufferDebug) {
    601 					printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
    602 				}
    603 #endif
    604 				t = reconCtrlPtr->floatingRbufs;
    605 				reconCtrlPtr->floatingRbufs = t->next;
    606 				t->next = NULL;
    607 			}
    608 	}
    609 	if (t == NULL) {
    610 #if RF_DEBUG_RECON
    611 		if (rf_reconbufferDebug) {
    612 			printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
    613 		}
    614 #endif
    615 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
    616 		raidPtr->procsInBufWait++;
    617 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
    618 		    && (raidPtr->numFullReconBuffers == 0)) {
    619 			/* ruh-ro */
    620 			RF_ERRORMSG("Buffer wait deadlock\n");
    621 			rf_PrintPSStatusTable(raidPtr);
    622 			RF_PANIC();
    623 		}
    624 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
    625 		cb = rf_AllocCallbackDesc();
    626 		cb->col = rbuf->col;
    627 		cb->callbackArg.v = rbuf->parityStripeID;
    628 		cb->callbackArg2.v = rbuf->which_ru;
    629 		cb->next = NULL;
    630 		if (reconCtrlPtr->bufferWaitList == NULL) {
    631 			/* we are the wait list- lucky us */
    632 			reconCtrlPtr->bufferWaitList = cb;
    633 		} else {
    634 			/* append to wait list */
    635 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
    636 			p->next = cb;
    637 		}
    638 		retcode = 1;
    639 		goto out;
    640 	}
    641 	if (t != rbuf) {
    642 		t->col = reconCtrlPtr->fcol;
    643 		t->parityStripeID = rbuf->parityStripeID;
    644 		t->which_ru = rbuf->which_ru;
    645 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
    646 		t->spCol = rbuf->spCol;
    647 		t->spOffset = rbuf->spOffset;
    648 		/* Swap buffers. DANCE! */
    649 		ta = t->buffer;
    650 		t->buffer = rbuf->buffer;
    651 		rbuf->buffer = ta;
    652 	}
    653 	/*
    654          * Use the rbuf we've been given as the target.
    655          */
    656 	RF_ASSERT(pssPtr->rbuf == NULL);
    657 	pssPtr->rbuf = t;
    658 
    659 	t->count = 1;
    660 	/*
    661          * Below, we use 1 for numDataCol (which is equal to the count in the
    662          * previous line), so we'll always be done.
    663          */
    664 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
    665 
    666 out:
    667 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
    668 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
    669 #if RF_DEBUG_RECON
    670 	if (rf_reconbufferDebug) {
    671 		printf("raid%d: RAID1 rbuf submission: returning %d\n",
    672 		       raidPtr->raidid, retcode);
    673 	}
    674 #endif
    675 	return (retcode);
    676 }
    677