rf_raid1.c revision 1.17 1 /* $NetBSD: rf_raid1.c,v 1.17 2004/01/10 00:56:28 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_raid1.c -- implements RAID Level 1
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.17 2004/01/10 00:56:28 oster Exp $");
37
38 #include "rf_raid.h"
39 #include "rf_raid1.h"
40 #include "rf_dag.h"
41 #include "rf_dagffrd.h"
42 #include "rf_dagffwr.h"
43 #include "rf_dagdegrd.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_diskqueue.h"
47 #include "rf_general.h"
48 #include "rf_utils.h"
49 #include "rf_parityscan.h"
50 #include "rf_mcpair.h"
51 #include "rf_layout.h"
52 #include "rf_map.h"
53 #include "rf_engine.h"
54 #include "rf_reconbuffer.h"
55
56 typedef struct RF_Raid1ConfigInfo_s {
57 RF_RowCol_t **stripeIdentifier;
58 } RF_Raid1ConfigInfo_t;
59 /* start of day code specific to RAID level 1 */
60 int
61 rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
62 RF_Config_t *cfgPtr)
63 {
64 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
65 RF_Raid1ConfigInfo_t *info;
66 RF_RowCol_t i;
67
68 /* create a RAID level 1 configuration structure */
69 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
70 if (info == NULL)
71 return (ENOMEM);
72 layoutPtr->layoutSpecificInfo = (void *) info;
73
74 /* ... and fill it in. */
75 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
76 if (info->stripeIdentifier == NULL)
77 return (ENOMEM);
78 for (i = 0; i < (raidPtr->numCol / 2); i++) {
79 info->stripeIdentifier[i][0] = (2 * i);
80 info->stripeIdentifier[i][1] = (2 * i) + 1;
81 }
82
83 /* this implementation of RAID level 1 uses one row of numCol disks
84 * and allows multiple (numCol / 2) stripes per row. A stripe
85 * consists of a single data unit and a single parity (mirror) unit.
86 * stripe id = raidAddr / stripeUnitSize */
87 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
88 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
89 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
90 layoutPtr->numDataCol = 1;
91 layoutPtr->numParityCol = 1;
92 return (0);
93 }
94
95
96 /* returns the physical disk location of the primary copy in the mirror pair */
97 void
98 rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
99 RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap)
100 {
101 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
102 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
103
104 *col = 2 * mirrorPair;
105 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
106 }
107
108
109 /* Map Parity
110 *
111 * returns the physical disk location of the secondary copy in the mirror
112 * pair
113 */
114 void
115 rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
116 RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap)
117 {
118 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
119 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
120
121 *col = (2 * mirrorPair) + 1;
122
123 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
124 }
125
126
127 /* IdentifyStripeRAID1
128 *
129 * returns a list of disks for a given redundancy group
130 */
131 void
132 rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
133 RF_RowCol_t **diskids)
134 {
135 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
136 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
137 RF_ASSERT(stripeID >= 0);
138 RF_ASSERT(addr >= 0);
139 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
140 RF_ASSERT(*diskids);
141 }
142
143
144 /* MapSIDToPSIDRAID1
145 *
146 * maps a logical stripe to a stripe in the redundant array
147 */
148 void
149 rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr, RF_StripeNum_t stripeID,
150 RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
151 {
152 *which_ru = 0;
153 *psID = stripeID;
154 }
155
156
157
158 /******************************************************************************
159 * select a graph to perform a single-stripe access
160 *
161 * Parameters: raidPtr - description of the physical array
162 * type - type of operation (read or write) requested
163 * asmap - logical & physical addresses for this access
164 * createFunc - name of function to use to create the graph
165 *****************************************************************************/
166
167 void
168 rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
169 RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
170 {
171 RF_RowCol_t fcol, oc;
172 RF_PhysDiskAddr_t *failedPDA;
173 int prior_recon;
174 RF_RowStatus_t rstat;
175 RF_SectorNum_t oo;
176
177
178 RF_ASSERT(RF_IO_IS_R_OR_W(type));
179
180 if (asmap->numDataFailed + asmap->numParityFailed > 1) {
181 if (rf_dagDebug)
182 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
183 *createFunc = NULL;
184 return;
185 }
186 if (asmap->numDataFailed + asmap->numParityFailed) {
187 /*
188 * We've got a fault. Re-map to spare space, iff applicable.
189 * Shouldn't the arch-independent code do this for us?
190 * Anyway, it turns out if we don't do this here, then when
191 * we're reconstructing, writes go only to the surviving
192 * original disk, and aren't reflected on the reconstructed
193 * spare. Oops. --jimz
194 */
195 failedPDA = asmap->failedPDAs[0];
196 fcol = failedPDA->col;
197 rstat = raidPtr->status;
198 prior_recon = (rstat == rf_rs_reconfigured) || (
199 (rstat == rf_rs_reconstructing) ?
200 rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
201 );
202 if (prior_recon) {
203 oc = fcol;
204 oo = failedPDA->startSector;
205 /*
206 * If we did distributed sparing, we'd monkey with that here.
207 * But we don't, so we'll
208 */
209 failedPDA->col = raidPtr->Disks[fcol].spareCol;
210 /*
211 * Redirect other components, iff necessary. This looks
212 * pretty suspicious to me, but it's what the raid5
213 * DAG select does.
214 */
215 if (asmap->parityInfo->next) {
216 if (failedPDA == asmap->parityInfo) {
217 failedPDA->next->col = failedPDA->col;
218 } else {
219 if (failedPDA == asmap->parityInfo->next) {
220 asmap->parityInfo->col = failedPDA->col;
221 }
222 }
223 }
224 if (rf_dagDebug || rf_mapDebug) {
225 printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
226 raidPtr->raidid, type, oc,
227 (long) oo,
228 failedPDA->col,
229 (long) failedPDA->startSector);
230 }
231 asmap->numDataFailed = asmap->numParityFailed = 0;
232 }
233 }
234 if (type == RF_IO_TYPE_READ) {
235 if (asmap->numDataFailed == 0)
236 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
237 else
238 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
239 } else {
240 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
241 }
242 }
243
244 int
245 rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
246 RF_PhysDiskAddr_t *parityPDA, int correct_it,
247 RF_RaidAccessFlags_t flags)
248 {
249 int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
250 RF_DagNode_t *blockNode, *wrBlock;
251 RF_DagHeader_t *rd_dag_h, *wr_dag_h;
252 RF_AccessStripeMapHeader_t *asm_h;
253 RF_AllocListElem_t *allocList;
254 RF_AccTraceEntry_t tracerec;
255 RF_ReconUnitNum_t which_ru;
256 RF_RaidLayout_t *layoutPtr;
257 RF_AccessStripeMap_t *aasm;
258 RF_SectorCount_t nsector;
259 RF_RaidAddr_t startAddr;
260 char *buf, *buf1, *buf2;
261 RF_PhysDiskAddr_t *pda;
262 RF_StripeNum_t psID;
263 RF_MCPair_t *mcpair;
264
265 layoutPtr = &raidPtr->Layout;
266 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
267 nsector = parityPDA->numSector;
268 nbytes = rf_RaidAddressToByte(raidPtr, nsector);
269 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
270
271 asm_h = NULL;
272 rd_dag_h = wr_dag_h = NULL;
273 mcpair = NULL;
274
275 ret = RF_PARITY_COULD_NOT_VERIFY;
276
277 rf_MakeAllocList(allocList);
278 if (allocList == NULL)
279 return (RF_PARITY_COULD_NOT_VERIFY);
280 mcpair = rf_AllocMCPair();
281 if (mcpair == NULL)
282 goto done;
283 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
284 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
285 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
286 RF_MallocAndAdd(buf, bcount, (char *), allocList);
287 if (buf == NULL)
288 goto done;
289 #if RF_DEBUG_VERIFYPARITY
290 if (rf_verifyParityDebug) {
291 printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
292 raidPtr->raidid, (long) buf, bcount, (long) buf,
293 (long) buf + bcount);
294 }
295 #endif
296 /*
297 * Generate a DAG which will read the entire stripe- then we can
298 * just compare data chunks versus "parity" chunks.
299 */
300
301 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
302 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
303 RF_IO_NORMAL_PRIORITY);
304 if (rd_dag_h == NULL)
305 goto done;
306 blockNode = rd_dag_h->succedents[0];
307
308 /*
309 * Map the access to physical disk addresses (PDAs)- this will
310 * get us both a list of data addresses, and "parity" addresses
311 * (which are really mirror copies).
312 */
313 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
314 buf, RF_DONT_REMAP);
315 aasm = asm_h->stripeMap;
316
317 buf1 = buf;
318 /*
319 * Loop through the data blocks, setting up read nodes for each.
320 */
321 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
322 RF_ASSERT(pda);
323
324 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
325
326 RF_ASSERT(pda->numSector != 0);
327 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
328 /* cannot verify parity with dead disk */
329 goto done;
330 }
331 pda->bufPtr = buf1;
332 blockNode->succedents[i]->params[0].p = pda;
333 blockNode->succedents[i]->params[1].p = buf1;
334 blockNode->succedents[i]->params[2].v = psID;
335 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
336 buf1 += nbytes;
337 }
338 RF_ASSERT(pda == NULL);
339 /*
340 * keep i, buf1 running
341 *
342 * Loop through parity blocks, setting up read nodes for each.
343 */
344 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
345 RF_ASSERT(pda);
346 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
347 RF_ASSERT(pda->numSector != 0);
348 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
349 /* cannot verify parity with dead disk */
350 goto done;
351 }
352 pda->bufPtr = buf1;
353 blockNode->succedents[i]->params[0].p = pda;
354 blockNode->succedents[i]->params[1].p = buf1;
355 blockNode->succedents[i]->params[2].v = psID;
356 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
357 buf1 += nbytes;
358 }
359 RF_ASSERT(pda == NULL);
360
361 memset((char *) &tracerec, 0, sizeof(tracerec));
362 rd_dag_h->tracerec = &tracerec;
363
364 #if 0
365 if (rf_verifyParityDebug > 1) {
366 printf("raid%d: RAID1 parity verify read dag:\n",
367 raidPtr->raidid);
368 rf_PrintDAGList(rd_dag_h);
369 }
370 #endif
371 RF_LOCK_MUTEX(mcpair->mutex);
372 mcpair->flag = 0;
373 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
374 (void *) mcpair);
375 while (mcpair->flag == 0) {
376 RF_WAIT_MCPAIR(mcpair);
377 }
378 RF_UNLOCK_MUTEX(mcpair->mutex);
379
380 if (rd_dag_h->status != rf_enable) {
381 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
382 ret = RF_PARITY_COULD_NOT_VERIFY;
383 goto done;
384 }
385 /*
386 * buf1 is the beginning of the data blocks chunk
387 * buf2 is the beginning of the parity blocks chunk
388 */
389 buf1 = buf;
390 buf2 = buf + (nbytes * layoutPtr->numDataCol);
391 ret = RF_PARITY_OKAY;
392 /*
393 * bbufs is "bad bufs"- an array whose entries are the data
394 * column numbers where we had miscompares. (That is, column 0
395 * and column 1 of the array are mirror copies, and are considered
396 * "data column 0" for this purpose).
397 */
398 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
399 allocList);
400 nbad = 0;
401 /*
402 * Check data vs "parity" (mirror copy).
403 */
404 for (i = 0; i < layoutPtr->numDataCol; i++) {
405 #if RF_DEBUG_VERIFYPARITY
406 if (rf_verifyParityDebug) {
407 printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
408 raidPtr->raidid, nbytes, i, (long) buf1,
409 (long) buf2, (long) buf);
410 }
411 #endif
412 ret = memcmp(buf1, buf2, nbytes);
413 if (ret) {
414 #if RF_DEBUG_VERIFYPARITY
415 if (rf_verifyParityDebug > 1) {
416 for (j = 0; j < nbytes; j++) {
417 if (buf1[j] != buf2[j])
418 break;
419 }
420 printf("psid=%ld j=%d\n", (long) psID, j);
421 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
422 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
423 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
424 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
425 }
426 if (rf_verifyParityDebug) {
427 printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
428 }
429 #endif
430 /*
431 * Parity is bad. Keep track of which columns were bad.
432 */
433 if (bbufs)
434 bbufs[nbad] = i;
435 nbad++;
436 ret = RF_PARITY_BAD;
437 }
438 buf1 += nbytes;
439 buf2 += nbytes;
440 }
441
442 if ((ret != RF_PARITY_OKAY) && correct_it) {
443 ret = RF_PARITY_COULD_NOT_CORRECT;
444 #if RF_DEBUG_VERIFYPARITY
445 if (rf_verifyParityDebug) {
446 printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
447 }
448 #endif
449 if (bbufs == NULL)
450 goto done;
451 /*
452 * Make a DAG with one write node for each bad unit. We'll simply
453 * write the contents of the data unit onto the parity unit for
454 * correction. (It's possible that the mirror copy was the correct
455 * copy, and that we're spooging good data by writing bad over it,
456 * but there's no way we can know that.
457 */
458 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
459 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
460 RF_IO_NORMAL_PRIORITY);
461 if (wr_dag_h == NULL)
462 goto done;
463 wrBlock = wr_dag_h->succedents[0];
464 /*
465 * Fill in a write node for each bad compare.
466 */
467 for (i = 0; i < nbad; i++) {
468 j = i + layoutPtr->numDataCol;
469 pda = blockNode->succedents[j]->params[0].p;
470 pda->bufPtr = blockNode->succedents[i]->params[1].p;
471 wrBlock->succedents[i]->params[0].p = pda;
472 wrBlock->succedents[i]->params[1].p = pda->bufPtr;
473 wrBlock->succedents[i]->params[2].v = psID;
474 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
475 }
476 memset((char *) &tracerec, 0, sizeof(tracerec));
477 wr_dag_h->tracerec = &tracerec;
478 #if 0
479 if (rf_verifyParityDebug > 1) {
480 printf("Parity verify write dag:\n");
481 rf_PrintDAGList(wr_dag_h);
482 }
483 #endif
484 RF_LOCK_MUTEX(mcpair->mutex);
485 mcpair->flag = 0;
486 /* fire off the write DAG */
487 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
488 (void *) mcpair);
489 while (!mcpair->flag) {
490 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
491 }
492 RF_UNLOCK_MUTEX(mcpair->mutex);
493 if (wr_dag_h->status != rf_enable) {
494 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
495 goto done;
496 }
497 ret = RF_PARITY_CORRECTED;
498 }
499 done:
500 /*
501 * All done. We might've gotten here without doing part of the function,
502 * so cleanup what we have to and return our running status.
503 */
504 if (asm_h)
505 rf_FreeAccessStripeMap(asm_h);
506 if (rd_dag_h)
507 rf_FreeDAG(rd_dag_h);
508 if (wr_dag_h)
509 rf_FreeDAG(wr_dag_h);
510 if (mcpair)
511 rf_FreeMCPair(mcpair);
512 rf_FreeAllocList(allocList);
513 #if RF_DEBUG_VERIFYPARITY
514 if (rf_verifyParityDebug) {
515 printf("raid%d: RAID1 parity verify, returning %d\n",
516 raidPtr->raidid, ret);
517 }
518 #endif
519 return (ret);
520 }
521
522 /* rbuf - the recon buffer to submit
523 * keep_it - whether we can keep this buffer or we have to return it
524 * use_committed - whether to use a committed or an available recon buffer
525 */
526
527 int
528 rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
529 int use_committed)
530 {
531 RF_ReconParityStripeStatus_t *pssPtr;
532 RF_ReconCtrl_t *reconCtrlPtr;
533 int retcode, created;
534 RF_CallbackDesc_t *cb, *p;
535 RF_ReconBuffer_t *t;
536 RF_Raid_t *raidPtr;
537 caddr_t ta;
538
539 retcode = 0;
540 created = 0;
541
542 raidPtr = rbuf->raidPtr;
543 reconCtrlPtr = raidPtr->reconControl;
544
545 RF_ASSERT(rbuf);
546 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
547
548 #if RF_DEBUG_RECON
549 if (rf_reconbufferDebug) {
550 printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
551 raidPtr->raidid, rbuf->col,
552 (long) rbuf->parityStripeID, rbuf->which_ru,
553 (long) rbuf->failedDiskSectorOffset);
554 }
555 #endif
556 if (rf_reconDebug) {
557 printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
558 (long) rbuf->parityStripeID, (long) rbuf->buffer);
559 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
560 (long) rbuf->parityStripeID,
561 rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
562 rbuf->buffer[4]);
563 }
564 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
565
566 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
567
568 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
569 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
570 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
571 * an rbuf for it */
572
573 /*
574 * Since this is simple mirroring, the first submission for a stripe is also
575 * treated as the last.
576 */
577
578 t = NULL;
579 if (keep_it) {
580 #if RF_DEBUG_RECON
581 if (rf_reconbufferDebug) {
582 printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
583 raidPtr->raidid);
584 }
585 #endif
586 t = rbuf;
587 } else {
588 if (use_committed) {
589 #if RF_DEBUG_RECON
590 if (rf_reconbufferDebug) {
591 printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
592 }
593 #endif
594 t = reconCtrlPtr->committedRbufs;
595 RF_ASSERT(t);
596 reconCtrlPtr->committedRbufs = t->next;
597 t->next = NULL;
598 } else
599 if (reconCtrlPtr->floatingRbufs) {
600 #if RF_DEBUG_RECON
601 if (rf_reconbufferDebug) {
602 printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
603 }
604 #endif
605 t = reconCtrlPtr->floatingRbufs;
606 reconCtrlPtr->floatingRbufs = t->next;
607 t->next = NULL;
608 }
609 }
610 if (t == NULL) {
611 #if RF_DEBUG_RECON
612 if (rf_reconbufferDebug) {
613 printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
614 }
615 #endif
616 RF_ASSERT((keep_it == 0) && (use_committed == 0));
617 raidPtr->procsInBufWait++;
618 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
619 && (raidPtr->numFullReconBuffers == 0)) {
620 /* ruh-ro */
621 RF_ERRORMSG("Buffer wait deadlock\n");
622 rf_PrintPSStatusTable(raidPtr);
623 RF_PANIC();
624 }
625 pssPtr->flags |= RF_PSS_BUFFERWAIT;
626 cb = rf_AllocCallbackDesc();
627 cb->col = rbuf->col;
628 cb->callbackArg.v = rbuf->parityStripeID;
629 cb->callbackArg2.v = rbuf->which_ru;
630 cb->next = NULL;
631 if (reconCtrlPtr->bufferWaitList == NULL) {
632 /* we are the wait list- lucky us */
633 reconCtrlPtr->bufferWaitList = cb;
634 } else {
635 /* append to wait list */
636 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
637 p->next = cb;
638 }
639 retcode = 1;
640 goto out;
641 }
642 if (t != rbuf) {
643 t->col = reconCtrlPtr->fcol;
644 t->parityStripeID = rbuf->parityStripeID;
645 t->which_ru = rbuf->which_ru;
646 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
647 t->spCol = rbuf->spCol;
648 t->spOffset = rbuf->spOffset;
649 /* Swap buffers. DANCE! */
650 ta = t->buffer;
651 t->buffer = rbuf->buffer;
652 rbuf->buffer = ta;
653 }
654 /*
655 * Use the rbuf we've been given as the target.
656 */
657 RF_ASSERT(pssPtr->rbuf == NULL);
658 pssPtr->rbuf = t;
659
660 t->count = 1;
661 /*
662 * Below, we use 1 for numDataCol (which is equal to the count in the
663 * previous line), so we'll always be done.
664 */
665 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
666
667 out:
668 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
669 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
670 #if RF_DEBUG_RECON
671 if (rf_reconbufferDebug) {
672 printf("raid%d: RAID1 rbuf submission: returning %d\n",
673 raidPtr->raidid, retcode);
674 }
675 #endif
676 return (retcode);
677 }
678