Home | History | Annotate | Line # | Download | only in raidframe
rf_raid1.c revision 1.25
      1 /*	$NetBSD: rf_raid1.c,v 1.25 2005/02/27 00:27:45 perry Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_raid1.c -- implements RAID Level 1
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.25 2005/02/27 00:27:45 perry Exp $");
     37 
     38 #include "rf_raid.h"
     39 #include "rf_raid1.h"
     40 #include "rf_dag.h"
     41 #include "rf_dagffrd.h"
     42 #include "rf_dagffwr.h"
     43 #include "rf_dagdegrd.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_diskqueue.h"
     47 #include "rf_general.h"
     48 #include "rf_utils.h"
     49 #include "rf_parityscan.h"
     50 #include "rf_mcpair.h"
     51 #include "rf_layout.h"
     52 #include "rf_map.h"
     53 #include "rf_engine.h"
     54 #include "rf_reconbuffer.h"
     55 
     56 typedef struct RF_Raid1ConfigInfo_s {
     57 	RF_RowCol_t **stripeIdentifier;
     58 }       RF_Raid1ConfigInfo_t;
     59 /* start of day code specific to RAID level 1 */
     60 int
     61 rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
     62 		  RF_Config_t *cfgPtr)
     63 {
     64 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     65 	RF_Raid1ConfigInfo_t *info;
     66 	RF_RowCol_t i;
     67 
     68 	/* create a RAID level 1 configuration structure */
     69 	RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
     70 	if (info == NULL)
     71 		return (ENOMEM);
     72 	layoutPtr->layoutSpecificInfo = (void *) info;
     73 
     74 	/* ... and fill it in. */
     75 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
     76 	if (info->stripeIdentifier == NULL)
     77 		return (ENOMEM);
     78 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
     79 		info->stripeIdentifier[i][0] = (2 * i);
     80 		info->stripeIdentifier[i][1] = (2 * i) + 1;
     81 	}
     82 
     83 	/* this implementation of RAID level 1 uses one row of numCol disks
     84 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
     85 	 * consists of a single data unit and a single parity (mirror) unit.
     86 	 * stripe id = raidAddr / stripeUnitSize */
     87 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
     88 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
     89 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
     90 	layoutPtr->numDataCol = 1;
     91 	layoutPtr->numParityCol = 1;
     92 	return (0);
     93 }
     94 
     95 
     96 /* returns the physical disk location of the primary copy in the mirror pair */
     97 void
     98 rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
     99 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap)
    100 {
    101 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    102 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    103 
    104 	*col = 2 * mirrorPair;
    105 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    106 }
    107 
    108 
    109 /* Map Parity
    110  *
    111  * returns the physical disk location of the secondary copy in the mirror
    112  * pair
    113  */
    114 void
    115 rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
    116 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap)
    117 {
    118 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    119 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    120 
    121 	*col = (2 * mirrorPair) + 1;
    122 
    123 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    124 }
    125 
    126 
    127 /* IdentifyStripeRAID1
    128  *
    129  * returns a list of disks for a given redundancy group
    130  */
    131 void
    132 rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
    133 		       RF_RowCol_t **diskids)
    134 {
    135 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
    136 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
    137 	RF_ASSERT(stripeID >= 0);
    138 	RF_ASSERT(addr >= 0);
    139 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
    140 	RF_ASSERT(*diskids);
    141 }
    142 
    143 
    144 /* MapSIDToPSIDRAID1
    145  *
    146  * maps a logical stripe to a stripe in the redundant array
    147  */
    148 void
    149 rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr, RF_StripeNum_t stripeID,
    150 		     RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
    151 {
    152 	*which_ru = 0;
    153 	*psID = stripeID;
    154 }
    155 
    156 
    157 
    158 /******************************************************************************
    159  * select a graph to perform a single-stripe access
    160  *
    161  * Parameters:  raidPtr    - description of the physical array
    162  *              type       - type of operation (read or write) requested
    163  *              asmap      - logical & physical addresses for this access
    164  *              createFunc - name of function to use to create the graph
    165  *****************************************************************************/
    166 
    167 void
    168 rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
    169 		  RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
    170 {
    171 	RF_RowCol_t fcol, oc;
    172 	RF_PhysDiskAddr_t *failedPDA;
    173 	int     prior_recon;
    174 	RF_RowStatus_t rstat;
    175 	RF_SectorNum_t oo;
    176 
    177 
    178 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    179 
    180 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
    181 #if RF_DEBUG_DAG
    182 		if (rf_dagDebug)
    183 			RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    184 #endif
    185 		*createFunc = NULL;
    186 		return;
    187 	}
    188 	if (asmap->numDataFailed + asmap->numParityFailed) {
    189 		/*
    190 	         * We've got a fault. Re-map to spare space, iff applicable.
    191 	         * Shouldn't the arch-independent code do this for us?
    192 	         * Anyway, it turns out if we don't do this here, then when
    193 	         * we're reconstructing, writes go only to the surviving
    194 	         * original disk, and aren't reflected on the reconstructed
    195 	         * spare. Oops. --jimz
    196 	         */
    197 		failedPDA = asmap->failedPDAs[0];
    198 		fcol = failedPDA->col;
    199 		rstat = raidPtr->status;
    200 		prior_recon = (rstat == rf_rs_reconfigured) || (
    201 		    (rstat == rf_rs_reconstructing) ?
    202 		    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    203 		    );
    204 		if (prior_recon) {
    205 			oc = fcol;
    206 			oo = failedPDA->startSector;
    207 			/*
    208 		         * If we did distributed sparing, we'd monkey with that here.
    209 		         * But we don't, so we'll
    210 		         */
    211 			failedPDA->col = raidPtr->Disks[fcol].spareCol;
    212 			/*
    213 		         * Redirect other components, iff necessary. This looks
    214 		         * pretty suspicious to me, but it's what the raid5
    215 		         * DAG select does.
    216 		         */
    217 			if (asmap->parityInfo->next) {
    218 				if (failedPDA == asmap->parityInfo) {
    219 					failedPDA->next->col = failedPDA->col;
    220 				} else {
    221 					if (failedPDA == asmap->parityInfo->next) {
    222 						asmap->parityInfo->col = failedPDA->col;
    223 					}
    224 				}
    225 			}
    226 #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
    227 			if (rf_dagDebug || rf_mapDebug) {
    228 				printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    229 				       raidPtr->raidid, type, oc,
    230 				       (long) oo,
    231 				       failedPDA->col,
    232 				       (long) failedPDA->startSector);
    233 			}
    234 #endif
    235 			asmap->numDataFailed = asmap->numParityFailed = 0;
    236 		}
    237 	}
    238 	if (type == RF_IO_TYPE_READ) {
    239 		if (asmap->numDataFailed == 0)
    240 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
    241 		else
    242 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
    243 	} else {
    244 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
    245 	}
    246 }
    247 
    248 int
    249 rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
    250 		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
    251 		     RF_RaidAccessFlags_t flags)
    252 {
    253 	int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
    254 	RF_DagNode_t *blockNode, *wrBlock;
    255 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
    256 	RF_AccessStripeMapHeader_t *asm_h;
    257 	RF_AllocListElem_t *allocList;
    258 #if RF_ACC_TRACE > 0
    259 	RF_AccTraceEntry_t tracerec;
    260 #endif
    261 	RF_ReconUnitNum_t which_ru;
    262 	RF_RaidLayout_t *layoutPtr;
    263 	RF_AccessStripeMap_t *aasm;
    264 	RF_SectorCount_t nsector;
    265 	RF_RaidAddr_t startAddr;
    266 	char   *buf, *buf1, *buf2;
    267 	RF_PhysDiskAddr_t *pda;
    268 	RF_StripeNum_t psID;
    269 	RF_MCPair_t *mcpair;
    270 
    271 	layoutPtr = &raidPtr->Layout;
    272 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    273 	nsector = parityPDA->numSector;
    274 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
    275 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
    276 
    277 	asm_h = NULL;
    278 	rd_dag_h = wr_dag_h = NULL;
    279 	mcpair = NULL;
    280 
    281 	ret = RF_PARITY_COULD_NOT_VERIFY;
    282 
    283 	rf_MakeAllocList(allocList);
    284 	if (allocList == NULL)
    285 		return (RF_PARITY_COULD_NOT_VERIFY);
    286 	mcpair = rf_AllocMCPair();
    287 	if (mcpair == NULL)
    288 		goto done;
    289 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
    290 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    291 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
    292 	RF_MallocAndAdd(buf, bcount, (char *), allocList);
    293 	if (buf == NULL)
    294 		goto done;
    295 #if RF_DEBUG_VERIFYPARITY
    296 	if (rf_verifyParityDebug) {
    297 		printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
    298 		       raidPtr->raidid, (long) buf, bcount, (long) buf,
    299 		       (long) buf + bcount);
    300 	}
    301 #endif
    302 	/*
    303          * Generate a DAG which will read the entire stripe- then we can
    304          * just compare data chunks versus "parity" chunks.
    305          */
    306 
    307 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
    308 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
    309 	    RF_IO_NORMAL_PRIORITY);
    310 	if (rd_dag_h == NULL)
    311 		goto done;
    312 	blockNode = rd_dag_h->succedents[0];
    313 
    314 	/*
    315          * Map the access to physical disk addresses (PDAs)- this will
    316          * get us both a list of data addresses, and "parity" addresses
    317          * (which are really mirror copies).
    318          */
    319 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
    320 	    buf, RF_DONT_REMAP);
    321 	aasm = asm_h->stripeMap;
    322 
    323 	buf1 = buf;
    324 	/*
    325          * Loop through the data blocks, setting up read nodes for each.
    326          */
    327 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    328 		RF_ASSERT(pda);
    329 
    330 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    331 
    332 		RF_ASSERT(pda->numSector != 0);
    333 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    334 			/* cannot verify parity with dead disk */
    335 			goto done;
    336 		}
    337 		pda->bufPtr = buf1;
    338 		blockNode->succedents[i]->params[0].p = pda;
    339 		blockNode->succedents[i]->params[1].p = buf1;
    340 		blockNode->succedents[i]->params[2].v = psID;
    341 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    342 		buf1 += nbytes;
    343 	}
    344 	RF_ASSERT(pda == NULL);
    345 	/*
    346          * keep i, buf1 running
    347          *
    348          * Loop through parity blocks, setting up read nodes for each.
    349          */
    350 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
    351 		RF_ASSERT(pda);
    352 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    353 		RF_ASSERT(pda->numSector != 0);
    354 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    355 			/* cannot verify parity with dead disk */
    356 			goto done;
    357 		}
    358 		pda->bufPtr = buf1;
    359 		blockNode->succedents[i]->params[0].p = pda;
    360 		blockNode->succedents[i]->params[1].p = buf1;
    361 		blockNode->succedents[i]->params[2].v = psID;
    362 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    363 		buf1 += nbytes;
    364 	}
    365 	RF_ASSERT(pda == NULL);
    366 
    367 #if RF_ACC_TRACE > 0
    368 	memset((char *) &tracerec, 0, sizeof(tracerec));
    369 	rd_dag_h->tracerec = &tracerec;
    370 #endif
    371 #if 0
    372 	if (rf_verifyParityDebug > 1) {
    373 		printf("raid%d: RAID1 parity verify read dag:\n",
    374 		       raidPtr->raidid);
    375 		rf_PrintDAGList(rd_dag_h);
    376 	}
    377 #endif
    378 	RF_LOCK_MUTEX(mcpair->mutex);
    379 	mcpair->flag = 0;
    380 	RF_UNLOCK_MUTEX(mcpair->mutex);
    381 
    382 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    383 	    (void *) mcpair);
    384 
    385 	RF_LOCK_MUTEX(mcpair->mutex);
    386 	while (mcpair->flag == 0) {
    387 		RF_WAIT_MCPAIR(mcpair);
    388 	}
    389 	RF_UNLOCK_MUTEX(mcpair->mutex);
    390 
    391 	if (rd_dag_h->status != rf_enable) {
    392 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
    393 		ret = RF_PARITY_COULD_NOT_VERIFY;
    394 		goto done;
    395 	}
    396 	/*
    397          * buf1 is the beginning of the data blocks chunk
    398          * buf2 is the beginning of the parity blocks chunk
    399          */
    400 	buf1 = buf;
    401 	buf2 = buf + (nbytes * layoutPtr->numDataCol);
    402 	ret = RF_PARITY_OKAY;
    403 	/*
    404          * bbufs is "bad bufs"- an array whose entries are the data
    405          * column numbers where we had miscompares. (That is, column 0
    406          * and column 1 of the array are mirror copies, and are considered
    407          * "data column 0" for this purpose).
    408          */
    409 	RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
    410 	    allocList);
    411 	nbad = 0;
    412 	/*
    413          * Check data vs "parity" (mirror copy).
    414          */
    415 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    416 #if RF_DEBUG_VERIFYPARITY
    417 		if (rf_verifyParityDebug) {
    418 			printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
    419 			       raidPtr->raidid, nbytes, i, (long) buf1,
    420 			       (long) buf2, (long) buf);
    421 		}
    422 #endif
    423 		ret = memcmp(buf1, buf2, nbytes);
    424 		if (ret) {
    425 #if RF_DEBUG_VERIFYPARITY
    426 			if (rf_verifyParityDebug > 1) {
    427 				for (j = 0; j < nbytes; j++) {
    428 					if (buf1[j] != buf2[j])
    429 						break;
    430 				}
    431 				printf("psid=%ld j=%d\n", (long) psID, j);
    432 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
    433 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
    434 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
    435 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
    436 			}
    437 			if (rf_verifyParityDebug) {
    438 				printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
    439 			}
    440 #endif
    441 			/*
    442 		         * Parity is bad. Keep track of which columns were bad.
    443 		         */
    444 			if (bbufs)
    445 				bbufs[nbad] = i;
    446 			nbad++;
    447 			ret = RF_PARITY_BAD;
    448 		}
    449 		buf1 += nbytes;
    450 		buf2 += nbytes;
    451 	}
    452 
    453 	if ((ret != RF_PARITY_OKAY) && correct_it) {
    454 		ret = RF_PARITY_COULD_NOT_CORRECT;
    455 #if RF_DEBUG_VERIFYPARITY
    456 		if (rf_verifyParityDebug) {
    457 			printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
    458 		}
    459 #endif
    460 		if (bbufs == NULL)
    461 			goto done;
    462 		/*
    463 	         * Make a DAG with one write node for each bad unit. We'll simply
    464 	         * write the contents of the data unit onto the parity unit for
    465 	         * correction. (It's possible that the mirror copy was the correct
    466 	         * copy, and that we're spooging good data by writing bad over it,
    467 	         * but there's no way we can know that.
    468 	         */
    469 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
    470 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
    471 		    RF_IO_NORMAL_PRIORITY);
    472 		if (wr_dag_h == NULL)
    473 			goto done;
    474 		wrBlock = wr_dag_h->succedents[0];
    475 		/*
    476 	         * Fill in a write node for each bad compare.
    477 	         */
    478 		for (i = 0; i < nbad; i++) {
    479 			j = i + layoutPtr->numDataCol;
    480 			pda = blockNode->succedents[j]->params[0].p;
    481 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
    482 			wrBlock->succedents[i]->params[0].p = pda;
    483 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
    484 			wrBlock->succedents[i]->params[2].v = psID;
    485 			wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    486 		}
    487 #if RF_ACC_TRACE > 0
    488 		memset((char *) &tracerec, 0, sizeof(tracerec));
    489 		wr_dag_h->tracerec = &tracerec;
    490 #endif
    491 #if 0
    492 		if (rf_verifyParityDebug > 1) {
    493 			printf("Parity verify write dag:\n");
    494 			rf_PrintDAGList(wr_dag_h);
    495 		}
    496 #endif
    497 		RF_LOCK_MUTEX(mcpair->mutex);
    498 		mcpair->flag = 0;
    499 		RF_UNLOCK_MUTEX(mcpair->mutex);
    500 
    501 		/* fire off the write DAG */
    502 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    503 		    (void *) mcpair);
    504 
    505 		RF_LOCK_MUTEX(mcpair->mutex);
    506 		while (!mcpair->flag) {
    507 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    508 		}
    509 		RF_UNLOCK_MUTEX(mcpair->mutex);
    510 		if (wr_dag_h->status != rf_enable) {
    511 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
    512 			goto done;
    513 		}
    514 		ret = RF_PARITY_CORRECTED;
    515 	}
    516 done:
    517 	/*
    518          * All done. We might've gotten here without doing part of the function,
    519          * so cleanup what we have to and return our running status.
    520          */
    521 	if (asm_h)
    522 		rf_FreeAccessStripeMap(asm_h);
    523 	if (rd_dag_h)
    524 		rf_FreeDAG(rd_dag_h);
    525 	if (wr_dag_h)
    526 		rf_FreeDAG(wr_dag_h);
    527 	if (mcpair)
    528 		rf_FreeMCPair(mcpair);
    529 	rf_FreeAllocList(allocList);
    530 #if RF_DEBUG_VERIFYPARITY
    531 	if (rf_verifyParityDebug) {
    532 		printf("raid%d: RAID1 parity verify, returning %d\n",
    533 		       raidPtr->raidid, ret);
    534 	}
    535 #endif
    536 	return (ret);
    537 }
    538 
    539 /* rbuf          - the recon buffer to submit
    540  * keep_it       - whether we can keep this buffer or we have to return it
    541  * use_committed - whether to use a committed or an available recon buffer
    542  */
    543 
    544 int
    545 rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
    546 			  int use_committed)
    547 {
    548 	RF_ReconParityStripeStatus_t *pssPtr;
    549 	RF_ReconCtrl_t *reconCtrlPtr;
    550 	int     retcode;
    551 	RF_CallbackDesc_t *cb, *p;
    552 	RF_ReconBuffer_t *t;
    553 	RF_Raid_t *raidPtr;
    554 	caddr_t ta;
    555 
    556 	retcode = 0;
    557 
    558 	raidPtr = rbuf->raidPtr;
    559 	reconCtrlPtr = raidPtr->reconControl;
    560 
    561 	RF_ASSERT(rbuf);
    562 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
    563 
    564 #if RF_DEBUG_RECON
    565 	if (rf_reconbufferDebug) {
    566 		printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
    567 		       raidPtr->raidid, rbuf->col,
    568 		       (long) rbuf->parityStripeID, rbuf->which_ru,
    569 		       (long) rbuf->failedDiskSectorOffset);
    570 	}
    571 #endif
    572 	if (rf_reconDebug) {
    573 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
    574 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
    575 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
    576 		    (long) rbuf->parityStripeID,
    577 		    rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
    578 		    rbuf->buffer[4]);
    579 	}
    580 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
    581 
    582 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
    583 	while(reconCtrlPtr->rb_lock) {
    584 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
    585 	}
    586 	reconCtrlPtr->rb_lock = 1;
    587 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
    588 
    589 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
    590 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL);
    591 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
    592 				 * an rbuf for it */
    593 
    594 	/*
    595          * Since this is simple mirroring, the first submission for a stripe is also
    596          * treated as the last.
    597          */
    598 
    599 	t = NULL;
    600 	if (keep_it) {
    601 #if RF_DEBUG_RECON
    602 		if (rf_reconbufferDebug) {
    603 			printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
    604 			       raidPtr->raidid);
    605 		}
    606 #endif
    607 		t = rbuf;
    608 	} else {
    609 		if (use_committed) {
    610 #if RF_DEBUG_RECON
    611 			if (rf_reconbufferDebug) {
    612 				printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
    613 			}
    614 #endif
    615 			t = reconCtrlPtr->committedRbufs;
    616 			RF_ASSERT(t);
    617 			reconCtrlPtr->committedRbufs = t->next;
    618 			t->next = NULL;
    619 		} else
    620 			if (reconCtrlPtr->floatingRbufs) {
    621 #if RF_DEBUG_RECON
    622 				if (rf_reconbufferDebug) {
    623 					printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
    624 				}
    625 #endif
    626 				t = reconCtrlPtr->floatingRbufs;
    627 				reconCtrlPtr->floatingRbufs = t->next;
    628 				t->next = NULL;
    629 			}
    630 	}
    631 	if (t == NULL) {
    632 #if RF_DEBUG_RECON
    633 		if (rf_reconbufferDebug) {
    634 			printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
    635 		}
    636 #endif
    637 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
    638 		raidPtr->procsInBufWait++;
    639 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
    640 		    && (raidPtr->numFullReconBuffers == 0)) {
    641 			/* ruh-ro */
    642 			RF_ERRORMSG("Buffer wait deadlock\n");
    643 			rf_PrintPSStatusTable(raidPtr);
    644 			RF_PANIC();
    645 		}
    646 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
    647 		cb = rf_AllocCallbackDesc();
    648 		cb->col = rbuf->col;
    649 		cb->callbackArg.v = rbuf->parityStripeID;
    650 		cb->next = NULL;
    651 		if (reconCtrlPtr->bufferWaitList == NULL) {
    652 			/* we are the wait list- lucky us */
    653 			reconCtrlPtr->bufferWaitList = cb;
    654 		} else {
    655 			/* append to wait list */
    656 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
    657 			p->next = cb;
    658 		}
    659 		retcode = 1;
    660 		goto out;
    661 	}
    662 	if (t != rbuf) {
    663 		t->col = reconCtrlPtr->fcol;
    664 		t->parityStripeID = rbuf->parityStripeID;
    665 		t->which_ru = rbuf->which_ru;
    666 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
    667 		t->spCol = rbuf->spCol;
    668 		t->spOffset = rbuf->spOffset;
    669 		/* Swap buffers. DANCE! */
    670 		ta = t->buffer;
    671 		t->buffer = rbuf->buffer;
    672 		rbuf->buffer = ta;
    673 	}
    674 	/*
    675          * Use the rbuf we've been given as the target.
    676          */
    677 	RF_ASSERT(pssPtr->rbuf == NULL);
    678 	pssPtr->rbuf = t;
    679 
    680 	t->count = 1;
    681 	/*
    682          * Below, we use 1 for numDataCol (which is equal to the count in the
    683          * previous line), so we'll always be done.
    684          */
    685 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
    686 
    687 out:
    688 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
    689 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
    690 	reconCtrlPtr->rb_lock = 0;
    691 	wakeup(&reconCtrlPtr->rb_lock);
    692 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
    693 #if RF_DEBUG_RECON
    694 	if (rf_reconbufferDebug) {
    695 		printf("raid%d: RAID1 rbuf submission: returning %d\n",
    696 		       raidPtr->raidid, retcode);
    697 	}
    698 #endif
    699 	return (retcode);
    700 }
    701