Home | History | Annotate | Line # | Download | only in raidframe
rf_raid1.c revision 1.3
      1 /*	$NetBSD: rf_raid1.c,v 1.3 1999/02/05 00:06:15 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_raid1.c -- implements RAID Level 1
     32  *
     33  *****************************************************************************/
     34 
     35 #include "rf_raid.h"
     36 #include "rf_raid1.h"
     37 #include "rf_dag.h"
     38 #include "rf_dagffrd.h"
     39 #include "rf_dagffwr.h"
     40 #include "rf_dagdegrd.h"
     41 #include "rf_dagutils.h"
     42 #include "rf_dagfuncs.h"
     43 #include "rf_threadid.h"
     44 #include "rf_diskqueue.h"
     45 #include "rf_general.h"
     46 #include "rf_utils.h"
     47 #include "rf_parityscan.h"
     48 #include "rf_mcpair.h"
     49 #include "rf_layout.h"
     50 #include "rf_map.h"
     51 #include "rf_engine.h"
     52 #include "rf_reconbuffer.h"
     53 #include "rf_sys.h"
     54 
     55 typedef struct RF_Raid1ConfigInfo_s {
     56 	RF_RowCol_t **stripeIdentifier;
     57 }       RF_Raid1ConfigInfo_t;
     58 /* start of day code specific to RAID level 1 */
     59 int
     60 rf_ConfigureRAID1(
     61     RF_ShutdownList_t ** listp,
     62     RF_Raid_t * raidPtr,
     63     RF_Config_t * cfgPtr)
     64 {
     65 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     66 	RF_Raid1ConfigInfo_t *info;
     67 	RF_RowCol_t i;
     68 
     69 	/* create a RAID level 1 configuration structure */
     70 	RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
     71 	if (info == NULL)
     72 		return (ENOMEM);
     73 	layoutPtr->layoutSpecificInfo = (void *) info;
     74 
     75 	/* ... and fill it in. */
     76 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
     77 	if (info->stripeIdentifier == NULL)
     78 		return (ENOMEM);
     79 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
     80 		info->stripeIdentifier[i][0] = (2 * i);
     81 		info->stripeIdentifier[i][1] = (2 * i) + 1;
     82 	}
     83 
     84 	RF_ASSERT(raidPtr->numRow == 1);
     85 
     86 	/* this implementation of RAID level 1 uses one row of numCol disks
     87 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
     88 	 * consists of a single data unit and a single parity (mirror) unit.
     89 	 * stripe id = raidAddr / stripeUnitSize */
     90 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
     91 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
     92 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
     93 	layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
     94 	layoutPtr->numDataCol = 1;
     95 	layoutPtr->numParityCol = 1;
     96 	return (0);
     97 }
     98 
     99 
    100 /* returns the physical disk location of the primary copy in the mirror pair */
    101 void
    102 rf_MapSectorRAID1(
    103     RF_Raid_t * raidPtr,
    104     RF_RaidAddr_t raidSector,
    105     RF_RowCol_t * row,
    106     RF_RowCol_t * col,
    107     RF_SectorNum_t * diskSector,
    108     int remap)
    109 {
    110 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    111 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    112 
    113 	*row = 0;
    114 	*col = 2 * mirrorPair;
    115 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    116 }
    117 
    118 
    119 /* Map Parity
    120  *
    121  * returns the physical disk location of the secondary copy in the mirror
    122  * pair
    123  */
    124 void
    125 rf_MapParityRAID1(
    126     RF_Raid_t * raidPtr,
    127     RF_RaidAddr_t raidSector,
    128     RF_RowCol_t * row,
    129     RF_RowCol_t * col,
    130     RF_SectorNum_t * diskSector,
    131     int remap)
    132 {
    133 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    134 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    135 
    136 	*row = 0;
    137 	*col = (2 * mirrorPair) + 1;
    138 
    139 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    140 }
    141 
    142 
    143 /* IdentifyStripeRAID1
    144  *
    145  * returns a list of disks for a given redundancy group
    146  */
    147 void
    148 rf_IdentifyStripeRAID1(
    149     RF_Raid_t * raidPtr,
    150     RF_RaidAddr_t addr,
    151     RF_RowCol_t ** diskids,
    152     RF_RowCol_t * outRow)
    153 {
    154 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
    155 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
    156 	RF_ASSERT(stripeID >= 0);
    157 	RF_ASSERT(addr >= 0);
    158 	*outRow = 0;
    159 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
    160 	RF_ASSERT(*diskids);
    161 }
    162 
    163 
    164 /* MapSIDToPSIDRAID1
    165  *
    166  * maps a logical stripe to a stripe in the redundant array
    167  */
    168 void
    169 rf_MapSIDToPSIDRAID1(
    170     RF_RaidLayout_t * layoutPtr,
    171     RF_StripeNum_t stripeID,
    172     RF_StripeNum_t * psID,
    173     RF_ReconUnitNum_t * which_ru)
    174 {
    175 	*which_ru = 0;
    176 	*psID = stripeID;
    177 }
    178 
    179 
    180 
    181 /******************************************************************************
    182  * select a graph to perform a single-stripe access
    183  *
    184  * Parameters:  raidPtr    - description of the physical array
    185  *              type       - type of operation (read or write) requested
    186  *              asmap      - logical & physical addresses for this access
    187  *              createFunc - name of function to use to create the graph
    188  *****************************************************************************/
    189 
    190 void
    191 rf_RAID1DagSelect(
    192     RF_Raid_t * raidPtr,
    193     RF_IoType_t type,
    194     RF_AccessStripeMap_t * asmap,
    195     RF_VoidFuncPtr * createFunc)
    196 {
    197 	RF_RowCol_t frow, fcol, or, oc;
    198 	RF_PhysDiskAddr_t *failedPDA;
    199 	int     prior_recon, tid;
    200 	RF_RowStatus_t rstat;
    201 	RF_SectorNum_t oo;
    202 
    203 
    204 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    205 
    206 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
    207 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    208 		*createFunc = NULL;
    209 		return;
    210 	}
    211 	if (asmap->numDataFailed + asmap->numParityFailed) {
    212 		/*
    213 	         * We've got a fault. Re-map to spare space, iff applicable.
    214 	         * Shouldn't the arch-independent code do this for us?
    215 	         * Anyway, it turns out if we don't do this here, then when
    216 	         * we're reconstructing, writes go only to the surviving
    217 	         * original disk, and aren't reflected on the reconstructed
    218 	         * spare. Oops. --jimz
    219 	         */
    220 		failedPDA = asmap->failedPDAs[0];
    221 		frow = failedPDA->row;
    222 		fcol = failedPDA->col;
    223 		rstat = raidPtr->status[frow];
    224 		prior_recon = (rstat == rf_rs_reconfigured) || (
    225 		    (rstat == rf_rs_reconstructing) ?
    226 		    rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
    227 		    );
    228 		if (prior_recon) {
    229 			or = frow;
    230 			oc = fcol;
    231 			oo = failedPDA->startSector;
    232 			/*
    233 		         * If we did distributed sparing, we'd monkey with that here.
    234 		         * But we don't, so we'll
    235 		         */
    236 			failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
    237 			failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
    238 			/*
    239 		         * Redirect other components, iff necessary. This looks
    240 		         * pretty suspicious to me, but it's what the raid5
    241 		         * DAG select does.
    242 		         */
    243 			if (asmap->parityInfo->next) {
    244 				if (failedPDA == asmap->parityInfo) {
    245 					failedPDA->next->row = failedPDA->row;
    246 					failedPDA->next->col = failedPDA->col;
    247 				} else {
    248 					if (failedPDA == asmap->parityInfo->next) {
    249 						asmap->parityInfo->row = failedPDA->row;
    250 						asmap->parityInfo->col = failedPDA->col;
    251 					}
    252 				}
    253 			}
    254 			if (rf_dagDebug || rf_mapDebug) {
    255 				rf_get_threadid(tid);
    256 				printf("[%d] Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
    257 				    tid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col,
    258 				    (long) failedPDA->startSector);
    259 			}
    260 			asmap->numDataFailed = asmap->numParityFailed = 0;
    261 		}
    262 	}
    263 	if (type == RF_IO_TYPE_READ) {
    264 		if (asmap->numDataFailed == 0)
    265 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
    266 		else
    267 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
    268 	} else {
    269 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
    270 	}
    271 }
    272 
    273 int
    274 rf_VerifyParityRAID1(
    275     RF_Raid_t * raidPtr,
    276     RF_RaidAddr_t raidAddr,
    277     RF_PhysDiskAddr_t * parityPDA,
    278     int correct_it,
    279     RF_RaidAccessFlags_t flags)
    280 {
    281 	int     nbytes, bcount, stripeWidth, ret, i, j, tid = 0, nbad, *bbufs;
    282 	RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
    283 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
    284 	RF_AccessStripeMapHeader_t *asm_h;
    285 	RF_AllocListElem_t *allocList;
    286 	RF_AccTraceEntry_t tracerec;
    287 	RF_ReconUnitNum_t which_ru;
    288 	RF_RaidLayout_t *layoutPtr;
    289 	RF_AccessStripeMap_t *aasm;
    290 	RF_SectorCount_t nsector;
    291 	RF_RaidAddr_t startAddr;
    292 	char   *buf, *buf1, *buf2;
    293 	RF_PhysDiskAddr_t *pda;
    294 	RF_StripeNum_t psID;
    295 	RF_MCPair_t *mcpair;
    296 
    297 	if (rf_verifyParityDebug) {
    298 		rf_get_threadid(tid);
    299 	}
    300 	layoutPtr = &raidPtr->Layout;
    301 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    302 	nsector = parityPDA->numSector;
    303 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
    304 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
    305 
    306 	asm_h = NULL;
    307 	rd_dag_h = wr_dag_h = NULL;
    308 	mcpair = NULL;
    309 
    310 	ret = RF_PARITY_COULD_NOT_VERIFY;
    311 
    312 	rf_MakeAllocList(allocList);
    313 	if (allocList == NULL)
    314 		return (RF_PARITY_COULD_NOT_VERIFY);
    315 	mcpair = rf_AllocMCPair();
    316 	if (mcpair == NULL)
    317 		goto done;
    318 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
    319 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    320 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
    321 	RF_MallocAndAdd(buf, bcount, (char *), allocList);
    322 	if (buf == NULL)
    323 		goto done;
    324 	if (rf_verifyParityDebug) {
    325 		printf("[%d] RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
    326 		    tid, (long) buf, bcount, (long) buf, (long) buf + bcount);
    327 	}
    328 	/*
    329          * Generate a DAG which will read the entire stripe- then we can
    330          * just compare data chunks versus "parity" chunks.
    331          */
    332 
    333 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
    334 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
    335 	    RF_IO_NORMAL_PRIORITY);
    336 	if (rd_dag_h == NULL)
    337 		goto done;
    338 	blockNode = rd_dag_h->succedents[0];
    339 	unblockNode = blockNode->succedents[0]->succedents[0];
    340 
    341 	/*
    342          * Map the access to physical disk addresses (PDAs)- this will
    343          * get us both a list of data addresses, and "parity" addresses
    344          * (which are really mirror copies).
    345          */
    346 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
    347 	    buf, RF_DONT_REMAP);
    348 	aasm = asm_h->stripeMap;
    349 
    350 	buf1 = buf;
    351 	/*
    352          * Loop through the data blocks, setting up read nodes for each.
    353          */
    354 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    355 		RF_ASSERT(pda);
    356 
    357 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    358 
    359 		RF_ASSERT(pda->numSector != 0);
    360 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    361 			/* cannot verify parity with dead disk */
    362 			goto done;
    363 		}
    364 		pda->bufPtr = buf1;
    365 		blockNode->succedents[i]->params[0].p = pda;
    366 		blockNode->succedents[i]->params[1].p = buf1;
    367 		blockNode->succedents[i]->params[2].v = psID;
    368 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    369 		buf1 += nbytes;
    370 	}
    371 	RF_ASSERT(pda == NULL);
    372 	/*
    373          * keep i, buf1 running
    374          *
    375          * Loop through parity blocks, setting up read nodes for each.
    376          */
    377 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
    378 		RF_ASSERT(pda);
    379 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    380 		RF_ASSERT(pda->numSector != 0);
    381 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    382 			/* cannot verify parity with dead disk */
    383 			goto done;
    384 		}
    385 		pda->bufPtr = buf1;
    386 		blockNode->succedents[i]->params[0].p = pda;
    387 		blockNode->succedents[i]->params[1].p = buf1;
    388 		blockNode->succedents[i]->params[2].v = psID;
    389 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    390 		buf1 += nbytes;
    391 	}
    392 	RF_ASSERT(pda == NULL);
    393 
    394 	bzero((char *) &tracerec, sizeof(tracerec));
    395 	rd_dag_h->tracerec = &tracerec;
    396 
    397 	if (rf_verifyParityDebug > 1) {
    398 		printf("[%d] RAID1 parity verify read dag:\n", tid);
    399 		rf_PrintDAGList(rd_dag_h);
    400 	}
    401 	RF_LOCK_MUTEX(mcpair->mutex);
    402 	mcpair->flag = 0;
    403 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    404 	    (void *) mcpair);
    405 	while (mcpair->flag == 0) {
    406 		RF_WAIT_MCPAIR(mcpair);
    407 	}
    408 	RF_UNLOCK_MUTEX(mcpair->mutex);
    409 
    410 	if (rd_dag_h->status != rf_enable) {
    411 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
    412 		ret = RF_PARITY_COULD_NOT_VERIFY;
    413 		goto done;
    414 	}
    415 	/*
    416          * buf1 is the beginning of the data blocks chunk
    417          * buf2 is the beginning of the parity blocks chunk
    418          */
    419 	buf1 = buf;
    420 	buf2 = buf + (nbytes * layoutPtr->numDataCol);
    421 	ret = RF_PARITY_OKAY;
    422 	/*
    423          * bbufs is "bad bufs"- an array whose entries are the data
    424          * column numbers where we had miscompares. (That is, column 0
    425          * and column 1 of the array are mirror copies, and are considered
    426          * "data column 0" for this purpose).
    427          */
    428 	RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
    429 	    allocList);
    430 	nbad = 0;
    431 	/*
    432          * Check data vs "parity" (mirror copy).
    433          */
    434 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    435 		if (rf_verifyParityDebug) {
    436 			printf("[%d] RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
    437 			    tid, nbytes, i, (long) buf1, (long) buf2, (long) buf);
    438 		}
    439 		ret = bcmp(buf1, buf2, nbytes);
    440 		if (ret) {
    441 			if (rf_verifyParityDebug > 1) {
    442 				for (j = 0; j < nbytes; j++) {
    443 					if (buf1[j] != buf2[j])
    444 						break;
    445 				}
    446 				printf("psid=%ld j=%d\n", (long) psID, j);
    447 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
    448 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
    449 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
    450 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
    451 			}
    452 			if (rf_verifyParityDebug) {
    453 				printf("[%d] RAID1: found bad parity, i=%d\n", tid, i);
    454 			}
    455 			/*
    456 		         * Parity is bad. Keep track of which columns were bad.
    457 		         */
    458 			if (bbufs)
    459 				bbufs[nbad] = i;
    460 			nbad++;
    461 			ret = RF_PARITY_BAD;
    462 		}
    463 		buf1 += nbytes;
    464 		buf2 += nbytes;
    465 	}
    466 
    467 	if ((ret != RF_PARITY_OKAY) && correct_it) {
    468 		ret = RF_PARITY_COULD_NOT_CORRECT;
    469 		if (rf_verifyParityDebug) {
    470 			printf("[%d] RAID1 parity verify: parity not correct\n", tid);
    471 		}
    472 		if (bbufs == NULL)
    473 			goto done;
    474 		/*
    475 	         * Make a DAG with one write node for each bad unit. We'll simply
    476 	         * write the contents of the data unit onto the parity unit for
    477 	         * correction. (It's possible that the mirror copy was the correct
    478 	         * copy, and that we're spooging good data by writing bad over it,
    479 	         * but there's no way we can know that.
    480 	         */
    481 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
    482 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
    483 		    RF_IO_NORMAL_PRIORITY);
    484 		if (wr_dag_h == NULL)
    485 			goto done;
    486 		wrBlock = wr_dag_h->succedents[0];
    487 		/*
    488 	         * Fill in a write node for each bad compare.
    489 	         */
    490 		for (i = 0; i < nbad; i++) {
    491 			j = i + layoutPtr->numDataCol;
    492 			pda = blockNode->succedents[j]->params[0].p;
    493 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
    494 			wrBlock->succedents[i]->params[0].p = pda;
    495 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
    496 			wrBlock->succedents[i]->params[2].v = psID;
    497 			wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    498 		}
    499 		bzero((char *) &tracerec, sizeof(tracerec));
    500 		wr_dag_h->tracerec = &tracerec;
    501 		if (rf_verifyParityDebug > 1) {
    502 			printf("Parity verify write dag:\n");
    503 			rf_PrintDAGList(wr_dag_h);
    504 		}
    505 		RF_LOCK_MUTEX(mcpair->mutex);
    506 		mcpair->flag = 0;
    507 		/* fire off the write DAG */
    508 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    509 		    (void *) mcpair);
    510 		while (!mcpair->flag) {
    511 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    512 		}
    513 		RF_UNLOCK_MUTEX(mcpair->mutex);
    514 		if (wr_dag_h->status != rf_enable) {
    515 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
    516 			goto done;
    517 		}
    518 		ret = RF_PARITY_CORRECTED;
    519 	}
    520 done:
    521 	/*
    522          * All done. We might've gotten here without doing part of the function,
    523          * so cleanup what we have to and return our running status.
    524          */
    525 	if (asm_h)
    526 		rf_FreeAccessStripeMap(asm_h);
    527 	if (rd_dag_h)
    528 		rf_FreeDAG(rd_dag_h);
    529 	if (wr_dag_h)
    530 		rf_FreeDAG(wr_dag_h);
    531 	if (mcpair)
    532 		rf_FreeMCPair(mcpair);
    533 	rf_FreeAllocList(allocList);
    534 	if (rf_verifyParityDebug) {
    535 		printf("[%d] RAID1 parity verify, returning %d\n", tid, ret);
    536 	}
    537 	return (ret);
    538 }
    539 
    540 int
    541 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
    542 	RF_ReconBuffer_t *rbuf;	/* the recon buffer to submit */
    543 	int     keep_it;	/* whether we can keep this buffer or we have
    544 				 * to return it */
    545 	int     use_committed;	/* whether to use a committed or an available
    546 				 * recon buffer */
    547 {
    548 	RF_ReconParityStripeStatus_t *pssPtr;
    549 	RF_ReconCtrl_t *reconCtrlPtr;
    550 	RF_RaidLayout_t *layoutPtr;
    551 	int     tid = 0, retcode, created;
    552 	RF_CallbackDesc_t *cb, *p;
    553 	RF_ReconBuffer_t *t;
    554 	RF_Raid_t *raidPtr;
    555 	caddr_t ta;
    556 
    557 	retcode = 0;
    558 	created = 0;
    559 
    560 	raidPtr = rbuf->raidPtr;
    561 	layoutPtr = &raidPtr->Layout;
    562 	reconCtrlPtr = raidPtr->reconControl[rbuf->row];
    563 
    564 	RF_ASSERT(rbuf);
    565 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
    566 
    567 	if (rf_reconbufferDebug) {
    568 		rf_get_threadid(tid);
    569 		printf("[%d] RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
    570 		    tid, rbuf->row, rbuf->col, (long) rbuf->parityStripeID, rbuf->which_ru,
    571 		    (long) rbuf->failedDiskSectorOffset);
    572 	}
    573 	if (rf_reconDebug) {
    574 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
    575 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
    576 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
    577 		    (long) rbuf->parityStripeID,
    578 		    rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
    579 		    rbuf->buffer[4]);
    580 	}
    581 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
    582 
    583 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
    584 
    585 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
    586 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
    587 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
    588 				 * an rbuf for it */
    589 
    590 	/*
    591          * Since this is simple mirroring, the first submission for a stripe is also
    592          * treated as the last.
    593          */
    594 
    595 	t = NULL;
    596 	if (keep_it) {
    597 		if (rf_reconbufferDebug) {
    598 			printf("[%d] RAID1 rbuf submission: keeping rbuf\n", tid);
    599 		}
    600 		t = rbuf;
    601 	} else {
    602 		if (use_committed) {
    603 			if (rf_reconbufferDebug) {
    604 				printf("[%d] RAID1 rbuf submission: using committed rbuf\n", tid);
    605 			}
    606 			t = reconCtrlPtr->committedRbufs;
    607 			RF_ASSERT(t);
    608 			reconCtrlPtr->committedRbufs = t->next;
    609 			t->next = NULL;
    610 		} else
    611 			if (reconCtrlPtr->floatingRbufs) {
    612 				if (rf_reconbufferDebug) {
    613 					printf("[%d] RAID1 rbuf submission: using floating rbuf\n", tid);
    614 				}
    615 				t = reconCtrlPtr->floatingRbufs;
    616 				reconCtrlPtr->floatingRbufs = t->next;
    617 				t->next = NULL;
    618 			}
    619 	}
    620 	if (t == NULL) {
    621 		if (rf_reconbufferDebug) {
    622 			printf("[%d] RAID1 rbuf submission: waiting for rbuf\n", tid);
    623 		}
    624 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
    625 		raidPtr->procsInBufWait++;
    626 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
    627 		    && (raidPtr->numFullReconBuffers == 0)) {
    628 			/* ruh-ro */
    629 			RF_ERRORMSG("Buffer wait deadlock\n");
    630 			rf_PrintPSStatusTable(raidPtr, rbuf->row);
    631 			RF_PANIC();
    632 		}
    633 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
    634 		cb = rf_AllocCallbackDesc();
    635 		cb->row = rbuf->row;
    636 		cb->col = rbuf->col;
    637 		cb->callbackArg.v = rbuf->parityStripeID;
    638 		cb->callbackArg2.v = rbuf->which_ru;
    639 		cb->next = NULL;
    640 		if (reconCtrlPtr->bufferWaitList == NULL) {
    641 			/* we are the wait list- lucky us */
    642 			reconCtrlPtr->bufferWaitList = cb;
    643 		} else {
    644 			/* append to wait list */
    645 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
    646 			p->next = cb;
    647 		}
    648 		retcode = 1;
    649 		goto out;
    650 	}
    651 	if (t != rbuf) {
    652 		t->row = rbuf->row;
    653 		t->col = reconCtrlPtr->fcol;
    654 		t->parityStripeID = rbuf->parityStripeID;
    655 		t->which_ru = rbuf->which_ru;
    656 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
    657 		t->spRow = rbuf->spRow;
    658 		t->spCol = rbuf->spCol;
    659 		t->spOffset = rbuf->spOffset;
    660 		/* Swap buffers. DANCE! */
    661 		ta = t->buffer;
    662 		t->buffer = rbuf->buffer;
    663 		rbuf->buffer = ta;
    664 	}
    665 	/*
    666          * Use the rbuf we've been given as the target.
    667          */
    668 	RF_ASSERT(pssPtr->rbuf == NULL);
    669 	pssPtr->rbuf = t;
    670 
    671 	t->count = 1;
    672 	/*
    673          * Below, we use 1 for numDataCol (which is equal to the count in the
    674          * previous line), so we'll always be done.
    675          */
    676 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
    677 
    678 out:
    679 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
    680 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
    681 	if (rf_reconbufferDebug) {
    682 		printf("[%d] RAID1 rbuf submission: returning %d\n", tid, retcode);
    683 	}
    684 	return (retcode);
    685 }
    686