rf_raid1.c revision 1.3 1 /* $NetBSD: rf_raid1.c,v 1.3 1999/02/05 00:06:15 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_raid1.c -- implements RAID Level 1
32 *
33 *****************************************************************************/
34
35 #include "rf_raid.h"
36 #include "rf_raid1.h"
37 #include "rf_dag.h"
38 #include "rf_dagffrd.h"
39 #include "rf_dagffwr.h"
40 #include "rf_dagdegrd.h"
41 #include "rf_dagutils.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_threadid.h"
44 #include "rf_diskqueue.h"
45 #include "rf_general.h"
46 #include "rf_utils.h"
47 #include "rf_parityscan.h"
48 #include "rf_mcpair.h"
49 #include "rf_layout.h"
50 #include "rf_map.h"
51 #include "rf_engine.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_sys.h"
54
55 typedef struct RF_Raid1ConfigInfo_s {
56 RF_RowCol_t **stripeIdentifier;
57 } RF_Raid1ConfigInfo_t;
58 /* start of day code specific to RAID level 1 */
59 int
60 rf_ConfigureRAID1(
61 RF_ShutdownList_t ** listp,
62 RF_Raid_t * raidPtr,
63 RF_Config_t * cfgPtr)
64 {
65 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
66 RF_Raid1ConfigInfo_t *info;
67 RF_RowCol_t i;
68
69 /* create a RAID level 1 configuration structure */
70 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
71 if (info == NULL)
72 return (ENOMEM);
73 layoutPtr->layoutSpecificInfo = (void *) info;
74
75 /* ... and fill it in. */
76 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
77 if (info->stripeIdentifier == NULL)
78 return (ENOMEM);
79 for (i = 0; i < (raidPtr->numCol / 2); i++) {
80 info->stripeIdentifier[i][0] = (2 * i);
81 info->stripeIdentifier[i][1] = (2 * i) + 1;
82 }
83
84 RF_ASSERT(raidPtr->numRow == 1);
85
86 /* this implementation of RAID level 1 uses one row of numCol disks
87 * and allows multiple (numCol / 2) stripes per row. A stripe
88 * consists of a single data unit and a single parity (mirror) unit.
89 * stripe id = raidAddr / stripeUnitSize */
90 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
91 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
92 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
93 layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
94 layoutPtr->numDataCol = 1;
95 layoutPtr->numParityCol = 1;
96 return (0);
97 }
98
99
100 /* returns the physical disk location of the primary copy in the mirror pair */
101 void
102 rf_MapSectorRAID1(
103 RF_Raid_t * raidPtr,
104 RF_RaidAddr_t raidSector,
105 RF_RowCol_t * row,
106 RF_RowCol_t * col,
107 RF_SectorNum_t * diskSector,
108 int remap)
109 {
110 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
111 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
112
113 *row = 0;
114 *col = 2 * mirrorPair;
115 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
116 }
117
118
119 /* Map Parity
120 *
121 * returns the physical disk location of the secondary copy in the mirror
122 * pair
123 */
124 void
125 rf_MapParityRAID1(
126 RF_Raid_t * raidPtr,
127 RF_RaidAddr_t raidSector,
128 RF_RowCol_t * row,
129 RF_RowCol_t * col,
130 RF_SectorNum_t * diskSector,
131 int remap)
132 {
133 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
134 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
135
136 *row = 0;
137 *col = (2 * mirrorPair) + 1;
138
139 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
140 }
141
142
143 /* IdentifyStripeRAID1
144 *
145 * returns a list of disks for a given redundancy group
146 */
147 void
148 rf_IdentifyStripeRAID1(
149 RF_Raid_t * raidPtr,
150 RF_RaidAddr_t addr,
151 RF_RowCol_t ** diskids,
152 RF_RowCol_t * outRow)
153 {
154 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
155 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
156 RF_ASSERT(stripeID >= 0);
157 RF_ASSERT(addr >= 0);
158 *outRow = 0;
159 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
160 RF_ASSERT(*diskids);
161 }
162
163
164 /* MapSIDToPSIDRAID1
165 *
166 * maps a logical stripe to a stripe in the redundant array
167 */
168 void
169 rf_MapSIDToPSIDRAID1(
170 RF_RaidLayout_t * layoutPtr,
171 RF_StripeNum_t stripeID,
172 RF_StripeNum_t * psID,
173 RF_ReconUnitNum_t * which_ru)
174 {
175 *which_ru = 0;
176 *psID = stripeID;
177 }
178
179
180
181 /******************************************************************************
182 * select a graph to perform a single-stripe access
183 *
184 * Parameters: raidPtr - description of the physical array
185 * type - type of operation (read or write) requested
186 * asmap - logical & physical addresses for this access
187 * createFunc - name of function to use to create the graph
188 *****************************************************************************/
189
190 void
191 rf_RAID1DagSelect(
192 RF_Raid_t * raidPtr,
193 RF_IoType_t type,
194 RF_AccessStripeMap_t * asmap,
195 RF_VoidFuncPtr * createFunc)
196 {
197 RF_RowCol_t frow, fcol, or, oc;
198 RF_PhysDiskAddr_t *failedPDA;
199 int prior_recon, tid;
200 RF_RowStatus_t rstat;
201 RF_SectorNum_t oo;
202
203
204 RF_ASSERT(RF_IO_IS_R_OR_W(type));
205
206 if (asmap->numDataFailed + asmap->numParityFailed > 1) {
207 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
208 *createFunc = NULL;
209 return;
210 }
211 if (asmap->numDataFailed + asmap->numParityFailed) {
212 /*
213 * We've got a fault. Re-map to spare space, iff applicable.
214 * Shouldn't the arch-independent code do this for us?
215 * Anyway, it turns out if we don't do this here, then when
216 * we're reconstructing, writes go only to the surviving
217 * original disk, and aren't reflected on the reconstructed
218 * spare. Oops. --jimz
219 */
220 failedPDA = asmap->failedPDAs[0];
221 frow = failedPDA->row;
222 fcol = failedPDA->col;
223 rstat = raidPtr->status[frow];
224 prior_recon = (rstat == rf_rs_reconfigured) || (
225 (rstat == rf_rs_reconstructing) ?
226 rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
227 );
228 if (prior_recon) {
229 or = frow;
230 oc = fcol;
231 oo = failedPDA->startSector;
232 /*
233 * If we did distributed sparing, we'd monkey with that here.
234 * But we don't, so we'll
235 */
236 failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
237 failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
238 /*
239 * Redirect other components, iff necessary. This looks
240 * pretty suspicious to me, but it's what the raid5
241 * DAG select does.
242 */
243 if (asmap->parityInfo->next) {
244 if (failedPDA == asmap->parityInfo) {
245 failedPDA->next->row = failedPDA->row;
246 failedPDA->next->col = failedPDA->col;
247 } else {
248 if (failedPDA == asmap->parityInfo->next) {
249 asmap->parityInfo->row = failedPDA->row;
250 asmap->parityInfo->col = failedPDA->col;
251 }
252 }
253 }
254 if (rf_dagDebug || rf_mapDebug) {
255 rf_get_threadid(tid);
256 printf("[%d] Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
257 tid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col,
258 (long) failedPDA->startSector);
259 }
260 asmap->numDataFailed = asmap->numParityFailed = 0;
261 }
262 }
263 if (type == RF_IO_TYPE_READ) {
264 if (asmap->numDataFailed == 0)
265 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
266 else
267 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
268 } else {
269 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
270 }
271 }
272
273 int
274 rf_VerifyParityRAID1(
275 RF_Raid_t * raidPtr,
276 RF_RaidAddr_t raidAddr,
277 RF_PhysDiskAddr_t * parityPDA,
278 int correct_it,
279 RF_RaidAccessFlags_t flags)
280 {
281 int nbytes, bcount, stripeWidth, ret, i, j, tid = 0, nbad, *bbufs;
282 RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
283 RF_DagHeader_t *rd_dag_h, *wr_dag_h;
284 RF_AccessStripeMapHeader_t *asm_h;
285 RF_AllocListElem_t *allocList;
286 RF_AccTraceEntry_t tracerec;
287 RF_ReconUnitNum_t which_ru;
288 RF_RaidLayout_t *layoutPtr;
289 RF_AccessStripeMap_t *aasm;
290 RF_SectorCount_t nsector;
291 RF_RaidAddr_t startAddr;
292 char *buf, *buf1, *buf2;
293 RF_PhysDiskAddr_t *pda;
294 RF_StripeNum_t psID;
295 RF_MCPair_t *mcpair;
296
297 if (rf_verifyParityDebug) {
298 rf_get_threadid(tid);
299 }
300 layoutPtr = &raidPtr->Layout;
301 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
302 nsector = parityPDA->numSector;
303 nbytes = rf_RaidAddressToByte(raidPtr, nsector);
304 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
305
306 asm_h = NULL;
307 rd_dag_h = wr_dag_h = NULL;
308 mcpair = NULL;
309
310 ret = RF_PARITY_COULD_NOT_VERIFY;
311
312 rf_MakeAllocList(allocList);
313 if (allocList == NULL)
314 return (RF_PARITY_COULD_NOT_VERIFY);
315 mcpair = rf_AllocMCPair();
316 if (mcpair == NULL)
317 goto done;
318 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
319 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
320 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
321 RF_MallocAndAdd(buf, bcount, (char *), allocList);
322 if (buf == NULL)
323 goto done;
324 if (rf_verifyParityDebug) {
325 printf("[%d] RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
326 tid, (long) buf, bcount, (long) buf, (long) buf + bcount);
327 }
328 /*
329 * Generate a DAG which will read the entire stripe- then we can
330 * just compare data chunks versus "parity" chunks.
331 */
332
333 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
334 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
335 RF_IO_NORMAL_PRIORITY);
336 if (rd_dag_h == NULL)
337 goto done;
338 blockNode = rd_dag_h->succedents[0];
339 unblockNode = blockNode->succedents[0]->succedents[0];
340
341 /*
342 * Map the access to physical disk addresses (PDAs)- this will
343 * get us both a list of data addresses, and "parity" addresses
344 * (which are really mirror copies).
345 */
346 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
347 buf, RF_DONT_REMAP);
348 aasm = asm_h->stripeMap;
349
350 buf1 = buf;
351 /*
352 * Loop through the data blocks, setting up read nodes for each.
353 */
354 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
355 RF_ASSERT(pda);
356
357 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
358
359 RF_ASSERT(pda->numSector != 0);
360 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
361 /* cannot verify parity with dead disk */
362 goto done;
363 }
364 pda->bufPtr = buf1;
365 blockNode->succedents[i]->params[0].p = pda;
366 blockNode->succedents[i]->params[1].p = buf1;
367 blockNode->succedents[i]->params[2].v = psID;
368 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
369 buf1 += nbytes;
370 }
371 RF_ASSERT(pda == NULL);
372 /*
373 * keep i, buf1 running
374 *
375 * Loop through parity blocks, setting up read nodes for each.
376 */
377 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
378 RF_ASSERT(pda);
379 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
380 RF_ASSERT(pda->numSector != 0);
381 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
382 /* cannot verify parity with dead disk */
383 goto done;
384 }
385 pda->bufPtr = buf1;
386 blockNode->succedents[i]->params[0].p = pda;
387 blockNode->succedents[i]->params[1].p = buf1;
388 blockNode->succedents[i]->params[2].v = psID;
389 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
390 buf1 += nbytes;
391 }
392 RF_ASSERT(pda == NULL);
393
394 bzero((char *) &tracerec, sizeof(tracerec));
395 rd_dag_h->tracerec = &tracerec;
396
397 if (rf_verifyParityDebug > 1) {
398 printf("[%d] RAID1 parity verify read dag:\n", tid);
399 rf_PrintDAGList(rd_dag_h);
400 }
401 RF_LOCK_MUTEX(mcpair->mutex);
402 mcpair->flag = 0;
403 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
404 (void *) mcpair);
405 while (mcpair->flag == 0) {
406 RF_WAIT_MCPAIR(mcpair);
407 }
408 RF_UNLOCK_MUTEX(mcpair->mutex);
409
410 if (rd_dag_h->status != rf_enable) {
411 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
412 ret = RF_PARITY_COULD_NOT_VERIFY;
413 goto done;
414 }
415 /*
416 * buf1 is the beginning of the data blocks chunk
417 * buf2 is the beginning of the parity blocks chunk
418 */
419 buf1 = buf;
420 buf2 = buf + (nbytes * layoutPtr->numDataCol);
421 ret = RF_PARITY_OKAY;
422 /*
423 * bbufs is "bad bufs"- an array whose entries are the data
424 * column numbers where we had miscompares. (That is, column 0
425 * and column 1 of the array are mirror copies, and are considered
426 * "data column 0" for this purpose).
427 */
428 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
429 allocList);
430 nbad = 0;
431 /*
432 * Check data vs "parity" (mirror copy).
433 */
434 for (i = 0; i < layoutPtr->numDataCol; i++) {
435 if (rf_verifyParityDebug) {
436 printf("[%d] RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
437 tid, nbytes, i, (long) buf1, (long) buf2, (long) buf);
438 }
439 ret = bcmp(buf1, buf2, nbytes);
440 if (ret) {
441 if (rf_verifyParityDebug > 1) {
442 for (j = 0; j < nbytes; j++) {
443 if (buf1[j] != buf2[j])
444 break;
445 }
446 printf("psid=%ld j=%d\n", (long) psID, j);
447 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
448 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
449 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
450 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
451 }
452 if (rf_verifyParityDebug) {
453 printf("[%d] RAID1: found bad parity, i=%d\n", tid, i);
454 }
455 /*
456 * Parity is bad. Keep track of which columns were bad.
457 */
458 if (bbufs)
459 bbufs[nbad] = i;
460 nbad++;
461 ret = RF_PARITY_BAD;
462 }
463 buf1 += nbytes;
464 buf2 += nbytes;
465 }
466
467 if ((ret != RF_PARITY_OKAY) && correct_it) {
468 ret = RF_PARITY_COULD_NOT_CORRECT;
469 if (rf_verifyParityDebug) {
470 printf("[%d] RAID1 parity verify: parity not correct\n", tid);
471 }
472 if (bbufs == NULL)
473 goto done;
474 /*
475 * Make a DAG with one write node for each bad unit. We'll simply
476 * write the contents of the data unit onto the parity unit for
477 * correction. (It's possible that the mirror copy was the correct
478 * copy, and that we're spooging good data by writing bad over it,
479 * but there's no way we can know that.
480 */
481 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
482 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
483 RF_IO_NORMAL_PRIORITY);
484 if (wr_dag_h == NULL)
485 goto done;
486 wrBlock = wr_dag_h->succedents[0];
487 /*
488 * Fill in a write node for each bad compare.
489 */
490 for (i = 0; i < nbad; i++) {
491 j = i + layoutPtr->numDataCol;
492 pda = blockNode->succedents[j]->params[0].p;
493 pda->bufPtr = blockNode->succedents[i]->params[1].p;
494 wrBlock->succedents[i]->params[0].p = pda;
495 wrBlock->succedents[i]->params[1].p = pda->bufPtr;
496 wrBlock->succedents[i]->params[2].v = psID;
497 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
498 }
499 bzero((char *) &tracerec, sizeof(tracerec));
500 wr_dag_h->tracerec = &tracerec;
501 if (rf_verifyParityDebug > 1) {
502 printf("Parity verify write dag:\n");
503 rf_PrintDAGList(wr_dag_h);
504 }
505 RF_LOCK_MUTEX(mcpair->mutex);
506 mcpair->flag = 0;
507 /* fire off the write DAG */
508 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
509 (void *) mcpair);
510 while (!mcpair->flag) {
511 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
512 }
513 RF_UNLOCK_MUTEX(mcpair->mutex);
514 if (wr_dag_h->status != rf_enable) {
515 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
516 goto done;
517 }
518 ret = RF_PARITY_CORRECTED;
519 }
520 done:
521 /*
522 * All done. We might've gotten here without doing part of the function,
523 * so cleanup what we have to and return our running status.
524 */
525 if (asm_h)
526 rf_FreeAccessStripeMap(asm_h);
527 if (rd_dag_h)
528 rf_FreeDAG(rd_dag_h);
529 if (wr_dag_h)
530 rf_FreeDAG(wr_dag_h);
531 if (mcpair)
532 rf_FreeMCPair(mcpair);
533 rf_FreeAllocList(allocList);
534 if (rf_verifyParityDebug) {
535 printf("[%d] RAID1 parity verify, returning %d\n", tid, ret);
536 }
537 return (ret);
538 }
539
540 int
541 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
542 RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
543 int keep_it; /* whether we can keep this buffer or we have
544 * to return it */
545 int use_committed; /* whether to use a committed or an available
546 * recon buffer */
547 {
548 RF_ReconParityStripeStatus_t *pssPtr;
549 RF_ReconCtrl_t *reconCtrlPtr;
550 RF_RaidLayout_t *layoutPtr;
551 int tid = 0, retcode, created;
552 RF_CallbackDesc_t *cb, *p;
553 RF_ReconBuffer_t *t;
554 RF_Raid_t *raidPtr;
555 caddr_t ta;
556
557 retcode = 0;
558 created = 0;
559
560 raidPtr = rbuf->raidPtr;
561 layoutPtr = &raidPtr->Layout;
562 reconCtrlPtr = raidPtr->reconControl[rbuf->row];
563
564 RF_ASSERT(rbuf);
565 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
566
567 if (rf_reconbufferDebug) {
568 rf_get_threadid(tid);
569 printf("[%d] RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
570 tid, rbuf->row, rbuf->col, (long) rbuf->parityStripeID, rbuf->which_ru,
571 (long) rbuf->failedDiskSectorOffset);
572 }
573 if (rf_reconDebug) {
574 printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
575 (long) rbuf->parityStripeID, (long) rbuf->buffer);
576 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
577 (long) rbuf->parityStripeID,
578 rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
579 rbuf->buffer[4]);
580 }
581 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
582
583 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
584
585 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
586 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
587 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
588 * an rbuf for it */
589
590 /*
591 * Since this is simple mirroring, the first submission for a stripe is also
592 * treated as the last.
593 */
594
595 t = NULL;
596 if (keep_it) {
597 if (rf_reconbufferDebug) {
598 printf("[%d] RAID1 rbuf submission: keeping rbuf\n", tid);
599 }
600 t = rbuf;
601 } else {
602 if (use_committed) {
603 if (rf_reconbufferDebug) {
604 printf("[%d] RAID1 rbuf submission: using committed rbuf\n", tid);
605 }
606 t = reconCtrlPtr->committedRbufs;
607 RF_ASSERT(t);
608 reconCtrlPtr->committedRbufs = t->next;
609 t->next = NULL;
610 } else
611 if (reconCtrlPtr->floatingRbufs) {
612 if (rf_reconbufferDebug) {
613 printf("[%d] RAID1 rbuf submission: using floating rbuf\n", tid);
614 }
615 t = reconCtrlPtr->floatingRbufs;
616 reconCtrlPtr->floatingRbufs = t->next;
617 t->next = NULL;
618 }
619 }
620 if (t == NULL) {
621 if (rf_reconbufferDebug) {
622 printf("[%d] RAID1 rbuf submission: waiting for rbuf\n", tid);
623 }
624 RF_ASSERT((keep_it == 0) && (use_committed == 0));
625 raidPtr->procsInBufWait++;
626 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
627 && (raidPtr->numFullReconBuffers == 0)) {
628 /* ruh-ro */
629 RF_ERRORMSG("Buffer wait deadlock\n");
630 rf_PrintPSStatusTable(raidPtr, rbuf->row);
631 RF_PANIC();
632 }
633 pssPtr->flags |= RF_PSS_BUFFERWAIT;
634 cb = rf_AllocCallbackDesc();
635 cb->row = rbuf->row;
636 cb->col = rbuf->col;
637 cb->callbackArg.v = rbuf->parityStripeID;
638 cb->callbackArg2.v = rbuf->which_ru;
639 cb->next = NULL;
640 if (reconCtrlPtr->bufferWaitList == NULL) {
641 /* we are the wait list- lucky us */
642 reconCtrlPtr->bufferWaitList = cb;
643 } else {
644 /* append to wait list */
645 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
646 p->next = cb;
647 }
648 retcode = 1;
649 goto out;
650 }
651 if (t != rbuf) {
652 t->row = rbuf->row;
653 t->col = reconCtrlPtr->fcol;
654 t->parityStripeID = rbuf->parityStripeID;
655 t->which_ru = rbuf->which_ru;
656 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
657 t->spRow = rbuf->spRow;
658 t->spCol = rbuf->spCol;
659 t->spOffset = rbuf->spOffset;
660 /* Swap buffers. DANCE! */
661 ta = t->buffer;
662 t->buffer = rbuf->buffer;
663 rbuf->buffer = ta;
664 }
665 /*
666 * Use the rbuf we've been given as the target.
667 */
668 RF_ASSERT(pssPtr->rbuf == NULL);
669 pssPtr->rbuf = t;
670
671 t->count = 1;
672 /*
673 * Below, we use 1 for numDataCol (which is equal to the count in the
674 * previous line), so we'll always be done.
675 */
676 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
677
678 out:
679 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
680 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
681 if (rf_reconbufferDebug) {
682 printf("[%d] RAID1 rbuf submission: returning %d\n", tid, retcode);
683 }
684 return (retcode);
685 }
686