Home | History | Annotate | Line # | Download | only in raidframe
rf_raid1.c revision 1.37
      1 /*	$NetBSD: rf_raid1.c,v 1.37 2019/10/10 03:43:59 christos Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_raid1.c -- implements RAID Level 1
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.37 2019/10/10 03:43:59 christos Exp $");
     37 
     38 #include "rf_raid.h"
     39 #include "rf_raid1.h"
     40 #include "rf_dag.h"
     41 #include "rf_dagffrd.h"
     42 #include "rf_dagffwr.h"
     43 #include "rf_dagdegrd.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_diskqueue.h"
     47 #include "rf_general.h"
     48 #include "rf_utils.h"
     49 #include "rf_parityscan.h"
     50 #include "rf_mcpair.h"
     51 #include "rf_layout.h"
     52 #include "rf_map.h"
     53 #include "rf_engine.h"
     54 #include "rf_reconbuffer.h"
     55 
     56 typedef struct RF_Raid1ConfigInfo_s {
     57 	RF_RowCol_t **stripeIdentifier;
     58 }       RF_Raid1ConfigInfo_t;
     59 /* start of day code specific to RAID level 1 */
     60 int
     61 rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
     62 		  RF_Config_t *cfgPtr)
     63 {
     64 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     65 	RF_Raid1ConfigInfo_t *info;
     66 	RF_RowCol_t i;
     67 
     68 	/* create a RAID level 1 configuration structure */
     69 	info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
     70 	if (info == NULL)
     71 		return (ENOMEM);
     72 	layoutPtr->layoutSpecificInfo = (void *) info;
     73 
     74 	/* ... and fill it in. */
     75 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
     76 	if (info->stripeIdentifier == NULL)
     77 		return (ENOMEM);
     78 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
     79 		info->stripeIdentifier[i][0] = (2 * i);
     80 		info->stripeIdentifier[i][1] = (2 * i) + 1;
     81 	}
     82 
     83 	/* this implementation of RAID level 1 uses one row of numCol disks
     84 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
     85 	 * consists of a single data unit and a single parity (mirror) unit.
     86 	 * stripe id = raidAddr / stripeUnitSize */
     87 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
     88 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
     89 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
     90 	layoutPtr->numDataCol = 1;
     91 	layoutPtr->numParityCol = 1;
     92 	return (0);
     93 }
     94 
     95 
     96 /* returns the physical disk location of the primary copy in the mirror pair */
     97 void
     98 rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
     99 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector,
    100 		  int remap)
    101 {
    102 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    103 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    104 
    105 	*col = 2 * mirrorPair;
    106 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    107 }
    108 
    109 
    110 /* Map Parity
    111  *
    112  * returns the physical disk location of the secondary copy in the mirror
    113  * pair
    114  */
    115 void
    116 rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
    117 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector,
    118 		  int remap)
    119 {
    120 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    121 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    122 
    123 	*col = (2 * mirrorPair) + 1;
    124 
    125 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    126 }
    127 
    128 
    129 /* IdentifyStripeRAID1
    130  *
    131  * returns a list of disks for a given redundancy group
    132  */
    133 void
    134 rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
    135 		       RF_RowCol_t **diskids)
    136 {
    137 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
    138 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
    139 	RF_ASSERT(stripeID >= 0);
    140 	RF_ASSERT(addr >= 0);
    141 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
    142 	RF_ASSERT(*diskids);
    143 }
    144 
    145 
    146 /* MapSIDToPSIDRAID1
    147  *
    148  * maps a logical stripe to a stripe in the redundant array
    149  */
    150 void
    151 rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr,
    152 		     RF_StripeNum_t stripeID,
    153 		     RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
    154 {
    155 	*which_ru = 0;
    156 	*psID = stripeID;
    157 }
    158 
    159 
    160 
    161 /******************************************************************************
    162  * select a graph to perform a single-stripe access
    163  *
    164  * Parameters:  raidPtr    - description of the physical array
    165  *              type       - type of operation (read or write) requested
    166  *              asmap      - logical & physical addresses for this access
    167  *              createFunc - name of function to use to create the graph
    168  *****************************************************************************/
    169 
    170 void
    171 rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
    172 		  RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
    173 {
    174 	RF_RowCol_t fcol, oc __unused;
    175 	RF_PhysDiskAddr_t *failedPDA;
    176 	int     prior_recon;
    177 	RF_RowStatus_t rstat;
    178 	RF_SectorNum_t oo __unused;
    179 
    180 
    181 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    182 
    183 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
    184 #if RF_DEBUG_DAG
    185 		if (rf_dagDebug)
    186 			RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    187 #endif
    188 		*createFunc = NULL;
    189 		return;
    190 	}
    191 	if (asmap->numDataFailed + asmap->numParityFailed) {
    192 		/*
    193 	         * We've got a fault. Re-map to spare space, iff applicable.
    194 	         * Shouldn't the arch-independent code do this for us?
    195 	         * Anyway, it turns out if we don't do this here, then when
    196 	         * we're reconstructing, writes go only to the surviving
    197 	         * original disk, and aren't reflected on the reconstructed
    198 	         * spare. Oops. --jimz
    199 	         */
    200 		failedPDA = asmap->failedPDAs[0];
    201 		fcol = failedPDA->col;
    202 		rstat = raidPtr->status;
    203 		prior_recon = (rstat == rf_rs_reconfigured) || (
    204 		    (rstat == rf_rs_reconstructing) ?
    205 		    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    206 		    );
    207 		if (prior_recon) {
    208 			oc = fcol;
    209 			oo = failedPDA->startSector;
    210 			/*
    211 		         * If we did distributed sparing, we'd monkey with that here.
    212 		         * But we don't, so we'll
    213 		         */
    214 			failedPDA->col = raidPtr->Disks[fcol].spareCol;
    215 			/*
    216 		         * Redirect other components, iff necessary. This looks
    217 		         * pretty suspicious to me, but it's what the raid5
    218 		         * DAG select does.
    219 		         */
    220 			if (asmap->parityInfo->next) {
    221 				if (failedPDA == asmap->parityInfo) {
    222 					failedPDA->next->col = failedPDA->col;
    223 				} else {
    224 					if (failedPDA == asmap->parityInfo->next) {
    225 						asmap->parityInfo->col = failedPDA->col;
    226 					}
    227 				}
    228 			}
    229 #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
    230 			if (rf_dagDebug || rf_mapDebug) {
    231 				printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    232 				       raidPtr->raidid, type, oc,
    233 				       (long) oo,
    234 				       failedPDA->col,
    235 				       (long) failedPDA->startSector);
    236 			}
    237 #endif
    238 			asmap->numDataFailed = asmap->numParityFailed = 0;
    239 		}
    240 	}
    241 	if (type == RF_IO_TYPE_READ) {
    242 		if (asmap->numDataFailed == 0)
    243 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
    244 		else
    245 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
    246 	} else {
    247 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
    248 	}
    249 }
    250 
    251 int
    252 rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
    253 		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
    254 		     RF_RaidAccessFlags_t flags)
    255 {
    256 	int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
    257 	RF_DagNode_t *blockNode, *wrBlock;
    258 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
    259 	RF_AccessStripeMapHeader_t *asm_h;
    260 	RF_AllocListElem_t *allocList;
    261 #if RF_ACC_TRACE > 0
    262 	RF_AccTraceEntry_t tracerec;
    263 #endif
    264 	RF_ReconUnitNum_t which_ru;
    265 	RF_RaidLayout_t *layoutPtr;
    266 	RF_AccessStripeMap_t *aasm;
    267 	RF_SectorCount_t nsector;
    268 	RF_RaidAddr_t startAddr;
    269 	char   *bf, *buf1, *buf2;
    270 	RF_PhysDiskAddr_t *pda;
    271 	RF_StripeNum_t psID;
    272 	RF_MCPair_t *mcpair;
    273 
    274 	layoutPtr = &raidPtr->Layout;
    275 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    276 	nsector = parityPDA->numSector;
    277 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
    278 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
    279 
    280 	asm_h = NULL;
    281 	rd_dag_h = wr_dag_h = NULL;
    282 	mcpair = NULL;
    283 
    284 	ret = RF_PARITY_COULD_NOT_VERIFY;
    285 
    286 	rf_MakeAllocList(allocList);
    287 	if (allocList == NULL)
    288 		return (RF_PARITY_COULD_NOT_VERIFY);
    289 	mcpair = rf_AllocMCPair();
    290 	if (mcpair == NULL)
    291 		goto done;
    292 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
    293 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    294 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
    295 	bf = RF_MallocAndAdd(bcount, allocList);
    296 	if (bf == NULL)
    297 		goto done;
    298 #if RF_DEBUG_VERIFYPARITY
    299 	if (rf_verifyParityDebug) {
    300 		printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
    301 		       raidPtr->raidid, (long) bf, bcount, (long) bf,
    302 		       (long) bf + bcount);
    303 	}
    304 #endif
    305 	/*
    306          * Generate a DAG which will read the entire stripe- then we can
    307          * just compare data chunks versus "parity" chunks.
    308          */
    309 
    310 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, bf,
    311 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
    312 	    RF_IO_NORMAL_PRIORITY);
    313 	if (rd_dag_h == NULL)
    314 		goto done;
    315 	blockNode = rd_dag_h->succedents[0];
    316 
    317 	/*
    318          * Map the access to physical disk addresses (PDAs)- this will
    319          * get us both a list of data addresses, and "parity" addresses
    320          * (which are really mirror copies).
    321          */
    322 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
    323 	    bf, RF_DONT_REMAP);
    324 	aasm = asm_h->stripeMap;
    325 
    326 	buf1 = bf;
    327 	/*
    328          * Loop through the data blocks, setting up read nodes for each.
    329          */
    330 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    331 		RF_ASSERT(pda);
    332 
    333 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    334 
    335 		RF_ASSERT(pda->numSector != 0);
    336 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    337 			/* cannot verify parity with dead disk */
    338 			goto done;
    339 		}
    340 		pda->bufPtr = buf1;
    341 		blockNode->succedents[i]->params[0].p = pda;
    342 		blockNode->succedents[i]->params[1].p = buf1;
    343 		blockNode->succedents[i]->params[2].v = psID;
    344 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    345 		buf1 += nbytes;
    346 	}
    347 	RF_ASSERT(pda == NULL);
    348 	/*
    349          * keep i, buf1 running
    350          *
    351          * Loop through parity blocks, setting up read nodes for each.
    352          */
    353 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
    354 		RF_ASSERT(pda);
    355 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    356 		RF_ASSERT(pda->numSector != 0);
    357 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    358 			/* cannot verify parity with dead disk */
    359 			goto done;
    360 		}
    361 		pda->bufPtr = buf1;
    362 		blockNode->succedents[i]->params[0].p = pda;
    363 		blockNode->succedents[i]->params[1].p = buf1;
    364 		blockNode->succedents[i]->params[2].v = psID;
    365 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    366 		buf1 += nbytes;
    367 	}
    368 	RF_ASSERT(pda == NULL);
    369 
    370 #if RF_ACC_TRACE > 0
    371 	memset(&tracerec, 0, sizeof(tracerec));
    372 	rd_dag_h->tracerec = &tracerec;
    373 #endif
    374 #if 0
    375 	if (rf_verifyParityDebug > 1) {
    376 		printf("raid%d: RAID1 parity verify read dag:\n",
    377 		       raidPtr->raidid);
    378 		rf_PrintDAGList(rd_dag_h);
    379 	}
    380 #endif
    381 	RF_LOCK_MCPAIR(mcpair);
    382 	mcpair->flag = 0;
    383 	RF_UNLOCK_MCPAIR(mcpair);
    384 
    385 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    386 	    (void *) mcpair);
    387 
    388 	RF_LOCK_MCPAIR(mcpair);
    389 	while (mcpair->flag == 0) {
    390 		RF_WAIT_MCPAIR(mcpair);
    391 	}
    392 	RF_UNLOCK_MCPAIR(mcpair);
    393 
    394 	if (rd_dag_h->status != rf_enable) {
    395 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
    396 		ret = RF_PARITY_COULD_NOT_VERIFY;
    397 		goto done;
    398 	}
    399 	/*
    400          * buf1 is the beginning of the data blocks chunk
    401          * buf2 is the beginning of the parity blocks chunk
    402          */
    403 	buf1 = bf;
    404 	buf2 = bf + (nbytes * layoutPtr->numDataCol);
    405 	ret = RF_PARITY_OKAY;
    406 	/*
    407          * bbufs is "bad bufs"- an array whose entries are the data
    408          * column numbers where we had miscompares. (That is, column 0
    409          * and column 1 of the array are mirror copies, and are considered
    410          * "data column 0" for this purpose).
    411          */
    412 	bbufs = RF_MallocAndAdd(layoutPtr->numParityCol * sizeof(*bbufs),
    413 	    allocList);
    414 	nbad = 0;
    415 	/*
    416          * Check data vs "parity" (mirror copy).
    417          */
    418 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    419 #if RF_DEBUG_VERIFYPARITY
    420 		if (rf_verifyParityDebug) {
    421 			printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
    422 			       raidPtr->raidid, nbytes, i, (long) buf1,
    423 			       (long) buf2, (long) bf);
    424 		}
    425 #endif
    426 		ret = memcmp(buf1, buf2, nbytes);
    427 		if (ret) {
    428 #if RF_DEBUG_VERIFYPARITY
    429 			if (rf_verifyParityDebug > 1) {
    430 				for (j = 0; j < nbytes; j++) {
    431 					if (buf1[j] != buf2[j])
    432 						break;
    433 				}
    434 				printf("psid=%ld j=%d\n", (long) psID, j);
    435 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
    436 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
    437 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
    438 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
    439 			}
    440 			if (rf_verifyParityDebug) {
    441 				printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
    442 			}
    443 #endif
    444 			/*
    445 		         * Parity is bad. Keep track of which columns were bad.
    446 		         */
    447 			if (bbufs)
    448 				bbufs[nbad] = i;
    449 			nbad++;
    450 			ret = RF_PARITY_BAD;
    451 		}
    452 		buf1 += nbytes;
    453 		buf2 += nbytes;
    454 	}
    455 
    456 	if ((ret != RF_PARITY_OKAY) && correct_it) {
    457 		ret = RF_PARITY_COULD_NOT_CORRECT;
    458 #if RF_DEBUG_VERIFYPARITY
    459 		if (rf_verifyParityDebug) {
    460 			printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
    461 		}
    462 #endif
    463 		if (bbufs == NULL)
    464 			goto done;
    465 		/*
    466 	         * Make a DAG with one write node for each bad unit. We'll simply
    467 	         * write the contents of the data unit onto the parity unit for
    468 	         * correction. (It's possible that the mirror copy was the correct
    469 	         * copy, and that we're spooging good data by writing bad over it,
    470 	         * but there's no way we can know that.
    471 	         */
    472 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, bf,
    473 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
    474 		    RF_IO_NORMAL_PRIORITY);
    475 		if (wr_dag_h == NULL)
    476 			goto done;
    477 		wrBlock = wr_dag_h->succedents[0];
    478 		/*
    479 	         * Fill in a write node for each bad compare.
    480 	         */
    481 		for (i = 0; i < nbad; i++) {
    482 			j = i + layoutPtr->numDataCol;
    483 			pda = blockNode->succedents[j]->params[0].p;
    484 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
    485 			wrBlock->succedents[i]->params[0].p = pda;
    486 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
    487 			wrBlock->succedents[i]->params[2].v = psID;
    488 			wrBlock->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    489 		}
    490 #if RF_ACC_TRACE > 0
    491 		memset(&tracerec, 0, sizeof(tracerec));
    492 		wr_dag_h->tracerec = &tracerec;
    493 #endif
    494 #if 0
    495 		if (rf_verifyParityDebug > 1) {
    496 			printf("Parity verify write dag:\n");
    497 			rf_PrintDAGList(wr_dag_h);
    498 		}
    499 #endif
    500 		RF_LOCK_MCPAIR(mcpair);
    501 		mcpair->flag = 0;
    502 		RF_UNLOCK_MCPAIR(mcpair);
    503 
    504 		/* fire off the write DAG */
    505 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    506 		    (void *) mcpair);
    507 
    508 		RF_LOCK_MCPAIR(mcpair);
    509 		while (!mcpair->flag) {
    510 			RF_WAIT_MCPAIR(mcpair);
    511 		}
    512 		RF_UNLOCK_MCPAIR(mcpair);
    513 		if (wr_dag_h->status != rf_enable) {
    514 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
    515 			goto done;
    516 		}
    517 		ret = RF_PARITY_CORRECTED;
    518 	}
    519 done:
    520 	/*
    521          * All done. We might've gotten here without doing part of the function,
    522          * so cleanup what we have to and return our running status.
    523          */
    524 	if (asm_h)
    525 		rf_FreeAccessStripeMap(asm_h);
    526 	if (rd_dag_h)
    527 		rf_FreeDAG(rd_dag_h);
    528 	if (wr_dag_h)
    529 		rf_FreeDAG(wr_dag_h);
    530 	if (mcpair)
    531 		rf_FreeMCPair(mcpair);
    532 	rf_FreeAllocList(allocList);
    533 #if RF_DEBUG_VERIFYPARITY
    534 	if (rf_verifyParityDebug) {
    535 		printf("raid%d: RAID1 parity verify, returning %d\n",
    536 		       raidPtr->raidid, ret);
    537 	}
    538 #endif
    539 	return (ret);
    540 }
    541 
    542 /* rbuf          - the recon buffer to submit
    543  * keep_it       - whether we can keep this buffer or we have to return it
    544  * use_committed - whether to use a committed or an available recon buffer
    545  */
    546 
    547 int
    548 rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
    549 			  int use_committed)
    550 {
    551 	RF_ReconParityStripeStatus_t *pssPtr;
    552 	RF_ReconCtrl_t *reconCtrlPtr;
    553 	int     retcode;
    554 	RF_CallbackValueDesc_t *cb, *p;
    555 	RF_ReconBuffer_t *t;
    556 	RF_Raid_t *raidPtr;
    557 	void *ta;
    558 
    559 	retcode = 0;
    560 
    561 	raidPtr = rbuf->raidPtr;
    562 	reconCtrlPtr = raidPtr->reconControl;
    563 
    564 	RF_ASSERT(rbuf);
    565 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
    566 
    567 #if RF_DEBUG_RECON
    568 	if (rf_reconbufferDebug) {
    569 		printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
    570 		       raidPtr->raidid, rbuf->col,
    571 		       (long) rbuf->parityStripeID, rbuf->which_ru,
    572 		       (long) rbuf->failedDiskSectorOffset);
    573 	}
    574 #endif
    575 	if (rf_reconDebug) {
    576 		unsigned char *b = rbuf->buffer;
    577 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
    578 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
    579 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
    580 		    (long)rbuf->parityStripeID, b[0], b[1], b[2], b[3], b[4]);
    581 	}
    582 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
    583 
    584 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
    585 	while(reconCtrlPtr->rb_lock) {
    586 		rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
    587 	}
    588 	reconCtrlPtr->rb_lock = 1;
    589 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
    590 
    591 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
    592 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL);
    593 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
    594 				 * an rbuf for it */
    595 
    596 	/*
    597          * Since this is simple mirroring, the first submission for a stripe is also
    598          * treated as the last.
    599          */
    600 
    601 	t = NULL;
    602 	if (keep_it) {
    603 #if RF_DEBUG_RECON
    604 		if (rf_reconbufferDebug) {
    605 			printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
    606 			       raidPtr->raidid);
    607 		}
    608 #endif
    609 		t = rbuf;
    610 	} else {
    611 		if (use_committed) {
    612 #if RF_DEBUG_RECON
    613 			if (rf_reconbufferDebug) {
    614 				printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
    615 			}
    616 #endif
    617 			t = reconCtrlPtr->committedRbufs;
    618 			RF_ASSERT(t);
    619 			reconCtrlPtr->committedRbufs = t->next;
    620 			t->next = NULL;
    621 		} else
    622 			if (reconCtrlPtr->floatingRbufs) {
    623 #if RF_DEBUG_RECON
    624 				if (rf_reconbufferDebug) {
    625 					printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
    626 				}
    627 #endif
    628 				t = reconCtrlPtr->floatingRbufs;
    629 				reconCtrlPtr->floatingRbufs = t->next;
    630 				t->next = NULL;
    631 			}
    632 	}
    633 	if (t == NULL) {
    634 #if RF_DEBUG_RECON
    635 		if (rf_reconbufferDebug) {
    636 			printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
    637 		}
    638 #endif
    639 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
    640 		raidPtr->procsInBufWait++;
    641 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
    642 		    && (raidPtr->numFullReconBuffers == 0)) {
    643 			/* ruh-ro */
    644 			RF_ERRORMSG("Buffer wait deadlock\n");
    645 			rf_PrintPSStatusTable(raidPtr);
    646 			RF_PANIC();
    647 		}
    648 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
    649 		cb = rf_AllocCallbackValueDesc();
    650 		cb->col = rbuf->col;
    651 		cb->v = rbuf->parityStripeID;
    652 		cb->next = NULL;
    653 		if (reconCtrlPtr->bufferWaitList == NULL) {
    654 			/* we are the wait list- lucky us */
    655 			reconCtrlPtr->bufferWaitList = cb;
    656 		} else {
    657 			/* append to wait list */
    658 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
    659 			p->next = cb;
    660 		}
    661 		retcode = 1;
    662 		goto out;
    663 	}
    664 	if (t != rbuf) {
    665 		t->col = reconCtrlPtr->fcol;
    666 		t->parityStripeID = rbuf->parityStripeID;
    667 		t->which_ru = rbuf->which_ru;
    668 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
    669 		t->spCol = rbuf->spCol;
    670 		t->spOffset = rbuf->spOffset;
    671 		/* Swap buffers. DANCE! */
    672 		ta = t->buffer;
    673 		t->buffer = rbuf->buffer;
    674 		rbuf->buffer = ta;
    675 	}
    676 	/*
    677          * Use the rbuf we've been given as the target.
    678          */
    679 	RF_ASSERT(pssPtr->rbuf == NULL);
    680 	pssPtr->rbuf = t;
    681 
    682 	t->count = 1;
    683 	/*
    684          * Below, we use 1 for numDataCol (which is equal to the count in the
    685          * previous line), so we'll always be done.
    686          */
    687 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
    688 
    689 out:
    690 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
    691 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
    692 	reconCtrlPtr->rb_lock = 0;
    693 	rf_broadcast_cond2(reconCtrlPtr->rb_cv);
    694 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
    695 #if RF_DEBUG_RECON
    696 	if (rf_reconbufferDebug) {
    697 		printf("raid%d: RAID1 rbuf submission: returning %d\n",
    698 		       raidPtr->raidid, retcode);
    699 	}
    700 #endif
    701 	return (retcode);
    702 }
    703 
    704 RF_HeadSepLimit_t
    705 rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t *raidPtr)
    706 {
    707 	return (10);
    708 }
    709 
    710