rf_raid1.c revision 1.4 1 /* $NetBSD: rf_raid1.c,v 1.4 1999/08/13 03:41:57 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_raid1.c -- implements RAID Level 1
32 *
33 *****************************************************************************/
34
35 #include "rf_raid.h"
36 #include "rf_raid1.h"
37 #include "rf_dag.h"
38 #include "rf_dagffrd.h"
39 #include "rf_dagffwr.h"
40 #include "rf_dagdegrd.h"
41 #include "rf_dagutils.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_threadid.h"
44 #include "rf_diskqueue.h"
45 #include "rf_general.h"
46 #include "rf_utils.h"
47 #include "rf_parityscan.h"
48 #include "rf_mcpair.h"
49 #include "rf_layout.h"
50 #include "rf_map.h"
51 #include "rf_engine.h"
52 #include "rf_reconbuffer.h"
53
54 typedef struct RF_Raid1ConfigInfo_s {
55 RF_RowCol_t **stripeIdentifier;
56 } RF_Raid1ConfigInfo_t;
57 /* start of day code specific to RAID level 1 */
58 int
59 rf_ConfigureRAID1(
60 RF_ShutdownList_t ** listp,
61 RF_Raid_t * raidPtr,
62 RF_Config_t * cfgPtr)
63 {
64 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
65 RF_Raid1ConfigInfo_t *info;
66 RF_RowCol_t i;
67
68 /* create a RAID level 1 configuration structure */
69 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
70 if (info == NULL)
71 return (ENOMEM);
72 layoutPtr->layoutSpecificInfo = (void *) info;
73
74 /* ... and fill it in. */
75 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
76 if (info->stripeIdentifier == NULL)
77 return (ENOMEM);
78 for (i = 0; i < (raidPtr->numCol / 2); i++) {
79 info->stripeIdentifier[i][0] = (2 * i);
80 info->stripeIdentifier[i][1] = (2 * i) + 1;
81 }
82
83 RF_ASSERT(raidPtr->numRow == 1);
84
85 /* this implementation of RAID level 1 uses one row of numCol disks
86 * and allows multiple (numCol / 2) stripes per row. A stripe
87 * consists of a single data unit and a single parity (mirror) unit.
88 * stripe id = raidAddr / stripeUnitSize */
89 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
90 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
91 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
92 layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
93 layoutPtr->numDataCol = 1;
94 layoutPtr->numParityCol = 1;
95 return (0);
96 }
97
98
99 /* returns the physical disk location of the primary copy in the mirror pair */
100 void
101 rf_MapSectorRAID1(
102 RF_Raid_t * raidPtr,
103 RF_RaidAddr_t raidSector,
104 RF_RowCol_t * row,
105 RF_RowCol_t * col,
106 RF_SectorNum_t * diskSector,
107 int remap)
108 {
109 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
110 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
111
112 *row = 0;
113 *col = 2 * mirrorPair;
114 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
115 }
116
117
118 /* Map Parity
119 *
120 * returns the physical disk location of the secondary copy in the mirror
121 * pair
122 */
123 void
124 rf_MapParityRAID1(
125 RF_Raid_t * raidPtr,
126 RF_RaidAddr_t raidSector,
127 RF_RowCol_t * row,
128 RF_RowCol_t * col,
129 RF_SectorNum_t * diskSector,
130 int remap)
131 {
132 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
133 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
134
135 *row = 0;
136 *col = (2 * mirrorPair) + 1;
137
138 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
139 }
140
141
142 /* IdentifyStripeRAID1
143 *
144 * returns a list of disks for a given redundancy group
145 */
146 void
147 rf_IdentifyStripeRAID1(
148 RF_Raid_t * raidPtr,
149 RF_RaidAddr_t addr,
150 RF_RowCol_t ** diskids,
151 RF_RowCol_t * outRow)
152 {
153 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
154 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
155 RF_ASSERT(stripeID >= 0);
156 RF_ASSERT(addr >= 0);
157 *outRow = 0;
158 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
159 RF_ASSERT(*diskids);
160 }
161
162
163 /* MapSIDToPSIDRAID1
164 *
165 * maps a logical stripe to a stripe in the redundant array
166 */
167 void
168 rf_MapSIDToPSIDRAID1(
169 RF_RaidLayout_t * layoutPtr,
170 RF_StripeNum_t stripeID,
171 RF_StripeNum_t * psID,
172 RF_ReconUnitNum_t * which_ru)
173 {
174 *which_ru = 0;
175 *psID = stripeID;
176 }
177
178
179
180 /******************************************************************************
181 * select a graph to perform a single-stripe access
182 *
183 * Parameters: raidPtr - description of the physical array
184 * type - type of operation (read or write) requested
185 * asmap - logical & physical addresses for this access
186 * createFunc - name of function to use to create the graph
187 *****************************************************************************/
188
189 void
190 rf_RAID1DagSelect(
191 RF_Raid_t * raidPtr,
192 RF_IoType_t type,
193 RF_AccessStripeMap_t * asmap,
194 RF_VoidFuncPtr * createFunc)
195 {
196 RF_RowCol_t frow, fcol, or, oc;
197 RF_PhysDiskAddr_t *failedPDA;
198 int prior_recon, tid;
199 RF_RowStatus_t rstat;
200 RF_SectorNum_t oo;
201
202
203 RF_ASSERT(RF_IO_IS_R_OR_W(type));
204
205 if (asmap->numDataFailed + asmap->numParityFailed > 1) {
206 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
207 *createFunc = NULL;
208 return;
209 }
210 if (asmap->numDataFailed + asmap->numParityFailed) {
211 /*
212 * We've got a fault. Re-map to spare space, iff applicable.
213 * Shouldn't the arch-independent code do this for us?
214 * Anyway, it turns out if we don't do this here, then when
215 * we're reconstructing, writes go only to the surviving
216 * original disk, and aren't reflected on the reconstructed
217 * spare. Oops. --jimz
218 */
219 failedPDA = asmap->failedPDAs[0];
220 frow = failedPDA->row;
221 fcol = failedPDA->col;
222 rstat = raidPtr->status[frow];
223 prior_recon = (rstat == rf_rs_reconfigured) || (
224 (rstat == rf_rs_reconstructing) ?
225 rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
226 );
227 if (prior_recon) {
228 or = frow;
229 oc = fcol;
230 oo = failedPDA->startSector;
231 /*
232 * If we did distributed sparing, we'd monkey with that here.
233 * But we don't, so we'll
234 */
235 failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
236 failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
237 /*
238 * Redirect other components, iff necessary. This looks
239 * pretty suspicious to me, but it's what the raid5
240 * DAG select does.
241 */
242 if (asmap->parityInfo->next) {
243 if (failedPDA == asmap->parityInfo) {
244 failedPDA->next->row = failedPDA->row;
245 failedPDA->next->col = failedPDA->col;
246 } else {
247 if (failedPDA == asmap->parityInfo->next) {
248 asmap->parityInfo->row = failedPDA->row;
249 asmap->parityInfo->col = failedPDA->col;
250 }
251 }
252 }
253 if (rf_dagDebug || rf_mapDebug) {
254 rf_get_threadid(tid);
255 printf("[%d] Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
256 tid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col,
257 (long) failedPDA->startSector);
258 }
259 asmap->numDataFailed = asmap->numParityFailed = 0;
260 }
261 }
262 if (type == RF_IO_TYPE_READ) {
263 if (asmap->numDataFailed == 0)
264 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
265 else
266 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
267 } else {
268 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
269 }
270 }
271
272 int
273 rf_VerifyParityRAID1(
274 RF_Raid_t * raidPtr,
275 RF_RaidAddr_t raidAddr,
276 RF_PhysDiskAddr_t * parityPDA,
277 int correct_it,
278 RF_RaidAccessFlags_t flags)
279 {
280 int nbytes, bcount, stripeWidth, ret, i, j, tid = 0, nbad, *bbufs;
281 RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
282 RF_DagHeader_t *rd_dag_h, *wr_dag_h;
283 RF_AccessStripeMapHeader_t *asm_h;
284 RF_AllocListElem_t *allocList;
285 RF_AccTraceEntry_t tracerec;
286 RF_ReconUnitNum_t which_ru;
287 RF_RaidLayout_t *layoutPtr;
288 RF_AccessStripeMap_t *aasm;
289 RF_SectorCount_t nsector;
290 RF_RaidAddr_t startAddr;
291 char *buf, *buf1, *buf2;
292 RF_PhysDiskAddr_t *pda;
293 RF_StripeNum_t psID;
294 RF_MCPair_t *mcpair;
295
296 if (rf_verifyParityDebug) {
297 rf_get_threadid(tid);
298 }
299 layoutPtr = &raidPtr->Layout;
300 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
301 nsector = parityPDA->numSector;
302 nbytes = rf_RaidAddressToByte(raidPtr, nsector);
303 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
304
305 asm_h = NULL;
306 rd_dag_h = wr_dag_h = NULL;
307 mcpair = NULL;
308
309 ret = RF_PARITY_COULD_NOT_VERIFY;
310
311 rf_MakeAllocList(allocList);
312 if (allocList == NULL)
313 return (RF_PARITY_COULD_NOT_VERIFY);
314 mcpair = rf_AllocMCPair();
315 if (mcpair == NULL)
316 goto done;
317 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
318 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
319 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
320 RF_MallocAndAdd(buf, bcount, (char *), allocList);
321 if (buf == NULL)
322 goto done;
323 if (rf_verifyParityDebug) {
324 printf("[%d] RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
325 tid, (long) buf, bcount, (long) buf, (long) buf + bcount);
326 }
327 /*
328 * Generate a DAG which will read the entire stripe- then we can
329 * just compare data chunks versus "parity" chunks.
330 */
331
332 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
333 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
334 RF_IO_NORMAL_PRIORITY);
335 if (rd_dag_h == NULL)
336 goto done;
337 blockNode = rd_dag_h->succedents[0];
338 unblockNode = blockNode->succedents[0]->succedents[0];
339
340 /*
341 * Map the access to physical disk addresses (PDAs)- this will
342 * get us both a list of data addresses, and "parity" addresses
343 * (which are really mirror copies).
344 */
345 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
346 buf, RF_DONT_REMAP);
347 aasm = asm_h->stripeMap;
348
349 buf1 = buf;
350 /*
351 * Loop through the data blocks, setting up read nodes for each.
352 */
353 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
354 RF_ASSERT(pda);
355
356 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
357
358 RF_ASSERT(pda->numSector != 0);
359 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
360 /* cannot verify parity with dead disk */
361 goto done;
362 }
363 pda->bufPtr = buf1;
364 blockNode->succedents[i]->params[0].p = pda;
365 blockNode->succedents[i]->params[1].p = buf1;
366 blockNode->succedents[i]->params[2].v = psID;
367 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
368 buf1 += nbytes;
369 }
370 RF_ASSERT(pda == NULL);
371 /*
372 * keep i, buf1 running
373 *
374 * Loop through parity blocks, setting up read nodes for each.
375 */
376 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
377 RF_ASSERT(pda);
378 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
379 RF_ASSERT(pda->numSector != 0);
380 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
381 /* cannot verify parity with dead disk */
382 goto done;
383 }
384 pda->bufPtr = buf1;
385 blockNode->succedents[i]->params[0].p = pda;
386 blockNode->succedents[i]->params[1].p = buf1;
387 blockNode->succedents[i]->params[2].v = psID;
388 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
389 buf1 += nbytes;
390 }
391 RF_ASSERT(pda == NULL);
392
393 bzero((char *) &tracerec, sizeof(tracerec));
394 rd_dag_h->tracerec = &tracerec;
395
396 if (rf_verifyParityDebug > 1) {
397 printf("[%d] RAID1 parity verify read dag:\n", tid);
398 rf_PrintDAGList(rd_dag_h);
399 }
400 RF_LOCK_MUTEX(mcpair->mutex);
401 mcpair->flag = 0;
402 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
403 (void *) mcpair);
404 while (mcpair->flag == 0) {
405 RF_WAIT_MCPAIR(mcpair);
406 }
407 RF_UNLOCK_MUTEX(mcpair->mutex);
408
409 if (rd_dag_h->status != rf_enable) {
410 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
411 ret = RF_PARITY_COULD_NOT_VERIFY;
412 goto done;
413 }
414 /*
415 * buf1 is the beginning of the data blocks chunk
416 * buf2 is the beginning of the parity blocks chunk
417 */
418 buf1 = buf;
419 buf2 = buf + (nbytes * layoutPtr->numDataCol);
420 ret = RF_PARITY_OKAY;
421 /*
422 * bbufs is "bad bufs"- an array whose entries are the data
423 * column numbers where we had miscompares. (That is, column 0
424 * and column 1 of the array are mirror copies, and are considered
425 * "data column 0" for this purpose).
426 */
427 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
428 allocList);
429 nbad = 0;
430 /*
431 * Check data vs "parity" (mirror copy).
432 */
433 for (i = 0; i < layoutPtr->numDataCol; i++) {
434 if (rf_verifyParityDebug) {
435 printf("[%d] RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
436 tid, nbytes, i, (long) buf1, (long) buf2, (long) buf);
437 }
438 ret = bcmp(buf1, buf2, nbytes);
439 if (ret) {
440 if (rf_verifyParityDebug > 1) {
441 for (j = 0; j < nbytes; j++) {
442 if (buf1[j] != buf2[j])
443 break;
444 }
445 printf("psid=%ld j=%d\n", (long) psID, j);
446 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
447 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
448 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
449 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
450 }
451 if (rf_verifyParityDebug) {
452 printf("[%d] RAID1: found bad parity, i=%d\n", tid, i);
453 }
454 /*
455 * Parity is bad. Keep track of which columns were bad.
456 */
457 if (bbufs)
458 bbufs[nbad] = i;
459 nbad++;
460 ret = RF_PARITY_BAD;
461 }
462 buf1 += nbytes;
463 buf2 += nbytes;
464 }
465
466 if ((ret != RF_PARITY_OKAY) && correct_it) {
467 ret = RF_PARITY_COULD_NOT_CORRECT;
468 if (rf_verifyParityDebug) {
469 printf("[%d] RAID1 parity verify: parity not correct\n", tid);
470 }
471 if (bbufs == NULL)
472 goto done;
473 /*
474 * Make a DAG with one write node for each bad unit. We'll simply
475 * write the contents of the data unit onto the parity unit for
476 * correction. (It's possible that the mirror copy was the correct
477 * copy, and that we're spooging good data by writing bad over it,
478 * but there's no way we can know that.
479 */
480 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
481 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
482 RF_IO_NORMAL_PRIORITY);
483 if (wr_dag_h == NULL)
484 goto done;
485 wrBlock = wr_dag_h->succedents[0];
486 /*
487 * Fill in a write node for each bad compare.
488 */
489 for (i = 0; i < nbad; i++) {
490 j = i + layoutPtr->numDataCol;
491 pda = blockNode->succedents[j]->params[0].p;
492 pda->bufPtr = blockNode->succedents[i]->params[1].p;
493 wrBlock->succedents[i]->params[0].p = pda;
494 wrBlock->succedents[i]->params[1].p = pda->bufPtr;
495 wrBlock->succedents[i]->params[2].v = psID;
496 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
497 }
498 bzero((char *) &tracerec, sizeof(tracerec));
499 wr_dag_h->tracerec = &tracerec;
500 if (rf_verifyParityDebug > 1) {
501 printf("Parity verify write dag:\n");
502 rf_PrintDAGList(wr_dag_h);
503 }
504 RF_LOCK_MUTEX(mcpair->mutex);
505 mcpair->flag = 0;
506 /* fire off the write DAG */
507 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
508 (void *) mcpair);
509 while (!mcpair->flag) {
510 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
511 }
512 RF_UNLOCK_MUTEX(mcpair->mutex);
513 if (wr_dag_h->status != rf_enable) {
514 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
515 goto done;
516 }
517 ret = RF_PARITY_CORRECTED;
518 }
519 done:
520 /*
521 * All done. We might've gotten here without doing part of the function,
522 * so cleanup what we have to and return our running status.
523 */
524 if (asm_h)
525 rf_FreeAccessStripeMap(asm_h);
526 if (rd_dag_h)
527 rf_FreeDAG(rd_dag_h);
528 if (wr_dag_h)
529 rf_FreeDAG(wr_dag_h);
530 if (mcpair)
531 rf_FreeMCPair(mcpair);
532 rf_FreeAllocList(allocList);
533 if (rf_verifyParityDebug) {
534 printf("[%d] RAID1 parity verify, returning %d\n", tid, ret);
535 }
536 return (ret);
537 }
538
539 int
540 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
541 RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
542 int keep_it; /* whether we can keep this buffer or we have
543 * to return it */
544 int use_committed; /* whether to use a committed or an available
545 * recon buffer */
546 {
547 RF_ReconParityStripeStatus_t *pssPtr;
548 RF_ReconCtrl_t *reconCtrlPtr;
549 RF_RaidLayout_t *layoutPtr;
550 int tid = 0, retcode, created;
551 RF_CallbackDesc_t *cb, *p;
552 RF_ReconBuffer_t *t;
553 RF_Raid_t *raidPtr;
554 caddr_t ta;
555
556 retcode = 0;
557 created = 0;
558
559 raidPtr = rbuf->raidPtr;
560 layoutPtr = &raidPtr->Layout;
561 reconCtrlPtr = raidPtr->reconControl[rbuf->row];
562
563 RF_ASSERT(rbuf);
564 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
565
566 if (rf_reconbufferDebug) {
567 rf_get_threadid(tid);
568 printf("[%d] RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
569 tid, rbuf->row, rbuf->col, (long) rbuf->parityStripeID, rbuf->which_ru,
570 (long) rbuf->failedDiskSectorOffset);
571 }
572 if (rf_reconDebug) {
573 printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
574 (long) rbuf->parityStripeID, (long) rbuf->buffer);
575 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
576 (long) rbuf->parityStripeID,
577 rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
578 rbuf->buffer[4]);
579 }
580 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
581
582 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
583
584 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
585 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
586 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
587 * an rbuf for it */
588
589 /*
590 * Since this is simple mirroring, the first submission for a stripe is also
591 * treated as the last.
592 */
593
594 t = NULL;
595 if (keep_it) {
596 if (rf_reconbufferDebug) {
597 printf("[%d] RAID1 rbuf submission: keeping rbuf\n", tid);
598 }
599 t = rbuf;
600 } else {
601 if (use_committed) {
602 if (rf_reconbufferDebug) {
603 printf("[%d] RAID1 rbuf submission: using committed rbuf\n", tid);
604 }
605 t = reconCtrlPtr->committedRbufs;
606 RF_ASSERT(t);
607 reconCtrlPtr->committedRbufs = t->next;
608 t->next = NULL;
609 } else
610 if (reconCtrlPtr->floatingRbufs) {
611 if (rf_reconbufferDebug) {
612 printf("[%d] RAID1 rbuf submission: using floating rbuf\n", tid);
613 }
614 t = reconCtrlPtr->floatingRbufs;
615 reconCtrlPtr->floatingRbufs = t->next;
616 t->next = NULL;
617 }
618 }
619 if (t == NULL) {
620 if (rf_reconbufferDebug) {
621 printf("[%d] RAID1 rbuf submission: waiting for rbuf\n", tid);
622 }
623 RF_ASSERT((keep_it == 0) && (use_committed == 0));
624 raidPtr->procsInBufWait++;
625 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
626 && (raidPtr->numFullReconBuffers == 0)) {
627 /* ruh-ro */
628 RF_ERRORMSG("Buffer wait deadlock\n");
629 rf_PrintPSStatusTable(raidPtr, rbuf->row);
630 RF_PANIC();
631 }
632 pssPtr->flags |= RF_PSS_BUFFERWAIT;
633 cb = rf_AllocCallbackDesc();
634 cb->row = rbuf->row;
635 cb->col = rbuf->col;
636 cb->callbackArg.v = rbuf->parityStripeID;
637 cb->callbackArg2.v = rbuf->which_ru;
638 cb->next = NULL;
639 if (reconCtrlPtr->bufferWaitList == NULL) {
640 /* we are the wait list- lucky us */
641 reconCtrlPtr->bufferWaitList = cb;
642 } else {
643 /* append to wait list */
644 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
645 p->next = cb;
646 }
647 retcode = 1;
648 goto out;
649 }
650 if (t != rbuf) {
651 t->row = rbuf->row;
652 t->col = reconCtrlPtr->fcol;
653 t->parityStripeID = rbuf->parityStripeID;
654 t->which_ru = rbuf->which_ru;
655 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
656 t->spRow = rbuf->spRow;
657 t->spCol = rbuf->spCol;
658 t->spOffset = rbuf->spOffset;
659 /* Swap buffers. DANCE! */
660 ta = t->buffer;
661 t->buffer = rbuf->buffer;
662 rbuf->buffer = ta;
663 }
664 /*
665 * Use the rbuf we've been given as the target.
666 */
667 RF_ASSERT(pssPtr->rbuf == NULL);
668 pssPtr->rbuf = t;
669
670 t->count = 1;
671 /*
672 * Below, we use 1 for numDataCol (which is equal to the count in the
673 * previous line), so we'll always be done.
674 */
675 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
676
677 out:
678 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
679 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
680 if (rf_reconbufferDebug) {
681 printf("[%d] RAID1 rbuf submission: returning %d\n", tid, retcode);
682 }
683 return (retcode);
684 }
685