Home | History | Annotate | Line # | Download | only in raidframe
rf_raid1.c revision 1.4
      1 /*	$NetBSD: rf_raid1.c,v 1.4 1999/08/13 03:41:57 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_raid1.c -- implements RAID Level 1
     32  *
     33  *****************************************************************************/
     34 
     35 #include "rf_raid.h"
     36 #include "rf_raid1.h"
     37 #include "rf_dag.h"
     38 #include "rf_dagffrd.h"
     39 #include "rf_dagffwr.h"
     40 #include "rf_dagdegrd.h"
     41 #include "rf_dagutils.h"
     42 #include "rf_dagfuncs.h"
     43 #include "rf_threadid.h"
     44 #include "rf_diskqueue.h"
     45 #include "rf_general.h"
     46 #include "rf_utils.h"
     47 #include "rf_parityscan.h"
     48 #include "rf_mcpair.h"
     49 #include "rf_layout.h"
     50 #include "rf_map.h"
     51 #include "rf_engine.h"
     52 #include "rf_reconbuffer.h"
     53 
     54 typedef struct RF_Raid1ConfigInfo_s {
     55 	RF_RowCol_t **stripeIdentifier;
     56 }       RF_Raid1ConfigInfo_t;
     57 /* start of day code specific to RAID level 1 */
     58 int
     59 rf_ConfigureRAID1(
     60     RF_ShutdownList_t ** listp,
     61     RF_Raid_t * raidPtr,
     62     RF_Config_t * cfgPtr)
     63 {
     64 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     65 	RF_Raid1ConfigInfo_t *info;
     66 	RF_RowCol_t i;
     67 
     68 	/* create a RAID level 1 configuration structure */
     69 	RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
     70 	if (info == NULL)
     71 		return (ENOMEM);
     72 	layoutPtr->layoutSpecificInfo = (void *) info;
     73 
     74 	/* ... and fill it in. */
     75 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
     76 	if (info->stripeIdentifier == NULL)
     77 		return (ENOMEM);
     78 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
     79 		info->stripeIdentifier[i][0] = (2 * i);
     80 		info->stripeIdentifier[i][1] = (2 * i) + 1;
     81 	}
     82 
     83 	RF_ASSERT(raidPtr->numRow == 1);
     84 
     85 	/* this implementation of RAID level 1 uses one row of numCol disks
     86 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
     87 	 * consists of a single data unit and a single parity (mirror) unit.
     88 	 * stripe id = raidAddr / stripeUnitSize */
     89 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
     90 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
     91 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
     92 	layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
     93 	layoutPtr->numDataCol = 1;
     94 	layoutPtr->numParityCol = 1;
     95 	return (0);
     96 }
     97 
     98 
     99 /* returns the physical disk location of the primary copy in the mirror pair */
    100 void
    101 rf_MapSectorRAID1(
    102     RF_Raid_t * raidPtr,
    103     RF_RaidAddr_t raidSector,
    104     RF_RowCol_t * row,
    105     RF_RowCol_t * col,
    106     RF_SectorNum_t * diskSector,
    107     int remap)
    108 {
    109 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    110 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    111 
    112 	*row = 0;
    113 	*col = 2 * mirrorPair;
    114 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    115 }
    116 
    117 
    118 /* Map Parity
    119  *
    120  * returns the physical disk location of the secondary copy in the mirror
    121  * pair
    122  */
    123 void
    124 rf_MapParityRAID1(
    125     RF_Raid_t * raidPtr,
    126     RF_RaidAddr_t raidSector,
    127     RF_RowCol_t * row,
    128     RF_RowCol_t * col,
    129     RF_SectorNum_t * diskSector,
    130     int remap)
    131 {
    132 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    133 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    134 
    135 	*row = 0;
    136 	*col = (2 * mirrorPair) + 1;
    137 
    138 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    139 }
    140 
    141 
    142 /* IdentifyStripeRAID1
    143  *
    144  * returns a list of disks for a given redundancy group
    145  */
    146 void
    147 rf_IdentifyStripeRAID1(
    148     RF_Raid_t * raidPtr,
    149     RF_RaidAddr_t addr,
    150     RF_RowCol_t ** diskids,
    151     RF_RowCol_t * outRow)
    152 {
    153 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
    154 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
    155 	RF_ASSERT(stripeID >= 0);
    156 	RF_ASSERT(addr >= 0);
    157 	*outRow = 0;
    158 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
    159 	RF_ASSERT(*diskids);
    160 }
    161 
    162 
    163 /* MapSIDToPSIDRAID1
    164  *
    165  * maps a logical stripe to a stripe in the redundant array
    166  */
    167 void
    168 rf_MapSIDToPSIDRAID1(
    169     RF_RaidLayout_t * layoutPtr,
    170     RF_StripeNum_t stripeID,
    171     RF_StripeNum_t * psID,
    172     RF_ReconUnitNum_t * which_ru)
    173 {
    174 	*which_ru = 0;
    175 	*psID = stripeID;
    176 }
    177 
    178 
    179 
    180 /******************************************************************************
    181  * select a graph to perform a single-stripe access
    182  *
    183  * Parameters:  raidPtr    - description of the physical array
    184  *              type       - type of operation (read or write) requested
    185  *              asmap      - logical & physical addresses for this access
    186  *              createFunc - name of function to use to create the graph
    187  *****************************************************************************/
    188 
    189 void
    190 rf_RAID1DagSelect(
    191     RF_Raid_t * raidPtr,
    192     RF_IoType_t type,
    193     RF_AccessStripeMap_t * asmap,
    194     RF_VoidFuncPtr * createFunc)
    195 {
    196 	RF_RowCol_t frow, fcol, or, oc;
    197 	RF_PhysDiskAddr_t *failedPDA;
    198 	int     prior_recon, tid;
    199 	RF_RowStatus_t rstat;
    200 	RF_SectorNum_t oo;
    201 
    202 
    203 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    204 
    205 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
    206 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    207 		*createFunc = NULL;
    208 		return;
    209 	}
    210 	if (asmap->numDataFailed + asmap->numParityFailed) {
    211 		/*
    212 	         * We've got a fault. Re-map to spare space, iff applicable.
    213 	         * Shouldn't the arch-independent code do this for us?
    214 	         * Anyway, it turns out if we don't do this here, then when
    215 	         * we're reconstructing, writes go only to the surviving
    216 	         * original disk, and aren't reflected on the reconstructed
    217 	         * spare. Oops. --jimz
    218 	         */
    219 		failedPDA = asmap->failedPDAs[0];
    220 		frow = failedPDA->row;
    221 		fcol = failedPDA->col;
    222 		rstat = raidPtr->status[frow];
    223 		prior_recon = (rstat == rf_rs_reconfigured) || (
    224 		    (rstat == rf_rs_reconstructing) ?
    225 		    rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
    226 		    );
    227 		if (prior_recon) {
    228 			or = frow;
    229 			oc = fcol;
    230 			oo = failedPDA->startSector;
    231 			/*
    232 		         * If we did distributed sparing, we'd monkey with that here.
    233 		         * But we don't, so we'll
    234 		         */
    235 			failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
    236 			failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
    237 			/*
    238 		         * Redirect other components, iff necessary. This looks
    239 		         * pretty suspicious to me, but it's what the raid5
    240 		         * DAG select does.
    241 		         */
    242 			if (asmap->parityInfo->next) {
    243 				if (failedPDA == asmap->parityInfo) {
    244 					failedPDA->next->row = failedPDA->row;
    245 					failedPDA->next->col = failedPDA->col;
    246 				} else {
    247 					if (failedPDA == asmap->parityInfo->next) {
    248 						asmap->parityInfo->row = failedPDA->row;
    249 						asmap->parityInfo->col = failedPDA->col;
    250 					}
    251 				}
    252 			}
    253 			if (rf_dagDebug || rf_mapDebug) {
    254 				rf_get_threadid(tid);
    255 				printf("[%d] Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
    256 				    tid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col,
    257 				    (long) failedPDA->startSector);
    258 			}
    259 			asmap->numDataFailed = asmap->numParityFailed = 0;
    260 		}
    261 	}
    262 	if (type == RF_IO_TYPE_READ) {
    263 		if (asmap->numDataFailed == 0)
    264 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
    265 		else
    266 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
    267 	} else {
    268 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
    269 	}
    270 }
    271 
    272 int
    273 rf_VerifyParityRAID1(
    274     RF_Raid_t * raidPtr,
    275     RF_RaidAddr_t raidAddr,
    276     RF_PhysDiskAddr_t * parityPDA,
    277     int correct_it,
    278     RF_RaidAccessFlags_t flags)
    279 {
    280 	int     nbytes, bcount, stripeWidth, ret, i, j, tid = 0, nbad, *bbufs;
    281 	RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
    282 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
    283 	RF_AccessStripeMapHeader_t *asm_h;
    284 	RF_AllocListElem_t *allocList;
    285 	RF_AccTraceEntry_t tracerec;
    286 	RF_ReconUnitNum_t which_ru;
    287 	RF_RaidLayout_t *layoutPtr;
    288 	RF_AccessStripeMap_t *aasm;
    289 	RF_SectorCount_t nsector;
    290 	RF_RaidAddr_t startAddr;
    291 	char   *buf, *buf1, *buf2;
    292 	RF_PhysDiskAddr_t *pda;
    293 	RF_StripeNum_t psID;
    294 	RF_MCPair_t *mcpair;
    295 
    296 	if (rf_verifyParityDebug) {
    297 		rf_get_threadid(tid);
    298 	}
    299 	layoutPtr = &raidPtr->Layout;
    300 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    301 	nsector = parityPDA->numSector;
    302 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
    303 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
    304 
    305 	asm_h = NULL;
    306 	rd_dag_h = wr_dag_h = NULL;
    307 	mcpair = NULL;
    308 
    309 	ret = RF_PARITY_COULD_NOT_VERIFY;
    310 
    311 	rf_MakeAllocList(allocList);
    312 	if (allocList == NULL)
    313 		return (RF_PARITY_COULD_NOT_VERIFY);
    314 	mcpair = rf_AllocMCPair();
    315 	if (mcpair == NULL)
    316 		goto done;
    317 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
    318 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    319 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
    320 	RF_MallocAndAdd(buf, bcount, (char *), allocList);
    321 	if (buf == NULL)
    322 		goto done;
    323 	if (rf_verifyParityDebug) {
    324 		printf("[%d] RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
    325 		    tid, (long) buf, bcount, (long) buf, (long) buf + bcount);
    326 	}
    327 	/*
    328          * Generate a DAG which will read the entire stripe- then we can
    329          * just compare data chunks versus "parity" chunks.
    330          */
    331 
    332 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
    333 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
    334 	    RF_IO_NORMAL_PRIORITY);
    335 	if (rd_dag_h == NULL)
    336 		goto done;
    337 	blockNode = rd_dag_h->succedents[0];
    338 	unblockNode = blockNode->succedents[0]->succedents[0];
    339 
    340 	/*
    341          * Map the access to physical disk addresses (PDAs)- this will
    342          * get us both a list of data addresses, and "parity" addresses
    343          * (which are really mirror copies).
    344          */
    345 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
    346 	    buf, RF_DONT_REMAP);
    347 	aasm = asm_h->stripeMap;
    348 
    349 	buf1 = buf;
    350 	/*
    351          * Loop through the data blocks, setting up read nodes for each.
    352          */
    353 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    354 		RF_ASSERT(pda);
    355 
    356 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    357 
    358 		RF_ASSERT(pda->numSector != 0);
    359 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    360 			/* cannot verify parity with dead disk */
    361 			goto done;
    362 		}
    363 		pda->bufPtr = buf1;
    364 		blockNode->succedents[i]->params[0].p = pda;
    365 		blockNode->succedents[i]->params[1].p = buf1;
    366 		blockNode->succedents[i]->params[2].v = psID;
    367 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    368 		buf1 += nbytes;
    369 	}
    370 	RF_ASSERT(pda == NULL);
    371 	/*
    372          * keep i, buf1 running
    373          *
    374          * Loop through parity blocks, setting up read nodes for each.
    375          */
    376 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
    377 		RF_ASSERT(pda);
    378 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    379 		RF_ASSERT(pda->numSector != 0);
    380 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    381 			/* cannot verify parity with dead disk */
    382 			goto done;
    383 		}
    384 		pda->bufPtr = buf1;
    385 		blockNode->succedents[i]->params[0].p = pda;
    386 		blockNode->succedents[i]->params[1].p = buf1;
    387 		blockNode->succedents[i]->params[2].v = psID;
    388 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    389 		buf1 += nbytes;
    390 	}
    391 	RF_ASSERT(pda == NULL);
    392 
    393 	bzero((char *) &tracerec, sizeof(tracerec));
    394 	rd_dag_h->tracerec = &tracerec;
    395 
    396 	if (rf_verifyParityDebug > 1) {
    397 		printf("[%d] RAID1 parity verify read dag:\n", tid);
    398 		rf_PrintDAGList(rd_dag_h);
    399 	}
    400 	RF_LOCK_MUTEX(mcpair->mutex);
    401 	mcpair->flag = 0;
    402 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    403 	    (void *) mcpair);
    404 	while (mcpair->flag == 0) {
    405 		RF_WAIT_MCPAIR(mcpair);
    406 	}
    407 	RF_UNLOCK_MUTEX(mcpair->mutex);
    408 
    409 	if (rd_dag_h->status != rf_enable) {
    410 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
    411 		ret = RF_PARITY_COULD_NOT_VERIFY;
    412 		goto done;
    413 	}
    414 	/*
    415          * buf1 is the beginning of the data blocks chunk
    416          * buf2 is the beginning of the parity blocks chunk
    417          */
    418 	buf1 = buf;
    419 	buf2 = buf + (nbytes * layoutPtr->numDataCol);
    420 	ret = RF_PARITY_OKAY;
    421 	/*
    422          * bbufs is "bad bufs"- an array whose entries are the data
    423          * column numbers where we had miscompares. (That is, column 0
    424          * and column 1 of the array are mirror copies, and are considered
    425          * "data column 0" for this purpose).
    426          */
    427 	RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
    428 	    allocList);
    429 	nbad = 0;
    430 	/*
    431          * Check data vs "parity" (mirror copy).
    432          */
    433 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    434 		if (rf_verifyParityDebug) {
    435 			printf("[%d] RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
    436 			    tid, nbytes, i, (long) buf1, (long) buf2, (long) buf);
    437 		}
    438 		ret = bcmp(buf1, buf2, nbytes);
    439 		if (ret) {
    440 			if (rf_verifyParityDebug > 1) {
    441 				for (j = 0; j < nbytes; j++) {
    442 					if (buf1[j] != buf2[j])
    443 						break;
    444 				}
    445 				printf("psid=%ld j=%d\n", (long) psID, j);
    446 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
    447 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
    448 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
    449 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
    450 			}
    451 			if (rf_verifyParityDebug) {
    452 				printf("[%d] RAID1: found bad parity, i=%d\n", tid, i);
    453 			}
    454 			/*
    455 		         * Parity is bad. Keep track of which columns were bad.
    456 		         */
    457 			if (bbufs)
    458 				bbufs[nbad] = i;
    459 			nbad++;
    460 			ret = RF_PARITY_BAD;
    461 		}
    462 		buf1 += nbytes;
    463 		buf2 += nbytes;
    464 	}
    465 
    466 	if ((ret != RF_PARITY_OKAY) && correct_it) {
    467 		ret = RF_PARITY_COULD_NOT_CORRECT;
    468 		if (rf_verifyParityDebug) {
    469 			printf("[%d] RAID1 parity verify: parity not correct\n", tid);
    470 		}
    471 		if (bbufs == NULL)
    472 			goto done;
    473 		/*
    474 	         * Make a DAG with one write node for each bad unit. We'll simply
    475 	         * write the contents of the data unit onto the parity unit for
    476 	         * correction. (It's possible that the mirror copy was the correct
    477 	         * copy, and that we're spooging good data by writing bad over it,
    478 	         * but there's no way we can know that.
    479 	         */
    480 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
    481 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
    482 		    RF_IO_NORMAL_PRIORITY);
    483 		if (wr_dag_h == NULL)
    484 			goto done;
    485 		wrBlock = wr_dag_h->succedents[0];
    486 		/*
    487 	         * Fill in a write node for each bad compare.
    488 	         */
    489 		for (i = 0; i < nbad; i++) {
    490 			j = i + layoutPtr->numDataCol;
    491 			pda = blockNode->succedents[j]->params[0].p;
    492 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
    493 			wrBlock->succedents[i]->params[0].p = pda;
    494 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
    495 			wrBlock->succedents[i]->params[2].v = psID;
    496 			wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    497 		}
    498 		bzero((char *) &tracerec, sizeof(tracerec));
    499 		wr_dag_h->tracerec = &tracerec;
    500 		if (rf_verifyParityDebug > 1) {
    501 			printf("Parity verify write dag:\n");
    502 			rf_PrintDAGList(wr_dag_h);
    503 		}
    504 		RF_LOCK_MUTEX(mcpair->mutex);
    505 		mcpair->flag = 0;
    506 		/* fire off the write DAG */
    507 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    508 		    (void *) mcpair);
    509 		while (!mcpair->flag) {
    510 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    511 		}
    512 		RF_UNLOCK_MUTEX(mcpair->mutex);
    513 		if (wr_dag_h->status != rf_enable) {
    514 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
    515 			goto done;
    516 		}
    517 		ret = RF_PARITY_CORRECTED;
    518 	}
    519 done:
    520 	/*
    521          * All done. We might've gotten here without doing part of the function,
    522          * so cleanup what we have to and return our running status.
    523          */
    524 	if (asm_h)
    525 		rf_FreeAccessStripeMap(asm_h);
    526 	if (rd_dag_h)
    527 		rf_FreeDAG(rd_dag_h);
    528 	if (wr_dag_h)
    529 		rf_FreeDAG(wr_dag_h);
    530 	if (mcpair)
    531 		rf_FreeMCPair(mcpair);
    532 	rf_FreeAllocList(allocList);
    533 	if (rf_verifyParityDebug) {
    534 		printf("[%d] RAID1 parity verify, returning %d\n", tid, ret);
    535 	}
    536 	return (ret);
    537 }
    538 
    539 int
    540 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
    541 	RF_ReconBuffer_t *rbuf;	/* the recon buffer to submit */
    542 	int     keep_it;	/* whether we can keep this buffer or we have
    543 				 * to return it */
    544 	int     use_committed;	/* whether to use a committed or an available
    545 				 * recon buffer */
    546 {
    547 	RF_ReconParityStripeStatus_t *pssPtr;
    548 	RF_ReconCtrl_t *reconCtrlPtr;
    549 	RF_RaidLayout_t *layoutPtr;
    550 	int     tid = 0, retcode, created;
    551 	RF_CallbackDesc_t *cb, *p;
    552 	RF_ReconBuffer_t *t;
    553 	RF_Raid_t *raidPtr;
    554 	caddr_t ta;
    555 
    556 	retcode = 0;
    557 	created = 0;
    558 
    559 	raidPtr = rbuf->raidPtr;
    560 	layoutPtr = &raidPtr->Layout;
    561 	reconCtrlPtr = raidPtr->reconControl[rbuf->row];
    562 
    563 	RF_ASSERT(rbuf);
    564 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
    565 
    566 	if (rf_reconbufferDebug) {
    567 		rf_get_threadid(tid);
    568 		printf("[%d] RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
    569 		    tid, rbuf->row, rbuf->col, (long) rbuf->parityStripeID, rbuf->which_ru,
    570 		    (long) rbuf->failedDiskSectorOffset);
    571 	}
    572 	if (rf_reconDebug) {
    573 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
    574 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
    575 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
    576 		    (long) rbuf->parityStripeID,
    577 		    rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
    578 		    rbuf->buffer[4]);
    579 	}
    580 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
    581 
    582 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
    583 
    584 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
    585 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
    586 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
    587 				 * an rbuf for it */
    588 
    589 	/*
    590          * Since this is simple mirroring, the first submission for a stripe is also
    591          * treated as the last.
    592          */
    593 
    594 	t = NULL;
    595 	if (keep_it) {
    596 		if (rf_reconbufferDebug) {
    597 			printf("[%d] RAID1 rbuf submission: keeping rbuf\n", tid);
    598 		}
    599 		t = rbuf;
    600 	} else {
    601 		if (use_committed) {
    602 			if (rf_reconbufferDebug) {
    603 				printf("[%d] RAID1 rbuf submission: using committed rbuf\n", tid);
    604 			}
    605 			t = reconCtrlPtr->committedRbufs;
    606 			RF_ASSERT(t);
    607 			reconCtrlPtr->committedRbufs = t->next;
    608 			t->next = NULL;
    609 		} else
    610 			if (reconCtrlPtr->floatingRbufs) {
    611 				if (rf_reconbufferDebug) {
    612 					printf("[%d] RAID1 rbuf submission: using floating rbuf\n", tid);
    613 				}
    614 				t = reconCtrlPtr->floatingRbufs;
    615 				reconCtrlPtr->floatingRbufs = t->next;
    616 				t->next = NULL;
    617 			}
    618 	}
    619 	if (t == NULL) {
    620 		if (rf_reconbufferDebug) {
    621 			printf("[%d] RAID1 rbuf submission: waiting for rbuf\n", tid);
    622 		}
    623 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
    624 		raidPtr->procsInBufWait++;
    625 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
    626 		    && (raidPtr->numFullReconBuffers == 0)) {
    627 			/* ruh-ro */
    628 			RF_ERRORMSG("Buffer wait deadlock\n");
    629 			rf_PrintPSStatusTable(raidPtr, rbuf->row);
    630 			RF_PANIC();
    631 		}
    632 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
    633 		cb = rf_AllocCallbackDesc();
    634 		cb->row = rbuf->row;
    635 		cb->col = rbuf->col;
    636 		cb->callbackArg.v = rbuf->parityStripeID;
    637 		cb->callbackArg2.v = rbuf->which_ru;
    638 		cb->next = NULL;
    639 		if (reconCtrlPtr->bufferWaitList == NULL) {
    640 			/* we are the wait list- lucky us */
    641 			reconCtrlPtr->bufferWaitList = cb;
    642 		} else {
    643 			/* append to wait list */
    644 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
    645 			p->next = cb;
    646 		}
    647 		retcode = 1;
    648 		goto out;
    649 	}
    650 	if (t != rbuf) {
    651 		t->row = rbuf->row;
    652 		t->col = reconCtrlPtr->fcol;
    653 		t->parityStripeID = rbuf->parityStripeID;
    654 		t->which_ru = rbuf->which_ru;
    655 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
    656 		t->spRow = rbuf->spRow;
    657 		t->spCol = rbuf->spCol;
    658 		t->spOffset = rbuf->spOffset;
    659 		/* Swap buffers. DANCE! */
    660 		ta = t->buffer;
    661 		t->buffer = rbuf->buffer;
    662 		rbuf->buffer = ta;
    663 	}
    664 	/*
    665          * Use the rbuf we've been given as the target.
    666          */
    667 	RF_ASSERT(pssPtr->rbuf == NULL);
    668 	pssPtr->rbuf = t;
    669 
    670 	t->count = 1;
    671 	/*
    672          * Below, we use 1 for numDataCol (which is equal to the count in the
    673          * previous line), so we'll always be done.
    674          */
    675 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
    676 
    677 out:
    678 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
    679 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
    680 	if (rf_reconbufferDebug) {
    681 		printf("[%d] RAID1 rbuf submission: returning %d\n", tid, retcode);
    682 	}
    683 	return (retcode);
    684 }
    685