Home | History | Annotate | Line # | Download | only in raidframe
rf_raid1.c revision 1.9
      1 /*	$NetBSD: rf_raid1.c,v 1.9 2002/07/13 20:14:34 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_raid1.c -- implements RAID Level 1
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.9 2002/07/13 20:14:34 oster Exp $");
     37 
     38 #include "rf_raid.h"
     39 #include "rf_raid1.h"
     40 #include "rf_dag.h"
     41 #include "rf_dagffrd.h"
     42 #include "rf_dagffwr.h"
     43 #include "rf_dagdegrd.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_diskqueue.h"
     47 #include "rf_general.h"
     48 #include "rf_utils.h"
     49 #include "rf_parityscan.h"
     50 #include "rf_mcpair.h"
     51 #include "rf_layout.h"
     52 #include "rf_map.h"
     53 #include "rf_engine.h"
     54 #include "rf_reconbuffer.h"
     55 
     56 typedef struct RF_Raid1ConfigInfo_s {
     57 	RF_RowCol_t **stripeIdentifier;
     58 }       RF_Raid1ConfigInfo_t;
     59 /* start of day code specific to RAID level 1 */
     60 int
     61 rf_ConfigureRAID1(
     62     RF_ShutdownList_t ** listp,
     63     RF_Raid_t * raidPtr,
     64     RF_Config_t * cfgPtr)
     65 {
     66 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     67 	RF_Raid1ConfigInfo_t *info;
     68 	RF_RowCol_t i;
     69 
     70 	/* create a RAID level 1 configuration structure */
     71 	RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
     72 	if (info == NULL)
     73 		return (ENOMEM);
     74 	layoutPtr->layoutSpecificInfo = (void *) info;
     75 
     76 	/* ... and fill it in. */
     77 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
     78 	if (info->stripeIdentifier == NULL)
     79 		return (ENOMEM);
     80 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
     81 		info->stripeIdentifier[i][0] = (2 * i);
     82 		info->stripeIdentifier[i][1] = (2 * i) + 1;
     83 	}
     84 
     85 	RF_ASSERT(raidPtr->numRow == 1);
     86 
     87 	/* this implementation of RAID level 1 uses one row of numCol disks
     88 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
     89 	 * consists of a single data unit and a single parity (mirror) unit.
     90 	 * stripe id = raidAddr / stripeUnitSize */
     91 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
     92 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
     93 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
     94 	layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
     95 	layoutPtr->numDataCol = 1;
     96 	layoutPtr->numParityCol = 1;
     97 	return (0);
     98 }
     99 
    100 
    101 /* returns the physical disk location of the primary copy in the mirror pair */
    102 void
    103 rf_MapSectorRAID1(
    104     RF_Raid_t * raidPtr,
    105     RF_RaidAddr_t raidSector,
    106     RF_RowCol_t * row,
    107     RF_RowCol_t * col,
    108     RF_SectorNum_t * diskSector,
    109     int remap)
    110 {
    111 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    112 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    113 
    114 	*row = 0;
    115 	*col = 2 * mirrorPair;
    116 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    117 }
    118 
    119 
    120 /* Map Parity
    121  *
    122  * returns the physical disk location of the secondary copy in the mirror
    123  * pair
    124  */
    125 void
    126 rf_MapParityRAID1(
    127     RF_Raid_t * raidPtr,
    128     RF_RaidAddr_t raidSector,
    129     RF_RowCol_t * row,
    130     RF_RowCol_t * col,
    131     RF_SectorNum_t * diskSector,
    132     int remap)
    133 {
    134 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    135 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    136 
    137 	*row = 0;
    138 	*col = (2 * mirrorPair) + 1;
    139 
    140 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    141 }
    142 
    143 
    144 /* IdentifyStripeRAID1
    145  *
    146  * returns a list of disks for a given redundancy group
    147  */
    148 void
    149 rf_IdentifyStripeRAID1(
    150     RF_Raid_t * raidPtr,
    151     RF_RaidAddr_t addr,
    152     RF_RowCol_t ** diskids,
    153     RF_RowCol_t * outRow)
    154 {
    155 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
    156 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
    157 	RF_ASSERT(stripeID >= 0);
    158 	RF_ASSERT(addr >= 0);
    159 	*outRow = 0;
    160 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
    161 	RF_ASSERT(*diskids);
    162 }
    163 
    164 
    165 /* MapSIDToPSIDRAID1
    166  *
    167  * maps a logical stripe to a stripe in the redundant array
    168  */
    169 void
    170 rf_MapSIDToPSIDRAID1(
    171     RF_RaidLayout_t * layoutPtr,
    172     RF_StripeNum_t stripeID,
    173     RF_StripeNum_t * psID,
    174     RF_ReconUnitNum_t * which_ru)
    175 {
    176 	*which_ru = 0;
    177 	*psID = stripeID;
    178 }
    179 
    180 
    181 
    182 /******************************************************************************
    183  * select a graph to perform a single-stripe access
    184  *
    185  * Parameters:  raidPtr    - description of the physical array
    186  *              type       - type of operation (read or write) requested
    187  *              asmap      - logical & physical addresses for this access
    188  *              createFunc - name of function to use to create the graph
    189  *****************************************************************************/
    190 
    191 void
    192 rf_RAID1DagSelect(
    193     RF_Raid_t * raidPtr,
    194     RF_IoType_t type,
    195     RF_AccessStripeMap_t * asmap,
    196     RF_VoidFuncPtr * createFunc)
    197 {
    198 	RF_RowCol_t frow, fcol, or, oc;
    199 	RF_PhysDiskAddr_t *failedPDA;
    200 	int     prior_recon;
    201 	RF_RowStatus_t rstat;
    202 	RF_SectorNum_t oo;
    203 
    204 
    205 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    206 
    207 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
    208 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    209 		*createFunc = NULL;
    210 		return;
    211 	}
    212 	if (asmap->numDataFailed + asmap->numParityFailed) {
    213 		/*
    214 	         * We've got a fault. Re-map to spare space, iff applicable.
    215 	         * Shouldn't the arch-independent code do this for us?
    216 	         * Anyway, it turns out if we don't do this here, then when
    217 	         * we're reconstructing, writes go only to the surviving
    218 	         * original disk, and aren't reflected on the reconstructed
    219 	         * spare. Oops. --jimz
    220 	         */
    221 		failedPDA = asmap->failedPDAs[0];
    222 		frow = failedPDA->row;
    223 		fcol = failedPDA->col;
    224 		rstat = raidPtr->status[frow];
    225 		prior_recon = (rstat == rf_rs_reconfigured) || (
    226 		    (rstat == rf_rs_reconstructing) ?
    227 		    rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
    228 		    );
    229 		if (prior_recon) {
    230 			or = frow;
    231 			oc = fcol;
    232 			oo = failedPDA->startSector;
    233 			/*
    234 		         * If we did distributed sparing, we'd monkey with that here.
    235 		         * But we don't, so we'll
    236 		         */
    237 			failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
    238 			failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
    239 			/*
    240 		         * Redirect other components, iff necessary. This looks
    241 		         * pretty suspicious to me, but it's what the raid5
    242 		         * DAG select does.
    243 		         */
    244 			if (asmap->parityInfo->next) {
    245 				if (failedPDA == asmap->parityInfo) {
    246 					failedPDA->next->row = failedPDA->row;
    247 					failedPDA->next->col = failedPDA->col;
    248 				} else {
    249 					if (failedPDA == asmap->parityInfo->next) {
    250 						asmap->parityInfo->row = failedPDA->row;
    251 						asmap->parityInfo->col = failedPDA->col;
    252 					}
    253 				}
    254 			}
    255 			if (rf_dagDebug || rf_mapDebug) {
    256 				printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
    257 				       raidPtr->raidid, type, or, oc,
    258 				       (long) oo, failedPDA->row,
    259 				       failedPDA->col,
    260 				       (long) failedPDA->startSector);
    261 			}
    262 			asmap->numDataFailed = asmap->numParityFailed = 0;
    263 		}
    264 	}
    265 	if (type == RF_IO_TYPE_READ) {
    266 		if (asmap->numDataFailed == 0)
    267 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
    268 		else
    269 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
    270 	} else {
    271 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
    272 	}
    273 }
    274 
    275 int
    276 rf_VerifyParityRAID1(
    277     RF_Raid_t * raidPtr,
    278     RF_RaidAddr_t raidAddr,
    279     RF_PhysDiskAddr_t * parityPDA,
    280     int correct_it,
    281     RF_RaidAccessFlags_t flags)
    282 {
    283 	int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
    284 	RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
    285 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
    286 	RF_AccessStripeMapHeader_t *asm_h;
    287 	RF_AllocListElem_t *allocList;
    288 	RF_AccTraceEntry_t tracerec;
    289 	RF_ReconUnitNum_t which_ru;
    290 	RF_RaidLayout_t *layoutPtr;
    291 	RF_AccessStripeMap_t *aasm;
    292 	RF_SectorCount_t nsector;
    293 	RF_RaidAddr_t startAddr;
    294 	char   *buf, *buf1, *buf2;
    295 	RF_PhysDiskAddr_t *pda;
    296 	RF_StripeNum_t psID;
    297 	RF_MCPair_t *mcpair;
    298 
    299 	layoutPtr = &raidPtr->Layout;
    300 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    301 	nsector = parityPDA->numSector;
    302 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
    303 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
    304 
    305 	asm_h = NULL;
    306 	rd_dag_h = wr_dag_h = NULL;
    307 	mcpair = NULL;
    308 
    309 	ret = RF_PARITY_COULD_NOT_VERIFY;
    310 
    311 	rf_MakeAllocList(allocList);
    312 	if (allocList == NULL)
    313 		return (RF_PARITY_COULD_NOT_VERIFY);
    314 	mcpair = rf_AllocMCPair();
    315 	if (mcpair == NULL)
    316 		goto done;
    317 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
    318 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    319 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
    320 	RF_MallocAndAdd(buf, bcount, (char *), allocList);
    321 	if (buf == NULL)
    322 		goto done;
    323 	if (rf_verifyParityDebug) {
    324 		printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
    325 		       raidPtr->raidid, (long) buf, bcount, (long) buf,
    326 		       (long) buf + bcount);
    327 	}
    328 	/*
    329          * Generate a DAG which will read the entire stripe- then we can
    330          * just compare data chunks versus "parity" chunks.
    331          */
    332 
    333 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
    334 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
    335 	    RF_IO_NORMAL_PRIORITY);
    336 	if (rd_dag_h == NULL)
    337 		goto done;
    338 	blockNode = rd_dag_h->succedents[0];
    339 	unblockNode = blockNode->succedents[0]->succedents[0];
    340 
    341 	/*
    342          * Map the access to physical disk addresses (PDAs)- this will
    343          * get us both a list of data addresses, and "parity" addresses
    344          * (which are really mirror copies).
    345          */
    346 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
    347 	    buf, RF_DONT_REMAP);
    348 	aasm = asm_h->stripeMap;
    349 
    350 	buf1 = buf;
    351 	/*
    352          * Loop through the data blocks, setting up read nodes for each.
    353          */
    354 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    355 		RF_ASSERT(pda);
    356 
    357 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    358 
    359 		RF_ASSERT(pda->numSector != 0);
    360 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    361 			/* cannot verify parity with dead disk */
    362 			goto done;
    363 		}
    364 		pda->bufPtr = buf1;
    365 		blockNode->succedents[i]->params[0].p = pda;
    366 		blockNode->succedents[i]->params[1].p = buf1;
    367 		blockNode->succedents[i]->params[2].v = psID;
    368 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    369 		buf1 += nbytes;
    370 	}
    371 	RF_ASSERT(pda == NULL);
    372 	/*
    373          * keep i, buf1 running
    374          *
    375          * Loop through parity blocks, setting up read nodes for each.
    376          */
    377 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
    378 		RF_ASSERT(pda);
    379 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    380 		RF_ASSERT(pda->numSector != 0);
    381 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    382 			/* cannot verify parity with dead disk */
    383 			goto done;
    384 		}
    385 		pda->bufPtr = buf1;
    386 		blockNode->succedents[i]->params[0].p = pda;
    387 		blockNode->succedents[i]->params[1].p = buf1;
    388 		blockNode->succedents[i]->params[2].v = psID;
    389 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    390 		buf1 += nbytes;
    391 	}
    392 	RF_ASSERT(pda == NULL);
    393 
    394 	memset((char *) &tracerec, 0, sizeof(tracerec));
    395 	rd_dag_h->tracerec = &tracerec;
    396 
    397 #if 0
    398 	if (rf_verifyParityDebug > 1) {
    399 		printf("raid%d: RAID1 parity verify read dag:\n",
    400 		       raidPtr->raidid);
    401 		rf_PrintDAGList(rd_dag_h);
    402 	}
    403 #endif
    404 	RF_LOCK_MUTEX(mcpair->mutex);
    405 	mcpair->flag = 0;
    406 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    407 	    (void *) mcpair);
    408 	while (mcpair->flag == 0) {
    409 		RF_WAIT_MCPAIR(mcpair);
    410 	}
    411 	RF_UNLOCK_MUTEX(mcpair->mutex);
    412 
    413 	if (rd_dag_h->status != rf_enable) {
    414 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
    415 		ret = RF_PARITY_COULD_NOT_VERIFY;
    416 		goto done;
    417 	}
    418 	/*
    419          * buf1 is the beginning of the data blocks chunk
    420          * buf2 is the beginning of the parity blocks chunk
    421          */
    422 	buf1 = buf;
    423 	buf2 = buf + (nbytes * layoutPtr->numDataCol);
    424 	ret = RF_PARITY_OKAY;
    425 	/*
    426          * bbufs is "bad bufs"- an array whose entries are the data
    427          * column numbers where we had miscompares. (That is, column 0
    428          * and column 1 of the array are mirror copies, and are considered
    429          * "data column 0" for this purpose).
    430          */
    431 	RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
    432 	    allocList);
    433 	nbad = 0;
    434 	/*
    435          * Check data vs "parity" (mirror copy).
    436          */
    437 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    438 		if (rf_verifyParityDebug) {
    439 			printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
    440 			       raidPtr->raidid, nbytes, i, (long) buf1,
    441 			       (long) buf2, (long) buf);
    442 		}
    443 		ret = memcmp(buf1, buf2, nbytes);
    444 		if (ret) {
    445 			if (rf_verifyParityDebug > 1) {
    446 				for (j = 0; j < nbytes; j++) {
    447 					if (buf1[j] != buf2[j])
    448 						break;
    449 				}
    450 				printf("psid=%ld j=%d\n", (long) psID, j);
    451 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
    452 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
    453 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
    454 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
    455 			}
    456 			if (rf_verifyParityDebug) {
    457 				printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
    458 			}
    459 			/*
    460 		         * Parity is bad. Keep track of which columns were bad.
    461 		         */
    462 			if (bbufs)
    463 				bbufs[nbad] = i;
    464 			nbad++;
    465 			ret = RF_PARITY_BAD;
    466 		}
    467 		buf1 += nbytes;
    468 		buf2 += nbytes;
    469 	}
    470 
    471 	if ((ret != RF_PARITY_OKAY) && correct_it) {
    472 		ret = RF_PARITY_COULD_NOT_CORRECT;
    473 		if (rf_verifyParityDebug) {
    474 			printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
    475 		}
    476 		if (bbufs == NULL)
    477 			goto done;
    478 		/*
    479 	         * Make a DAG with one write node for each bad unit. We'll simply
    480 	         * write the contents of the data unit onto the parity unit for
    481 	         * correction. (It's possible that the mirror copy was the correct
    482 	         * copy, and that we're spooging good data by writing bad over it,
    483 	         * but there's no way we can know that.
    484 	         */
    485 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
    486 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
    487 		    RF_IO_NORMAL_PRIORITY);
    488 		if (wr_dag_h == NULL)
    489 			goto done;
    490 		wrBlock = wr_dag_h->succedents[0];
    491 		/*
    492 	         * Fill in a write node for each bad compare.
    493 	         */
    494 		for (i = 0; i < nbad; i++) {
    495 			j = i + layoutPtr->numDataCol;
    496 			pda = blockNode->succedents[j]->params[0].p;
    497 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
    498 			wrBlock->succedents[i]->params[0].p = pda;
    499 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
    500 			wrBlock->succedents[i]->params[2].v = psID;
    501 			wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    502 		}
    503 		memset((char *) &tracerec, 0, sizeof(tracerec));
    504 		wr_dag_h->tracerec = &tracerec;
    505 #if 0
    506 		if (rf_verifyParityDebug > 1) {
    507 			printf("Parity verify write dag:\n");
    508 			rf_PrintDAGList(wr_dag_h);
    509 		}
    510 #endif
    511 		RF_LOCK_MUTEX(mcpair->mutex);
    512 		mcpair->flag = 0;
    513 		/* fire off the write DAG */
    514 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    515 		    (void *) mcpair);
    516 		while (!mcpair->flag) {
    517 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
    518 		}
    519 		RF_UNLOCK_MUTEX(mcpair->mutex);
    520 		if (wr_dag_h->status != rf_enable) {
    521 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
    522 			goto done;
    523 		}
    524 		ret = RF_PARITY_CORRECTED;
    525 	}
    526 done:
    527 	/*
    528          * All done. We might've gotten here without doing part of the function,
    529          * so cleanup what we have to and return our running status.
    530          */
    531 	if (asm_h)
    532 		rf_FreeAccessStripeMap(asm_h);
    533 	if (rd_dag_h)
    534 		rf_FreeDAG(rd_dag_h);
    535 	if (wr_dag_h)
    536 		rf_FreeDAG(wr_dag_h);
    537 	if (mcpair)
    538 		rf_FreeMCPair(mcpair);
    539 	rf_FreeAllocList(allocList);
    540 	if (rf_verifyParityDebug) {
    541 		printf("raid%d: RAID1 parity verify, returning %d\n",
    542 		       raidPtr->raidid, ret);
    543 	}
    544 	return (ret);
    545 }
    546 
    547 int
    548 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
    549 	RF_ReconBuffer_t *rbuf;	/* the recon buffer to submit */
    550 	int     keep_it;	/* whether we can keep this buffer or we have
    551 				 * to return it */
    552 	int     use_committed;	/* whether to use a committed or an available
    553 				 * recon buffer */
    554 {
    555 	RF_ReconParityStripeStatus_t *pssPtr;
    556 	RF_ReconCtrl_t *reconCtrlPtr;
    557 	RF_RaidLayout_t *layoutPtr;
    558 	int     retcode, created;
    559 	RF_CallbackDesc_t *cb, *p;
    560 	RF_ReconBuffer_t *t;
    561 	RF_Raid_t *raidPtr;
    562 	caddr_t ta;
    563 
    564 	retcode = 0;
    565 	created = 0;
    566 
    567 	raidPtr = rbuf->raidPtr;
    568 	layoutPtr = &raidPtr->Layout;
    569 	reconCtrlPtr = raidPtr->reconControl[rbuf->row];
    570 
    571 	RF_ASSERT(rbuf);
    572 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
    573 
    574 	if (rf_reconbufferDebug) {
    575 		printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
    576 		       raidPtr->raidid, rbuf->row, rbuf->col,
    577 		       (long) rbuf->parityStripeID, rbuf->which_ru,
    578 		       (long) rbuf->failedDiskSectorOffset);
    579 	}
    580 	if (rf_reconDebug) {
    581 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
    582 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
    583 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
    584 		    (long) rbuf->parityStripeID,
    585 		    rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
    586 		    rbuf->buffer[4]);
    587 	}
    588 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
    589 
    590 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
    591 
    592 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
    593 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
    594 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
    595 				 * an rbuf for it */
    596 
    597 	/*
    598          * Since this is simple mirroring, the first submission for a stripe is also
    599          * treated as the last.
    600          */
    601 
    602 	t = NULL;
    603 	if (keep_it) {
    604 		if (rf_reconbufferDebug) {
    605 			printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
    606 			       raidPtr->raidid);
    607 		}
    608 		t = rbuf;
    609 	} else {
    610 		if (use_committed) {
    611 			if (rf_reconbufferDebug) {
    612 				printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
    613 			}
    614 			t = reconCtrlPtr->committedRbufs;
    615 			RF_ASSERT(t);
    616 			reconCtrlPtr->committedRbufs = t->next;
    617 			t->next = NULL;
    618 		} else
    619 			if (reconCtrlPtr->floatingRbufs) {
    620 				if (rf_reconbufferDebug) {
    621 					printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
    622 				}
    623 				t = reconCtrlPtr->floatingRbufs;
    624 				reconCtrlPtr->floatingRbufs = t->next;
    625 				t->next = NULL;
    626 			}
    627 	}
    628 	if (t == NULL) {
    629 		if (rf_reconbufferDebug) {
    630 			printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
    631 		}
    632 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
    633 		raidPtr->procsInBufWait++;
    634 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
    635 		    && (raidPtr->numFullReconBuffers == 0)) {
    636 			/* ruh-ro */
    637 			RF_ERRORMSG("Buffer wait deadlock\n");
    638 			rf_PrintPSStatusTable(raidPtr, rbuf->row);
    639 			RF_PANIC();
    640 		}
    641 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
    642 		cb = rf_AllocCallbackDesc();
    643 		cb->row = rbuf->row;
    644 		cb->col = rbuf->col;
    645 		cb->callbackArg.v = rbuf->parityStripeID;
    646 		cb->callbackArg2.v = rbuf->which_ru;
    647 		cb->next = NULL;
    648 		if (reconCtrlPtr->bufferWaitList == NULL) {
    649 			/* we are the wait list- lucky us */
    650 			reconCtrlPtr->bufferWaitList = cb;
    651 		} else {
    652 			/* append to wait list */
    653 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
    654 			p->next = cb;
    655 		}
    656 		retcode = 1;
    657 		goto out;
    658 	}
    659 	if (t != rbuf) {
    660 		t->row = rbuf->row;
    661 		t->col = reconCtrlPtr->fcol;
    662 		t->parityStripeID = rbuf->parityStripeID;
    663 		t->which_ru = rbuf->which_ru;
    664 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
    665 		t->spRow = rbuf->spRow;
    666 		t->spCol = rbuf->spCol;
    667 		t->spOffset = rbuf->spOffset;
    668 		/* Swap buffers. DANCE! */
    669 		ta = t->buffer;
    670 		t->buffer = rbuf->buffer;
    671 		rbuf->buffer = ta;
    672 	}
    673 	/*
    674          * Use the rbuf we've been given as the target.
    675          */
    676 	RF_ASSERT(pssPtr->rbuf == NULL);
    677 	pssPtr->rbuf = t;
    678 
    679 	t->count = 1;
    680 	/*
    681          * Below, we use 1 for numDataCol (which is equal to the count in the
    682          * previous line), so we'll always be done.
    683          */
    684 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
    685 
    686 out:
    687 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
    688 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
    689 	if (rf_reconbufferDebug) {
    690 		printf("raid%d: RAID1 rbuf submission: returning %d\n",
    691 		       raidPtr->raidid, retcode);
    692 	}
    693 	return (retcode);
    694 }
    695