rf_raid1.c revision 1.9 1 /* $NetBSD: rf_raid1.c,v 1.9 2002/07/13 20:14:34 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * rf_raid1.c -- implements RAID Level 1
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.9 2002/07/13 20:14:34 oster Exp $");
37
38 #include "rf_raid.h"
39 #include "rf_raid1.h"
40 #include "rf_dag.h"
41 #include "rf_dagffrd.h"
42 #include "rf_dagffwr.h"
43 #include "rf_dagdegrd.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_diskqueue.h"
47 #include "rf_general.h"
48 #include "rf_utils.h"
49 #include "rf_parityscan.h"
50 #include "rf_mcpair.h"
51 #include "rf_layout.h"
52 #include "rf_map.h"
53 #include "rf_engine.h"
54 #include "rf_reconbuffer.h"
55
56 typedef struct RF_Raid1ConfigInfo_s {
57 RF_RowCol_t **stripeIdentifier;
58 } RF_Raid1ConfigInfo_t;
59 /* start of day code specific to RAID level 1 */
60 int
61 rf_ConfigureRAID1(
62 RF_ShutdownList_t ** listp,
63 RF_Raid_t * raidPtr,
64 RF_Config_t * cfgPtr)
65 {
66 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
67 RF_Raid1ConfigInfo_t *info;
68 RF_RowCol_t i;
69
70 /* create a RAID level 1 configuration structure */
71 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
72 if (info == NULL)
73 return (ENOMEM);
74 layoutPtr->layoutSpecificInfo = (void *) info;
75
76 /* ... and fill it in. */
77 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
78 if (info->stripeIdentifier == NULL)
79 return (ENOMEM);
80 for (i = 0; i < (raidPtr->numCol / 2); i++) {
81 info->stripeIdentifier[i][0] = (2 * i);
82 info->stripeIdentifier[i][1] = (2 * i) + 1;
83 }
84
85 RF_ASSERT(raidPtr->numRow == 1);
86
87 /* this implementation of RAID level 1 uses one row of numCol disks
88 * and allows multiple (numCol / 2) stripes per row. A stripe
89 * consists of a single data unit and a single parity (mirror) unit.
90 * stripe id = raidAddr / stripeUnitSize */
91 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
92 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
93 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
94 layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
95 layoutPtr->numDataCol = 1;
96 layoutPtr->numParityCol = 1;
97 return (0);
98 }
99
100
101 /* returns the physical disk location of the primary copy in the mirror pair */
102 void
103 rf_MapSectorRAID1(
104 RF_Raid_t * raidPtr,
105 RF_RaidAddr_t raidSector,
106 RF_RowCol_t * row,
107 RF_RowCol_t * col,
108 RF_SectorNum_t * diskSector,
109 int remap)
110 {
111 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
112 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
113
114 *row = 0;
115 *col = 2 * mirrorPair;
116 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
117 }
118
119
120 /* Map Parity
121 *
122 * returns the physical disk location of the secondary copy in the mirror
123 * pair
124 */
125 void
126 rf_MapParityRAID1(
127 RF_Raid_t * raidPtr,
128 RF_RaidAddr_t raidSector,
129 RF_RowCol_t * row,
130 RF_RowCol_t * col,
131 RF_SectorNum_t * diskSector,
132 int remap)
133 {
134 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
135 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
136
137 *row = 0;
138 *col = (2 * mirrorPair) + 1;
139
140 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
141 }
142
143
144 /* IdentifyStripeRAID1
145 *
146 * returns a list of disks for a given redundancy group
147 */
148 void
149 rf_IdentifyStripeRAID1(
150 RF_Raid_t * raidPtr,
151 RF_RaidAddr_t addr,
152 RF_RowCol_t ** diskids,
153 RF_RowCol_t * outRow)
154 {
155 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
156 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
157 RF_ASSERT(stripeID >= 0);
158 RF_ASSERT(addr >= 0);
159 *outRow = 0;
160 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
161 RF_ASSERT(*diskids);
162 }
163
164
165 /* MapSIDToPSIDRAID1
166 *
167 * maps a logical stripe to a stripe in the redundant array
168 */
169 void
170 rf_MapSIDToPSIDRAID1(
171 RF_RaidLayout_t * layoutPtr,
172 RF_StripeNum_t stripeID,
173 RF_StripeNum_t * psID,
174 RF_ReconUnitNum_t * which_ru)
175 {
176 *which_ru = 0;
177 *psID = stripeID;
178 }
179
180
181
182 /******************************************************************************
183 * select a graph to perform a single-stripe access
184 *
185 * Parameters: raidPtr - description of the physical array
186 * type - type of operation (read or write) requested
187 * asmap - logical & physical addresses for this access
188 * createFunc - name of function to use to create the graph
189 *****************************************************************************/
190
191 void
192 rf_RAID1DagSelect(
193 RF_Raid_t * raidPtr,
194 RF_IoType_t type,
195 RF_AccessStripeMap_t * asmap,
196 RF_VoidFuncPtr * createFunc)
197 {
198 RF_RowCol_t frow, fcol, or, oc;
199 RF_PhysDiskAddr_t *failedPDA;
200 int prior_recon;
201 RF_RowStatus_t rstat;
202 RF_SectorNum_t oo;
203
204
205 RF_ASSERT(RF_IO_IS_R_OR_W(type));
206
207 if (asmap->numDataFailed + asmap->numParityFailed > 1) {
208 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
209 *createFunc = NULL;
210 return;
211 }
212 if (asmap->numDataFailed + asmap->numParityFailed) {
213 /*
214 * We've got a fault. Re-map to spare space, iff applicable.
215 * Shouldn't the arch-independent code do this for us?
216 * Anyway, it turns out if we don't do this here, then when
217 * we're reconstructing, writes go only to the surviving
218 * original disk, and aren't reflected on the reconstructed
219 * spare. Oops. --jimz
220 */
221 failedPDA = asmap->failedPDAs[0];
222 frow = failedPDA->row;
223 fcol = failedPDA->col;
224 rstat = raidPtr->status[frow];
225 prior_recon = (rstat == rf_rs_reconfigured) || (
226 (rstat == rf_rs_reconstructing) ?
227 rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
228 );
229 if (prior_recon) {
230 or = frow;
231 oc = fcol;
232 oo = failedPDA->startSector;
233 /*
234 * If we did distributed sparing, we'd monkey with that here.
235 * But we don't, so we'll
236 */
237 failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
238 failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
239 /*
240 * Redirect other components, iff necessary. This looks
241 * pretty suspicious to me, but it's what the raid5
242 * DAG select does.
243 */
244 if (asmap->parityInfo->next) {
245 if (failedPDA == asmap->parityInfo) {
246 failedPDA->next->row = failedPDA->row;
247 failedPDA->next->col = failedPDA->col;
248 } else {
249 if (failedPDA == asmap->parityInfo->next) {
250 asmap->parityInfo->row = failedPDA->row;
251 asmap->parityInfo->col = failedPDA->col;
252 }
253 }
254 }
255 if (rf_dagDebug || rf_mapDebug) {
256 printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
257 raidPtr->raidid, type, or, oc,
258 (long) oo, failedPDA->row,
259 failedPDA->col,
260 (long) failedPDA->startSector);
261 }
262 asmap->numDataFailed = asmap->numParityFailed = 0;
263 }
264 }
265 if (type == RF_IO_TYPE_READ) {
266 if (asmap->numDataFailed == 0)
267 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
268 else
269 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
270 } else {
271 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
272 }
273 }
274
275 int
276 rf_VerifyParityRAID1(
277 RF_Raid_t * raidPtr,
278 RF_RaidAddr_t raidAddr,
279 RF_PhysDiskAddr_t * parityPDA,
280 int correct_it,
281 RF_RaidAccessFlags_t flags)
282 {
283 int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
284 RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
285 RF_DagHeader_t *rd_dag_h, *wr_dag_h;
286 RF_AccessStripeMapHeader_t *asm_h;
287 RF_AllocListElem_t *allocList;
288 RF_AccTraceEntry_t tracerec;
289 RF_ReconUnitNum_t which_ru;
290 RF_RaidLayout_t *layoutPtr;
291 RF_AccessStripeMap_t *aasm;
292 RF_SectorCount_t nsector;
293 RF_RaidAddr_t startAddr;
294 char *buf, *buf1, *buf2;
295 RF_PhysDiskAddr_t *pda;
296 RF_StripeNum_t psID;
297 RF_MCPair_t *mcpair;
298
299 layoutPtr = &raidPtr->Layout;
300 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
301 nsector = parityPDA->numSector;
302 nbytes = rf_RaidAddressToByte(raidPtr, nsector);
303 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
304
305 asm_h = NULL;
306 rd_dag_h = wr_dag_h = NULL;
307 mcpair = NULL;
308
309 ret = RF_PARITY_COULD_NOT_VERIFY;
310
311 rf_MakeAllocList(allocList);
312 if (allocList == NULL)
313 return (RF_PARITY_COULD_NOT_VERIFY);
314 mcpair = rf_AllocMCPair();
315 if (mcpair == NULL)
316 goto done;
317 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
318 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
319 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
320 RF_MallocAndAdd(buf, bcount, (char *), allocList);
321 if (buf == NULL)
322 goto done;
323 if (rf_verifyParityDebug) {
324 printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
325 raidPtr->raidid, (long) buf, bcount, (long) buf,
326 (long) buf + bcount);
327 }
328 /*
329 * Generate a DAG which will read the entire stripe- then we can
330 * just compare data chunks versus "parity" chunks.
331 */
332
333 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
334 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
335 RF_IO_NORMAL_PRIORITY);
336 if (rd_dag_h == NULL)
337 goto done;
338 blockNode = rd_dag_h->succedents[0];
339 unblockNode = blockNode->succedents[0]->succedents[0];
340
341 /*
342 * Map the access to physical disk addresses (PDAs)- this will
343 * get us both a list of data addresses, and "parity" addresses
344 * (which are really mirror copies).
345 */
346 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
347 buf, RF_DONT_REMAP);
348 aasm = asm_h->stripeMap;
349
350 buf1 = buf;
351 /*
352 * Loop through the data blocks, setting up read nodes for each.
353 */
354 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
355 RF_ASSERT(pda);
356
357 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
358
359 RF_ASSERT(pda->numSector != 0);
360 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
361 /* cannot verify parity with dead disk */
362 goto done;
363 }
364 pda->bufPtr = buf1;
365 blockNode->succedents[i]->params[0].p = pda;
366 blockNode->succedents[i]->params[1].p = buf1;
367 blockNode->succedents[i]->params[2].v = psID;
368 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
369 buf1 += nbytes;
370 }
371 RF_ASSERT(pda == NULL);
372 /*
373 * keep i, buf1 running
374 *
375 * Loop through parity blocks, setting up read nodes for each.
376 */
377 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
378 RF_ASSERT(pda);
379 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
380 RF_ASSERT(pda->numSector != 0);
381 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
382 /* cannot verify parity with dead disk */
383 goto done;
384 }
385 pda->bufPtr = buf1;
386 blockNode->succedents[i]->params[0].p = pda;
387 blockNode->succedents[i]->params[1].p = buf1;
388 blockNode->succedents[i]->params[2].v = psID;
389 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
390 buf1 += nbytes;
391 }
392 RF_ASSERT(pda == NULL);
393
394 memset((char *) &tracerec, 0, sizeof(tracerec));
395 rd_dag_h->tracerec = &tracerec;
396
397 #if 0
398 if (rf_verifyParityDebug > 1) {
399 printf("raid%d: RAID1 parity verify read dag:\n",
400 raidPtr->raidid);
401 rf_PrintDAGList(rd_dag_h);
402 }
403 #endif
404 RF_LOCK_MUTEX(mcpair->mutex);
405 mcpair->flag = 0;
406 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
407 (void *) mcpair);
408 while (mcpair->flag == 0) {
409 RF_WAIT_MCPAIR(mcpair);
410 }
411 RF_UNLOCK_MUTEX(mcpair->mutex);
412
413 if (rd_dag_h->status != rf_enable) {
414 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
415 ret = RF_PARITY_COULD_NOT_VERIFY;
416 goto done;
417 }
418 /*
419 * buf1 is the beginning of the data blocks chunk
420 * buf2 is the beginning of the parity blocks chunk
421 */
422 buf1 = buf;
423 buf2 = buf + (nbytes * layoutPtr->numDataCol);
424 ret = RF_PARITY_OKAY;
425 /*
426 * bbufs is "bad bufs"- an array whose entries are the data
427 * column numbers where we had miscompares. (That is, column 0
428 * and column 1 of the array are mirror copies, and are considered
429 * "data column 0" for this purpose).
430 */
431 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
432 allocList);
433 nbad = 0;
434 /*
435 * Check data vs "parity" (mirror copy).
436 */
437 for (i = 0; i < layoutPtr->numDataCol; i++) {
438 if (rf_verifyParityDebug) {
439 printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
440 raidPtr->raidid, nbytes, i, (long) buf1,
441 (long) buf2, (long) buf);
442 }
443 ret = memcmp(buf1, buf2, nbytes);
444 if (ret) {
445 if (rf_verifyParityDebug > 1) {
446 for (j = 0; j < nbytes; j++) {
447 if (buf1[j] != buf2[j])
448 break;
449 }
450 printf("psid=%ld j=%d\n", (long) psID, j);
451 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
452 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
453 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
454 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
455 }
456 if (rf_verifyParityDebug) {
457 printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
458 }
459 /*
460 * Parity is bad. Keep track of which columns were bad.
461 */
462 if (bbufs)
463 bbufs[nbad] = i;
464 nbad++;
465 ret = RF_PARITY_BAD;
466 }
467 buf1 += nbytes;
468 buf2 += nbytes;
469 }
470
471 if ((ret != RF_PARITY_OKAY) && correct_it) {
472 ret = RF_PARITY_COULD_NOT_CORRECT;
473 if (rf_verifyParityDebug) {
474 printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
475 }
476 if (bbufs == NULL)
477 goto done;
478 /*
479 * Make a DAG with one write node for each bad unit. We'll simply
480 * write the contents of the data unit onto the parity unit for
481 * correction. (It's possible that the mirror copy was the correct
482 * copy, and that we're spooging good data by writing bad over it,
483 * but there's no way we can know that.
484 */
485 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
486 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
487 RF_IO_NORMAL_PRIORITY);
488 if (wr_dag_h == NULL)
489 goto done;
490 wrBlock = wr_dag_h->succedents[0];
491 /*
492 * Fill in a write node for each bad compare.
493 */
494 for (i = 0; i < nbad; i++) {
495 j = i + layoutPtr->numDataCol;
496 pda = blockNode->succedents[j]->params[0].p;
497 pda->bufPtr = blockNode->succedents[i]->params[1].p;
498 wrBlock->succedents[i]->params[0].p = pda;
499 wrBlock->succedents[i]->params[1].p = pda->bufPtr;
500 wrBlock->succedents[i]->params[2].v = psID;
501 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
502 }
503 memset((char *) &tracerec, 0, sizeof(tracerec));
504 wr_dag_h->tracerec = &tracerec;
505 #if 0
506 if (rf_verifyParityDebug > 1) {
507 printf("Parity verify write dag:\n");
508 rf_PrintDAGList(wr_dag_h);
509 }
510 #endif
511 RF_LOCK_MUTEX(mcpair->mutex);
512 mcpair->flag = 0;
513 /* fire off the write DAG */
514 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
515 (void *) mcpair);
516 while (!mcpair->flag) {
517 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
518 }
519 RF_UNLOCK_MUTEX(mcpair->mutex);
520 if (wr_dag_h->status != rf_enable) {
521 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
522 goto done;
523 }
524 ret = RF_PARITY_CORRECTED;
525 }
526 done:
527 /*
528 * All done. We might've gotten here without doing part of the function,
529 * so cleanup what we have to and return our running status.
530 */
531 if (asm_h)
532 rf_FreeAccessStripeMap(asm_h);
533 if (rd_dag_h)
534 rf_FreeDAG(rd_dag_h);
535 if (wr_dag_h)
536 rf_FreeDAG(wr_dag_h);
537 if (mcpair)
538 rf_FreeMCPair(mcpair);
539 rf_FreeAllocList(allocList);
540 if (rf_verifyParityDebug) {
541 printf("raid%d: RAID1 parity verify, returning %d\n",
542 raidPtr->raidid, ret);
543 }
544 return (ret);
545 }
546
547 int
548 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
549 RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
550 int keep_it; /* whether we can keep this buffer or we have
551 * to return it */
552 int use_committed; /* whether to use a committed or an available
553 * recon buffer */
554 {
555 RF_ReconParityStripeStatus_t *pssPtr;
556 RF_ReconCtrl_t *reconCtrlPtr;
557 RF_RaidLayout_t *layoutPtr;
558 int retcode, created;
559 RF_CallbackDesc_t *cb, *p;
560 RF_ReconBuffer_t *t;
561 RF_Raid_t *raidPtr;
562 caddr_t ta;
563
564 retcode = 0;
565 created = 0;
566
567 raidPtr = rbuf->raidPtr;
568 layoutPtr = &raidPtr->Layout;
569 reconCtrlPtr = raidPtr->reconControl[rbuf->row];
570
571 RF_ASSERT(rbuf);
572 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
573
574 if (rf_reconbufferDebug) {
575 printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
576 raidPtr->raidid, rbuf->row, rbuf->col,
577 (long) rbuf->parityStripeID, rbuf->which_ru,
578 (long) rbuf->failedDiskSectorOffset);
579 }
580 if (rf_reconDebug) {
581 printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
582 (long) rbuf->parityStripeID, (long) rbuf->buffer);
583 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
584 (long) rbuf->parityStripeID,
585 rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
586 rbuf->buffer[4]);
587 }
588 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
589
590 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
591
592 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
593 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
594 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
595 * an rbuf for it */
596
597 /*
598 * Since this is simple mirroring, the first submission for a stripe is also
599 * treated as the last.
600 */
601
602 t = NULL;
603 if (keep_it) {
604 if (rf_reconbufferDebug) {
605 printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
606 raidPtr->raidid);
607 }
608 t = rbuf;
609 } else {
610 if (use_committed) {
611 if (rf_reconbufferDebug) {
612 printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
613 }
614 t = reconCtrlPtr->committedRbufs;
615 RF_ASSERT(t);
616 reconCtrlPtr->committedRbufs = t->next;
617 t->next = NULL;
618 } else
619 if (reconCtrlPtr->floatingRbufs) {
620 if (rf_reconbufferDebug) {
621 printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
622 }
623 t = reconCtrlPtr->floatingRbufs;
624 reconCtrlPtr->floatingRbufs = t->next;
625 t->next = NULL;
626 }
627 }
628 if (t == NULL) {
629 if (rf_reconbufferDebug) {
630 printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
631 }
632 RF_ASSERT((keep_it == 0) && (use_committed == 0));
633 raidPtr->procsInBufWait++;
634 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
635 && (raidPtr->numFullReconBuffers == 0)) {
636 /* ruh-ro */
637 RF_ERRORMSG("Buffer wait deadlock\n");
638 rf_PrintPSStatusTable(raidPtr, rbuf->row);
639 RF_PANIC();
640 }
641 pssPtr->flags |= RF_PSS_BUFFERWAIT;
642 cb = rf_AllocCallbackDesc();
643 cb->row = rbuf->row;
644 cb->col = rbuf->col;
645 cb->callbackArg.v = rbuf->parityStripeID;
646 cb->callbackArg2.v = rbuf->which_ru;
647 cb->next = NULL;
648 if (reconCtrlPtr->bufferWaitList == NULL) {
649 /* we are the wait list- lucky us */
650 reconCtrlPtr->bufferWaitList = cb;
651 } else {
652 /* append to wait list */
653 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
654 p->next = cb;
655 }
656 retcode = 1;
657 goto out;
658 }
659 if (t != rbuf) {
660 t->row = rbuf->row;
661 t->col = reconCtrlPtr->fcol;
662 t->parityStripeID = rbuf->parityStripeID;
663 t->which_ru = rbuf->which_ru;
664 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
665 t->spRow = rbuf->spRow;
666 t->spCol = rbuf->spCol;
667 t->spOffset = rbuf->spOffset;
668 /* Swap buffers. DANCE! */
669 ta = t->buffer;
670 t->buffer = rbuf->buffer;
671 rbuf->buffer = ta;
672 }
673 /*
674 * Use the rbuf we've been given as the target.
675 */
676 RF_ASSERT(pssPtr->rbuf == NULL);
677 pssPtr->rbuf = t;
678
679 t->count = 1;
680 /*
681 * Below, we use 1 for numDataCol (which is equal to the count in the
682 * previous line), so we'll always be done.
683 */
684 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
685
686 out:
687 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
688 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
689 if (rf_reconbufferDebug) {
690 printf("raid%d: RAID1 rbuf submission: returning %d\n",
691 raidPtr->raidid, retcode);
692 }
693 return (retcode);
694 }
695