rf_raid5.c revision 1.20 1 1.20 christos /* $NetBSD: rf_raid5.c,v 1.20 2019/02/09 03:34:00 christos Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /******************************************************************************
30 1.1 oster *
31 1.1 oster * rf_raid5.c -- implements RAID Level 5
32 1.1 oster *
33 1.1 oster *****************************************************************************/
34 1.6 lukem
35 1.6 lukem #include <sys/cdefs.h>
36 1.20 christos __KERNEL_RCSID(0, "$NetBSD: rf_raid5.c,v 1.20 2019/02/09 03:34:00 christos Exp $");
37 1.1 oster
38 1.5 oster #include <dev/raidframe/raidframevar.h>
39 1.5 oster
40 1.1 oster #include "rf_raid.h"
41 1.1 oster #include "rf_raid5.h"
42 1.1 oster #include "rf_dag.h"
43 1.1 oster #include "rf_dagffrd.h"
44 1.1 oster #include "rf_dagffwr.h"
45 1.1 oster #include "rf_dagdegrd.h"
46 1.1 oster #include "rf_dagdegwr.h"
47 1.1 oster #include "rf_dagutils.h"
48 1.1 oster #include "rf_general.h"
49 1.1 oster #include "rf_map.h"
50 1.1 oster #include "rf_utils.h"
51 1.1 oster
52 1.1 oster typedef struct RF_Raid5ConfigInfo_s {
53 1.3 oster RF_RowCol_t **stripeIdentifier; /* filled in at config time and used
54 1.3 oster * by IdentifyStripe */
55 1.3 oster } RF_Raid5ConfigInfo_t;
56 1.3 oster
57 1.15 perry int
58 1.19 christos rf_ConfigureRAID5(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
59 1.19 christos RF_Config_t *cfgPtr)
60 1.3 oster {
61 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
62 1.3 oster RF_Raid5ConfigInfo_t *info;
63 1.3 oster RF_RowCol_t i, j, startdisk;
64 1.3 oster
65 1.3 oster /* create a RAID level 5 configuration structure */
66 1.20 christos info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
67 1.3 oster if (info == NULL)
68 1.3 oster return (ENOMEM);
69 1.3 oster layoutPtr->layoutSpecificInfo = (void *) info;
70 1.3 oster
71 1.3 oster /* the stripe identifier must identify the disks in each stripe, IN
72 1.3 oster * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
73 1.3 oster info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList);
74 1.3 oster if (info->stripeIdentifier == NULL)
75 1.3 oster return (ENOMEM);
76 1.3 oster startdisk = 0;
77 1.3 oster for (i = 0; i < raidPtr->numCol; i++) {
78 1.3 oster for (j = 0; j < raidPtr->numCol; j++) {
79 1.3 oster info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol;
80 1.3 oster }
81 1.3 oster if ((--startdisk) < 0)
82 1.3 oster startdisk = raidPtr->numCol - 1;
83 1.3 oster }
84 1.1 oster
85 1.3 oster /* fill in the remaining layout parameters */
86 1.3 oster layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
87 1.3 oster layoutPtr->numDataCol = raidPtr->numCol - 1;
88 1.3 oster layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
89 1.3 oster layoutPtr->numParityCol = 1;
90 1.3 oster layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
91 1.1 oster
92 1.3 oster raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
93 1.1 oster
94 1.3 oster return (0);
95 1.1 oster }
96 1.1 oster
97 1.15 perry int
98 1.19 christos rf_GetDefaultNumFloatingReconBuffersRAID5(RF_Raid_t *raidPtr)
99 1.1 oster {
100 1.3 oster return (20);
101 1.1 oster }
102 1.1 oster
103 1.15 perry RF_HeadSepLimit_t
104 1.19 christos rf_GetDefaultHeadSepLimitRAID5(RF_Raid_t *raidPtr)
105 1.1 oster {
106 1.3 oster return (10);
107 1.1 oster }
108 1.1 oster #if !defined(__NetBSD__) && !defined(_KERNEL)
109 1.1 oster /* not currently used */
110 1.15 perry int
111 1.10 oster rf_ShutdownRAID5(RF_Raid_t *raidPtr)
112 1.1 oster {
113 1.3 oster return (0);
114 1.1 oster }
115 1.1 oster #endif
116 1.1 oster
117 1.15 perry void
118 1.10 oster rf_MapSectorRAID5(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
119 1.18 christos RF_RowCol_t *col, RF_SectorNum_t *diskSector,
120 1.19 christos int remap)
121 1.1 oster {
122 1.3 oster RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
123 1.3 oster *col = (SUID % raidPtr->numCol);
124 1.3 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
125 1.3 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
126 1.1 oster }
127 1.1 oster
128 1.15 perry void
129 1.10 oster rf_MapParityRAID5(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
130 1.18 christos RF_RowCol_t *col, RF_SectorNum_t *diskSector,
131 1.19 christos int remap)
132 1.1 oster {
133 1.3 oster RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
134 1.3 oster
135 1.3 oster *col = raidPtr->Layout.numDataCol - (SUID / raidPtr->Layout.numDataCol) % raidPtr->numCol;
136 1.3 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
137 1.3 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
138 1.1 oster }
139 1.1 oster
140 1.15 perry void
141 1.10 oster rf_IdentifyStripeRAID5(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
142 1.10 oster RF_RowCol_t **diskids)
143 1.1 oster {
144 1.3 oster RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
145 1.3 oster RF_Raid5ConfigInfo_t *info = (RF_Raid5ConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
146 1.1 oster
147 1.3 oster *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
148 1.1 oster }
149 1.1 oster
150 1.15 perry void
151 1.19 christos rf_MapSIDToPSIDRAID5(RF_RaidLayout_t *layoutPtr,
152 1.18 christos RF_StripeNum_t stripeID,
153 1.10 oster RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
154 1.1 oster {
155 1.3 oster *which_ru = 0;
156 1.3 oster *psID = stripeID;
157 1.1 oster }
158 1.1 oster /* select an algorithm for performing an access. Returns two pointers,
159 1.1 oster * one to a function that will return information about the DAG, and
160 1.1 oster * another to a function that will create the dag.
161 1.1 oster */
162 1.15 perry void
163 1.10 oster rf_RaidFiveDagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
164 1.10 oster RF_AccessStripeMap_t *asmap,
165 1.10 oster RF_VoidFuncPtr *createFunc)
166 1.1 oster {
167 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
168 1.3 oster RF_PhysDiskAddr_t *failedPDA = NULL;
169 1.9 oster RF_RowCol_t fcol;
170 1.3 oster RF_RowStatus_t rstat;
171 1.3 oster int prior_recon;
172 1.3 oster
173 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
174 1.3 oster
175 1.11 oster if ((asmap->numDataFailed + asmap->numParityFailed > 1) ||
176 1.11 oster (raidPtr->numFailures > 1)){
177 1.13 oster #if RF_DEBUG_DAG
178 1.15 perry if (rf_dagDebug)
179 1.11 oster RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
180 1.13 oster #endif
181 1.8 oster *createFunc = NULL;
182 1.3 oster return;
183 1.12 oster }
184 1.3 oster
185 1.12 oster if (asmap->numDataFailed + asmap->numParityFailed == 1) {
186 1.15 perry
187 1.12 oster /* if under recon & already reconstructed, redirect
188 1.12 oster * the access to the spare drive and eliminate the
189 1.12 oster * failure indication */
190 1.12 oster failedPDA = asmap->failedPDAs[0];
191 1.12 oster fcol = failedPDA->col;
192 1.12 oster rstat = raidPtr->status;
193 1.12 oster prior_recon = (rstat == rf_rs_reconfigured) || (
194 1.3 oster (rstat == rf_rs_reconstructing) ?
195 1.9 oster rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
196 1.3 oster );
197 1.12 oster if (prior_recon) {
198 1.13 oster #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
199 1.12 oster RF_RowCol_t oc = failedPDA->col;
200 1.12 oster RF_SectorNum_t oo = failedPDA->startSector;
201 1.15 perry #endif
202 1.14 oster #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
203 1.12 oster if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { /* redirect to dist
204 1.12 oster * spare space */
205 1.15 perry
206 1.12 oster if (failedPDA == asmap->parityInfo) {
207 1.15 perry
208 1.12 oster /* parity has failed */
209 1.12 oster (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
210 1.12 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
211 1.15 perry
212 1.12 oster if (asmap->parityInfo->next) { /* redir 2nd component,
213 1.12 oster * if any */
214 1.12 oster RF_PhysDiskAddr_t *p = asmap->parityInfo->next;
215 1.12 oster RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
216 1.12 oster p->col = failedPDA->col;
217 1.12 oster p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
218 1.12 oster SUoffs; /* cheating:
219 1.12 oster * startSector is not
220 1.12 oster * really a RAID address */
221 1.12 oster }
222 1.12 oster } else
223 1.12 oster if (asmap->parityInfo->next && failedPDA == asmap->parityInfo->next) {
224 1.12 oster RF_ASSERT(0); /* should not ever
225 1.12 oster * happen */
226 1.12 oster } else {
227 1.15 perry
228 1.12 oster /* data has failed */
229 1.12 oster (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
230 1.12 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
231 1.15 perry
232 1.12 oster }
233 1.15 perry
234 1.14 oster } else {
235 1.15 perry #endif
236 1.14 oster /* redirect to dedicated spare space */
237 1.15 perry
238 1.12 oster failedPDA->col = raidPtr->Disks[fcol].spareCol;
239 1.15 perry
240 1.12 oster /* the parity may have two distinct
241 1.12 oster * components, both of which may need
242 1.12 oster * to be redirected */
243 1.12 oster if (asmap->parityInfo->next) {
244 1.3 oster if (failedPDA == asmap->parityInfo) {
245 1.12 oster failedPDA->next->col = failedPDA->col;
246 1.3 oster } else
247 1.12 oster if (failedPDA == asmap->parityInfo->next) { /* paranoid: should
248 1.12 oster * never occur */
249 1.12 oster asmap->parityInfo->col = failedPDA->col;
250 1.3 oster }
251 1.3 oster }
252 1.14 oster #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
253 1.3 oster }
254 1.14 oster #endif
255 1.12 oster RF_ASSERT(failedPDA->col != -1);
256 1.15 perry
257 1.13 oster #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
258 1.12 oster if (rf_dagDebug || rf_mapDebug) {
259 1.12 oster printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
260 1.15 perry raidPtr->raidid, type, oc,
261 1.12 oster (long) oo, failedPDA->col,
262 1.12 oster (long) failedPDA->startSector);
263 1.12 oster }
264 1.13 oster #endif
265 1.12 oster asmap->numDataFailed = asmap->numParityFailed = 0;
266 1.3 oster }
267 1.12 oster }
268 1.3 oster /* all dags begin/end with block/unblock node therefore, hdrSucc &
269 1.3 oster * termAnt counts should always be 1 also, these counts should not be
270 1.3 oster * visible outside dag creation routines - manipulating the counts
271 1.3 oster * here should be removed */
272 1.3 oster if (type == RF_IO_TYPE_READ) {
273 1.3 oster if (asmap->numDataFailed == 0)
274 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
275 1.3 oster else
276 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
277 1.1 oster } else {
278 1.1 oster
279 1.1 oster
280 1.3 oster /* if mirroring, always use large writes. If the access
281 1.3 oster * requires two distinct parity updates, always do a small
282 1.3 oster * write. If the stripe contains a failure but the access
283 1.3 oster * does not, do a small write. The first conditional
284 1.3 oster * (numStripeUnitsAccessed <= numDataCol/2) uses a
285 1.3 oster * less-than-or-equal rather than just a less-than because
286 1.3 oster * when G is 3 or 4, numDataCol/2 is 1, and I want
287 1.3 oster * single-stripe-unit updates to use just one disk. */
288 1.3 oster if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
289 1.3 oster if (rf_suppressLocksAndLargeWrites ||
290 1.3 oster (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
291 1.3 oster (asmap->parityInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
292 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateSmallWriteDAG;
293 1.3 oster } else
294 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateLargeWriteDAG;
295 1.3 oster } else {
296 1.3 oster if (asmap->numParityFailed == 1)
297 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
298 1.3 oster else
299 1.17 christos if (asmap->numStripeUnitsAccessed != 1 && (failedPDA == NULL || failedPDA->numSector != layoutPtr->sectorsPerStripeUnit))
300 1.3 oster *createFunc = NULL;
301 1.3 oster else
302 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
303 1.3 oster }
304 1.1 oster }
305 1.1 oster }
306