rf_raid5.c revision 1.3.8.1 1 1.3.8.1 bouyer /* $NetBSD: rf_raid5.c,v 1.3.8.1 2000/11/20 11:42:58 bouyer Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /******************************************************************************
30 1.1 oster *
31 1.1 oster * rf_raid5.c -- implements RAID Level 5
32 1.1 oster *
33 1.1 oster *****************************************************************************/
34 1.1 oster
35 1.1 oster #include "rf_types.h"
36 1.1 oster #include "rf_raid.h"
37 1.1 oster #include "rf_raid5.h"
38 1.1 oster #include "rf_dag.h"
39 1.1 oster #include "rf_dagffrd.h"
40 1.1 oster #include "rf_dagffwr.h"
41 1.1 oster #include "rf_dagdegrd.h"
42 1.1 oster #include "rf_dagdegwr.h"
43 1.1 oster #include "rf_dagutils.h"
44 1.1 oster #include "rf_general.h"
45 1.1 oster #include "rf_map.h"
46 1.1 oster #include "rf_utils.h"
47 1.1 oster
48 1.1 oster typedef struct RF_Raid5ConfigInfo_s {
49 1.3 oster RF_RowCol_t **stripeIdentifier; /* filled in at config time and used
50 1.3 oster * by IdentifyStripe */
51 1.3 oster } RF_Raid5ConfigInfo_t;
52 1.3 oster
53 1.3 oster int
54 1.3 oster rf_ConfigureRAID5(
55 1.3 oster RF_ShutdownList_t ** listp,
56 1.3 oster RF_Raid_t * raidPtr,
57 1.3 oster RF_Config_t * cfgPtr)
58 1.3 oster {
59 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
60 1.3 oster RF_Raid5ConfigInfo_t *info;
61 1.3 oster RF_RowCol_t i, j, startdisk;
62 1.3 oster
63 1.3 oster /* create a RAID level 5 configuration structure */
64 1.3 oster RF_MallocAndAdd(info, sizeof(RF_Raid5ConfigInfo_t), (RF_Raid5ConfigInfo_t *), raidPtr->cleanupList);
65 1.3 oster if (info == NULL)
66 1.3 oster return (ENOMEM);
67 1.3 oster layoutPtr->layoutSpecificInfo = (void *) info;
68 1.3 oster
69 1.3 oster RF_ASSERT(raidPtr->numRow == 1);
70 1.3 oster
71 1.3 oster /* the stripe identifier must identify the disks in each stripe, IN
72 1.3 oster * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
73 1.3 oster info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList);
74 1.3 oster if (info->stripeIdentifier == NULL)
75 1.3 oster return (ENOMEM);
76 1.3 oster startdisk = 0;
77 1.3 oster for (i = 0; i < raidPtr->numCol; i++) {
78 1.3 oster for (j = 0; j < raidPtr->numCol; j++) {
79 1.3 oster info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol;
80 1.3 oster }
81 1.3 oster if ((--startdisk) < 0)
82 1.3 oster startdisk = raidPtr->numCol - 1;
83 1.3 oster }
84 1.1 oster
85 1.3 oster /* fill in the remaining layout parameters */
86 1.3 oster layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
87 1.3 oster layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
88 1.3 oster layoutPtr->numDataCol = raidPtr->numCol - 1;
89 1.3 oster layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
90 1.3 oster layoutPtr->numParityCol = 1;
91 1.3 oster layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
92 1.1 oster
93 1.3 oster raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
94 1.1 oster
95 1.3 oster return (0);
96 1.1 oster }
97 1.1 oster
98 1.3 oster int
99 1.3 oster rf_GetDefaultNumFloatingReconBuffersRAID5(RF_Raid_t * raidPtr)
100 1.1 oster {
101 1.3 oster return (20);
102 1.1 oster }
103 1.1 oster
104 1.3 oster RF_HeadSepLimit_t
105 1.3 oster rf_GetDefaultHeadSepLimitRAID5(RF_Raid_t * raidPtr)
106 1.1 oster {
107 1.3 oster return (10);
108 1.1 oster }
109 1.1 oster #if !defined(__NetBSD__) && !defined(_KERNEL)
110 1.1 oster /* not currently used */
111 1.3 oster int
112 1.3 oster rf_ShutdownRAID5(RF_Raid_t * raidPtr)
113 1.1 oster {
114 1.3 oster return (0);
115 1.1 oster }
116 1.1 oster #endif
117 1.1 oster
118 1.3 oster void
119 1.3 oster rf_MapSectorRAID5(
120 1.3 oster RF_Raid_t * raidPtr,
121 1.3 oster RF_RaidAddr_t raidSector,
122 1.3 oster RF_RowCol_t * row,
123 1.3 oster RF_RowCol_t * col,
124 1.3 oster RF_SectorNum_t * diskSector,
125 1.3 oster int remap)
126 1.1 oster {
127 1.3 oster RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
128 1.3 oster *row = 0;
129 1.3 oster *col = (SUID % raidPtr->numCol);
130 1.3 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
131 1.3 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
132 1.1 oster }
133 1.1 oster
134 1.3 oster void
135 1.3 oster rf_MapParityRAID5(
136 1.3 oster RF_Raid_t * raidPtr,
137 1.3 oster RF_RaidAddr_t raidSector,
138 1.3 oster RF_RowCol_t * row,
139 1.3 oster RF_RowCol_t * col,
140 1.3 oster RF_SectorNum_t * diskSector,
141 1.3 oster int remap)
142 1.1 oster {
143 1.3 oster RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
144 1.3 oster
145 1.3 oster *row = 0;
146 1.3 oster *col = raidPtr->Layout.numDataCol - (SUID / raidPtr->Layout.numDataCol) % raidPtr->numCol;
147 1.3 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
148 1.3 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
149 1.1 oster }
150 1.1 oster
151 1.3 oster void
152 1.3 oster rf_IdentifyStripeRAID5(
153 1.3 oster RF_Raid_t * raidPtr,
154 1.3 oster RF_RaidAddr_t addr,
155 1.3 oster RF_RowCol_t ** diskids,
156 1.3 oster RF_RowCol_t * outRow)
157 1.1 oster {
158 1.3 oster RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
159 1.3 oster RF_Raid5ConfigInfo_t *info = (RF_Raid5ConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
160 1.1 oster
161 1.3 oster *outRow = 0;
162 1.3 oster *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
163 1.1 oster }
164 1.1 oster
165 1.3 oster void
166 1.3 oster rf_MapSIDToPSIDRAID5(
167 1.3 oster RF_RaidLayout_t * layoutPtr,
168 1.3 oster RF_StripeNum_t stripeID,
169 1.3 oster RF_StripeNum_t * psID,
170 1.3 oster RF_ReconUnitNum_t * which_ru)
171 1.1 oster {
172 1.3 oster *which_ru = 0;
173 1.3 oster *psID = stripeID;
174 1.1 oster }
175 1.1 oster /* select an algorithm for performing an access. Returns two pointers,
176 1.1 oster * one to a function that will return information about the DAG, and
177 1.1 oster * another to a function that will create the dag.
178 1.1 oster */
179 1.3 oster void
180 1.3 oster rf_RaidFiveDagSelect(
181 1.3 oster RF_Raid_t * raidPtr,
182 1.3 oster RF_IoType_t type,
183 1.3 oster RF_AccessStripeMap_t * asmap,
184 1.3 oster RF_VoidFuncPtr * createFunc)
185 1.1 oster {
186 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
187 1.3 oster RF_PhysDiskAddr_t *failedPDA = NULL;
188 1.3 oster RF_RowCol_t frow, fcol;
189 1.3 oster RF_RowStatus_t rstat;
190 1.3 oster int prior_recon;
191 1.3 oster
192 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
193 1.3 oster
194 1.3 oster if (asmap->numDataFailed + asmap->numParityFailed > 1) {
195 1.3 oster RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
196 1.3 oster /* *infoFunc = */ *createFunc = NULL;
197 1.3 oster return;
198 1.3 oster } else
199 1.3 oster if (asmap->numDataFailed + asmap->numParityFailed == 1) {
200 1.3 oster
201 1.3 oster /* if under recon & already reconstructed, redirect
202 1.3 oster * the access to the spare drive and eliminate the
203 1.3 oster * failure indication */
204 1.3 oster failedPDA = asmap->failedPDAs[0];
205 1.3 oster frow = failedPDA->row;
206 1.3 oster fcol = failedPDA->col;
207 1.3 oster rstat = raidPtr->status[failedPDA->row];
208 1.3 oster prior_recon = (rstat == rf_rs_reconfigured) || (
209 1.3 oster (rstat == rf_rs_reconstructing) ?
210 1.3 oster rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
211 1.3 oster );
212 1.3 oster if (prior_recon) {
213 1.3 oster RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
214 1.3 oster RF_SectorNum_t oo = failedPDA->startSector;
215 1.3 oster
216 1.3 oster if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { /* redirect to dist
217 1.3 oster * spare space */
218 1.3 oster
219 1.3 oster if (failedPDA == asmap->parityInfo) {
220 1.3 oster
221 1.3 oster /* parity has failed */
222 1.3 oster (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
223 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
224 1.3 oster
225 1.3 oster if (asmap->parityInfo->next) { /* redir 2nd component,
226 1.3 oster * if any */
227 1.3 oster RF_PhysDiskAddr_t *p = asmap->parityInfo->next;
228 1.3 oster RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
229 1.3 oster p->row = failedPDA->row;
230 1.3 oster p->col = failedPDA->col;
231 1.3 oster p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
232 1.3 oster SUoffs; /* cheating:
233 1.3 oster * startSector is not
234 1.3 oster * really a RAID address */
235 1.3 oster }
236 1.3 oster } else
237 1.3 oster if (asmap->parityInfo->next && failedPDA == asmap->parityInfo->next) {
238 1.3 oster RF_ASSERT(0); /* should not ever
239 1.3 oster * happen */
240 1.3 oster } else {
241 1.3 oster
242 1.3 oster /* data has failed */
243 1.3 oster (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
244 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
245 1.3 oster
246 1.3 oster }
247 1.3 oster
248 1.3 oster } else { /* redirect to dedicated spare
249 1.3 oster * space */
250 1.3 oster
251 1.3 oster failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
252 1.3 oster failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
253 1.3 oster
254 1.3 oster /* the parity may have two distinct
255 1.3 oster * components, both of which may need
256 1.3 oster * to be redirected */
257 1.3 oster if (asmap->parityInfo->next) {
258 1.3 oster if (failedPDA == asmap->parityInfo) {
259 1.3 oster failedPDA->next->row = failedPDA->row;
260 1.3 oster failedPDA->next->col = failedPDA->col;
261 1.3 oster } else
262 1.3 oster if (failedPDA == asmap->parityInfo->next) { /* paranoid: should
263 1.3 oster * never occur */
264 1.3 oster asmap->parityInfo->row = failedPDA->row;
265 1.3 oster asmap->parityInfo->col = failedPDA->col;
266 1.3 oster }
267 1.3 oster }
268 1.3 oster }
269 1.3 oster
270 1.3 oster RF_ASSERT(failedPDA->col != -1);
271 1.3 oster
272 1.3 oster if (rf_dagDebug || rf_mapDebug) {
273 1.3.8.1 bouyer printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
274 1.3.8.1 bouyer raidPtr->raidid, type, or, oc,
275 1.3.8.1 bouyer (long) oo, failedPDA->row,
276 1.3.8.1 bouyer failedPDA->col,
277 1.3.8.1 bouyer (long) failedPDA->startSector);
278 1.3 oster }
279 1.3 oster asmap->numDataFailed = asmap->numParityFailed = 0;
280 1.3 oster }
281 1.3 oster }
282 1.3 oster /* all dags begin/end with block/unblock node therefore, hdrSucc &
283 1.3 oster * termAnt counts should always be 1 also, these counts should not be
284 1.3 oster * visible outside dag creation routines - manipulating the counts
285 1.3 oster * here should be removed */
286 1.3 oster if (type == RF_IO_TYPE_READ) {
287 1.3 oster if (asmap->numDataFailed == 0)
288 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
289 1.3 oster else
290 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
291 1.1 oster } else {
292 1.1 oster
293 1.1 oster
294 1.3 oster /* if mirroring, always use large writes. If the access
295 1.3 oster * requires two distinct parity updates, always do a small
296 1.3 oster * write. If the stripe contains a failure but the access
297 1.3 oster * does not, do a small write. The first conditional
298 1.3 oster * (numStripeUnitsAccessed <= numDataCol/2) uses a
299 1.3 oster * less-than-or-equal rather than just a less-than because
300 1.3 oster * when G is 3 or 4, numDataCol/2 is 1, and I want
301 1.3 oster * single-stripe-unit updates to use just one disk. */
302 1.3 oster if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
303 1.3 oster if (rf_suppressLocksAndLargeWrites ||
304 1.3 oster (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
305 1.3 oster (asmap->parityInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
306 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateSmallWriteDAG;
307 1.3 oster } else
308 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateLargeWriteDAG;
309 1.3 oster } else {
310 1.3 oster if (asmap->numParityFailed == 1)
311 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
312 1.3 oster else
313 1.3 oster if (asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
314 1.3 oster *createFunc = NULL;
315 1.3 oster else
316 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
317 1.3 oster }
318 1.1 oster }
319 1.1 oster }
320