Home | History | Annotate | Line # | Download | only in raidframe
rf_raid5.c revision 1.3
      1 /*	$NetBSD: rf_raid5.c,v 1.3 1999/02/05 00:06:16 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_raid5.c -- implements RAID Level 5
     32  *
     33  *****************************************************************************/
     34 
     35 #include "rf_types.h"
     36 #include "rf_raid.h"
     37 #include "rf_raid5.h"
     38 #include "rf_dag.h"
     39 #include "rf_dagffrd.h"
     40 #include "rf_dagffwr.h"
     41 #include "rf_dagdegrd.h"
     42 #include "rf_dagdegwr.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_threadid.h"
     45 #include "rf_general.h"
     46 #include "rf_map.h"
     47 #include "rf_utils.h"
     48 
     49 typedef struct RF_Raid5ConfigInfo_s {
     50 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time and used
     51 					 * by IdentifyStripe */
     52 }       RF_Raid5ConfigInfo_t;
     53 
     54 int
     55 rf_ConfigureRAID5(
     56     RF_ShutdownList_t ** listp,
     57     RF_Raid_t * raidPtr,
     58     RF_Config_t * cfgPtr)
     59 {
     60 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     61 	RF_Raid5ConfigInfo_t *info;
     62 	RF_RowCol_t i, j, startdisk;
     63 
     64 	/* create a RAID level 5 configuration structure */
     65 	RF_MallocAndAdd(info, sizeof(RF_Raid5ConfigInfo_t), (RF_Raid5ConfigInfo_t *), raidPtr->cleanupList);
     66 	if (info == NULL)
     67 		return (ENOMEM);
     68 	layoutPtr->layoutSpecificInfo = (void *) info;
     69 
     70 	RF_ASSERT(raidPtr->numRow == 1);
     71 
     72 	/* the stripe identifier must identify the disks in each stripe, IN
     73 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
     74 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList);
     75 	if (info->stripeIdentifier == NULL)
     76 		return (ENOMEM);
     77 	startdisk = 0;
     78 	for (i = 0; i < raidPtr->numCol; i++) {
     79 		for (j = 0; j < raidPtr->numCol; j++) {
     80 			info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol;
     81 		}
     82 		if ((--startdisk) < 0)
     83 			startdisk = raidPtr->numCol - 1;
     84 	}
     85 
     86 	/* fill in the remaining layout parameters */
     87 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
     88 	layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
     89 	layoutPtr->numDataCol = raidPtr->numCol - 1;
     90 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
     91 	layoutPtr->numParityCol = 1;
     92 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
     93 
     94 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
     95 
     96 	return (0);
     97 }
     98 
     99 int
    100 rf_GetDefaultNumFloatingReconBuffersRAID5(RF_Raid_t * raidPtr)
    101 {
    102 	return (20);
    103 }
    104 
    105 RF_HeadSepLimit_t
    106 rf_GetDefaultHeadSepLimitRAID5(RF_Raid_t * raidPtr)
    107 {
    108 	return (10);
    109 }
    110 #if !defined(__NetBSD__) && !defined(_KERNEL)
    111 /* not currently used */
    112 int
    113 rf_ShutdownRAID5(RF_Raid_t * raidPtr)
    114 {
    115 	return (0);
    116 }
    117 #endif
    118 
    119 void
    120 rf_MapSectorRAID5(
    121     RF_Raid_t * raidPtr,
    122     RF_RaidAddr_t raidSector,
    123     RF_RowCol_t * row,
    124     RF_RowCol_t * col,
    125     RF_SectorNum_t * diskSector,
    126     int remap)
    127 {
    128 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    129 	*row = 0;
    130 	*col = (SUID % raidPtr->numCol);
    131 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
    132 	    (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    133 }
    134 
    135 void
    136 rf_MapParityRAID5(
    137     RF_Raid_t * raidPtr,
    138     RF_RaidAddr_t raidSector,
    139     RF_RowCol_t * row,
    140     RF_RowCol_t * col,
    141     RF_SectorNum_t * diskSector,
    142     int remap)
    143 {
    144 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    145 
    146 	*row = 0;
    147 	*col = raidPtr->Layout.numDataCol - (SUID / raidPtr->Layout.numDataCol) % raidPtr->numCol;
    148 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
    149 	    (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    150 }
    151 
    152 void
    153 rf_IdentifyStripeRAID5(
    154     RF_Raid_t * raidPtr,
    155     RF_RaidAddr_t addr,
    156     RF_RowCol_t ** diskids,
    157     RF_RowCol_t * outRow)
    158 {
    159 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
    160 	RF_Raid5ConfigInfo_t *info = (RF_Raid5ConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
    161 
    162 	*outRow = 0;
    163 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    164 }
    165 
    166 void
    167 rf_MapSIDToPSIDRAID5(
    168     RF_RaidLayout_t * layoutPtr,
    169     RF_StripeNum_t stripeID,
    170     RF_StripeNum_t * psID,
    171     RF_ReconUnitNum_t * which_ru)
    172 {
    173 	*which_ru = 0;
    174 	*psID = stripeID;
    175 }
    176 /* select an algorithm for performing an access.  Returns two pointers,
    177  * one to a function that will return information about the DAG, and
    178  * another to a function that will create the dag.
    179  */
    180 void
    181 rf_RaidFiveDagSelect(
    182     RF_Raid_t * raidPtr,
    183     RF_IoType_t type,
    184     RF_AccessStripeMap_t * asmap,
    185     RF_VoidFuncPtr * createFunc)
    186 {
    187 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    188 	RF_PhysDiskAddr_t *failedPDA = NULL;
    189 	RF_RowCol_t frow, fcol;
    190 	RF_RowStatus_t rstat;
    191 	int     prior_recon;
    192 	int     tid;
    193 
    194 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    195 
    196 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
    197 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    198 		 /* *infoFunc = */ *createFunc = NULL;
    199 		return;
    200 	} else
    201 		if (asmap->numDataFailed + asmap->numParityFailed == 1) {
    202 
    203 			/* if under recon & already reconstructed, redirect
    204 			 * the access to the spare drive and eliminate the
    205 			 * failure indication */
    206 			failedPDA = asmap->failedPDAs[0];
    207 			frow = failedPDA->row;
    208 			fcol = failedPDA->col;
    209 			rstat = raidPtr->status[failedPDA->row];
    210 			prior_recon = (rstat == rf_rs_reconfigured) || (
    211 			    (rstat == rf_rs_reconstructing) ?
    212 			    rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
    213 			    );
    214 			if (prior_recon) {
    215 				RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
    216 				RF_SectorNum_t oo = failedPDA->startSector;
    217 
    218 				if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {	/* redirect to dist
    219 											 * spare space */
    220 
    221 					if (failedPDA == asmap->parityInfo) {
    222 
    223 						/* parity has failed */
    224 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
    225 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    226 
    227 						if (asmap->parityInfo->next) {	/* redir 2nd component,
    228 										 * if any */
    229 							RF_PhysDiskAddr_t *p = asmap->parityInfo->next;
    230 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    231 							p->row = failedPDA->row;
    232 							p->col = failedPDA->col;
    233 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    234 							    SUoffs;	/* cheating:
    235 									 * startSector is not
    236 									 * really a RAID address */
    237 						}
    238 					} else
    239 						if (asmap->parityInfo->next && failedPDA == asmap->parityInfo->next) {
    240 							RF_ASSERT(0);	/* should not ever
    241 									 * happen */
    242 						} else {
    243 
    244 							/* data has failed */
    245 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
    246 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    247 
    248 						}
    249 
    250 				} else {	/* redirect to dedicated spare
    251 						 * space */
    252 
    253 					failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
    254 					failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
    255 
    256 					/* the parity may have two distinct
    257 					 * components, both of which may need
    258 					 * to be redirected */
    259 					if (asmap->parityInfo->next) {
    260 						if (failedPDA == asmap->parityInfo) {
    261 							failedPDA->next->row = failedPDA->row;
    262 							failedPDA->next->col = failedPDA->col;
    263 						} else
    264 							if (failedPDA == asmap->parityInfo->next) {	/* paranoid:  should
    265 													 * never occur */
    266 								asmap->parityInfo->row = failedPDA->row;
    267 								asmap->parityInfo->col = failedPDA->col;
    268 							}
    269 					}
    270 				}
    271 
    272 				RF_ASSERT(failedPDA->col != -1);
    273 
    274 				if (rf_dagDebug || rf_mapDebug) {
    275 					rf_get_threadid(tid);
    276 					printf("[%d] Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
    277 					    tid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col,
    278 					    (long) failedPDA->startSector);
    279 				}
    280 				asmap->numDataFailed = asmap->numParityFailed = 0;
    281 			}
    282 		}
    283 	/* all dags begin/end with block/unblock node therefore, hdrSucc &
    284 	 * termAnt counts should always be 1 also, these counts should not be
    285 	 * visible outside dag creation routines - manipulating the counts
    286 	 * here should be removed */
    287 	if (type == RF_IO_TYPE_READ) {
    288 		if (asmap->numDataFailed == 0)
    289 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
    290 		else
    291 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
    292 	} else {
    293 
    294 
    295 		/* if mirroring, always use large writes.  If the access
    296 		 * requires two distinct parity updates, always do a small
    297 		 * write.  If the stripe contains a failure but the access
    298 		 * does not, do a small write. The first conditional
    299 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
    300 		 * less-than-or-equal rather than just a less-than because
    301 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
    302 		 * single-stripe-unit updates to use just one disk. */
    303 		if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
    304 			if (rf_suppressLocksAndLargeWrites ||
    305 			    (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
    306 				(asmap->parityInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
    307 				*createFunc = (RF_VoidFuncPtr) rf_CreateSmallWriteDAG;
    308 			} else
    309 				*createFunc = (RF_VoidFuncPtr) rf_CreateLargeWriteDAG;
    310 		} else {
    311 			if (asmap->numParityFailed == 1)
    312 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
    313 			else
    314 				if (asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
    315 					*createFunc = NULL;
    316 				else
    317 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
    318 		}
    319 	}
    320 }
    321