rf_reconstruct.c revision 1.10 1 /* $NetBSD: rf_reconstruct.c,v 1.10 2000/01/08 22:57:31 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_cpuutil.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 #define Dprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h))
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81 #define DDprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
82 #define DDprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
83 #define DDprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
84 #define DDprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
85 #define DDprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
86 #define DDprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h))
87
88 #if 0
89 static RF_Thread_t recon_thr_handle;
90 static int recon_thread_initialized = 0;
91 #endif
92
93 static RF_FreeList_t *rf_recond_freelist;
94 #define RF_MAX_FREE_RECOND 4
95 #define RF_RECOND_INC 1
96
97 static RF_RaidReconDesc_t *
98 AllocRaidReconDesc(RF_Raid_t * raidPtr,
99 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
100 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
101 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
102 static int
103 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
104 RF_ReconEvent_t * event);
105 static int
106 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
107 RF_RowCol_t col);
108 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
109 static int
110 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
111 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
112 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
113 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
114 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
115 static int ReconReadDoneProc(void *arg, int status);
116 static int ReconWriteDoneProc(void *arg, int status);
117 static void
118 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
119 RF_HeadSepLimit_t hsCtr);
120 static int
121 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
122 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
123 RF_ReconUnitNum_t which_ru);
124 static int
125 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
126 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
127 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
128 RF_ReconUnitNum_t which_ru);
129 static void ForceReconReadDoneProc(void *arg, int status);
130
131 static void rf_ShutdownReconstruction(void *);
132
133 /* XXX these should be in a .h file somewhere */
134 int raidlookup __P((char *, struct proc *, struct vnode **));
135 int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
136 int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
137
138 struct RF_ReconDoneProc_s {
139 void (*proc) (RF_Raid_t *, void *);
140 void *arg;
141 RF_ReconDoneProc_t *next;
142 };
143
144 static RF_FreeList_t *rf_rdp_freelist;
145 #define RF_MAX_FREE_RDP 4
146 #define RF_RDP_INC 1
147
148 static void
149 SignalReconDone(RF_Raid_t * raidPtr)
150 {
151 RF_ReconDoneProc_t *p;
152
153 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
154 for (p = raidPtr->recon_done_procs; p; p = p->next) {
155 p->proc(raidPtr, p->arg);
156 }
157 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
158 }
159
160 int
161 rf_RegisterReconDoneProc(
162 RF_Raid_t * raidPtr,
163 void (*proc) (RF_Raid_t *, void *),
164 void *arg,
165 RF_ReconDoneProc_t ** handlep)
166 {
167 RF_ReconDoneProc_t *p;
168
169 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
170 if (p == NULL)
171 return (ENOMEM);
172 p->proc = proc;
173 p->arg = arg;
174 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
175 p->next = raidPtr->recon_done_procs;
176 raidPtr->recon_done_procs = p;
177 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
178 if (handlep)
179 *handlep = p;
180 return (0);
181 }
182 /*****************************************************************************************
183 *
184 * sets up the parameters that will be used by the reconstruction process
185 * currently there are none, except for those that the layout-specific
186 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
187 *
188 * in the kernel, we fire off the recon thread.
189 *
190 ****************************************************************************************/
191 static void
192 rf_ShutdownReconstruction(ignored)
193 void *ignored;
194 {
195 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
196 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
197 }
198
199 int
200 rf_ConfigureReconstruction(listp)
201 RF_ShutdownList_t **listp;
202 {
203 int rc;
204
205 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
206 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
207 if (rf_recond_freelist == NULL)
208 return (ENOMEM);
209 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
210 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
211 if (rf_rdp_freelist == NULL) {
212 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
213 return (ENOMEM);
214 }
215 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
216 if (rc) {
217 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
218 __FILE__, __LINE__, rc);
219 rf_ShutdownReconstruction(NULL);
220 return (rc);
221 }
222 #if 0
223 if (!recon_thread_initialized) {
224 RF_CREATE_THREAD(recon_thr_handle, rf_ReconKernelThread, NULL, "raid_recon");
225 recon_thread_initialized = 1;
226 }
227 #endif
228 return (0);
229 }
230
231 static RF_RaidReconDesc_t *
232 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
233 RF_Raid_t *raidPtr;
234 RF_RowCol_t row;
235 RF_RowCol_t col;
236 RF_RaidDisk_t *spareDiskPtr;
237 int numDisksDone;
238 RF_RowCol_t srow;
239 RF_RowCol_t scol;
240 {
241
242 RF_RaidReconDesc_t *reconDesc;
243
244 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
245
246 reconDesc->raidPtr = raidPtr;
247 reconDesc->row = row;
248 reconDesc->col = col;
249 reconDesc->spareDiskPtr = spareDiskPtr;
250 reconDesc->numDisksDone = numDisksDone;
251 reconDesc->srow = srow;
252 reconDesc->scol = scol;
253 reconDesc->state = 0;
254 reconDesc->next = NULL;
255
256 return (reconDesc);
257 }
258
259 static void
260 FreeReconDesc(reconDesc)
261 RF_RaidReconDesc_t *reconDesc;
262 {
263 #if RF_RECON_STATS > 0
264 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
265 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
266 #endif /* RF_RECON_STATS > 0 */
267 printf("RAIDframe: %lu max exec ticks\n",
268 (long) reconDesc->maxReconExecTicks);
269 #if (RF_RECON_STATS > 0) || defined(KERNEL)
270 printf("\n");
271 #endif /* (RF_RECON_STATS > 0) || KERNEL */
272 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
273 }
274
275
276 /*****************************************************************************************
277 *
278 * primary routine to reconstruct a failed disk. This should be called from
279 * within its own thread. It won't return until reconstruction completes,
280 * fails, or is aborted.
281 ****************************************************************************************/
282 int
283 rf_ReconstructFailedDisk(raidPtr, row, col)
284 RF_Raid_t *raidPtr;
285 RF_RowCol_t row;
286 RF_RowCol_t col;
287 {
288 RF_LayoutSW_t *lp;
289 int rc;
290
291 lp = raidPtr->Layout.map;
292 if (lp->SubmitReconBuffer) {
293 /*
294 * The current infrastructure only supports reconstructing one
295 * disk at a time for each array.
296 */
297 RF_LOCK_MUTEX(raidPtr->mutex);
298 while (raidPtr->reconInProgress) {
299 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
300 }
301 raidPtr->reconInProgress++;
302 RF_UNLOCK_MUTEX(raidPtr->mutex);
303 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
304 RF_LOCK_MUTEX(raidPtr->mutex);
305 raidPtr->reconInProgress--;
306 RF_UNLOCK_MUTEX(raidPtr->mutex);
307 } else {
308 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
309 lp->parityConfig);
310 rc = EIO;
311 }
312 RF_SIGNAL_COND(raidPtr->waitForReconCond);
313 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
314 * needed at some point... GO */
315 return (rc);
316 }
317
318 int
319 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
320 RF_Raid_t *raidPtr;
321 RF_RowCol_t row;
322 RF_RowCol_t col;
323 {
324 RF_ComponentLabel_t c_label;
325 RF_RaidDisk_t *spareDiskPtr = NULL;
326 RF_RaidReconDesc_t *reconDesc;
327 RF_RowCol_t srow, scol;
328 int numDisksDone = 0, rc;
329
330 /* first look for a spare drive onto which to reconstruct the data */
331 /* spare disk descriptors are stored in row 0. This may have to
332 * change eventually */
333
334 RF_LOCK_MUTEX(raidPtr->mutex);
335 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
336
337 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
338 if (raidPtr->status[row] != rf_rs_degraded) {
339 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
340 RF_UNLOCK_MUTEX(raidPtr->mutex);
341 return (EINVAL);
342 }
343 srow = row;
344 scol = (-1);
345 } else {
346 srow = 0;
347 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
348 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
349 spareDiskPtr = &raidPtr->Disks[srow][scol];
350 spareDiskPtr->status = rf_ds_used_spare;
351 break;
352 }
353 }
354 if (!spareDiskPtr) {
355 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
356 RF_UNLOCK_MUTEX(raidPtr->mutex);
357 return (ENOSPC);
358 }
359 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
360 }
361 RF_UNLOCK_MUTEX(raidPtr->mutex);
362
363 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
364 raidPtr->reconDesc = (void *) reconDesc;
365 #if RF_RECON_STATS > 0
366 reconDesc->hsStallCount = 0;
367 reconDesc->numReconExecDelays = 0;
368 reconDesc->numReconEventWaits = 0;
369 #endif /* RF_RECON_STATS > 0 */
370 reconDesc->reconExecTimerRunning = 0;
371 reconDesc->reconExecTicks = 0;
372 reconDesc->maxReconExecTicks = 0;
373 rc = rf_ContinueReconstructFailedDisk(reconDesc);
374
375 if (!rc) {
376 /* fix up the component label */
377 /* Don't actually need the read here.. */
378 raidread_component_label(
379 raidPtr->raid_cinfo[srow][scol].ci_dev,
380 raidPtr->raid_cinfo[srow][scol].ci_vp,
381 &c_label);
382
383 c_label.version = RF_COMPONENT_LABEL_VERSION;
384 c_label.mod_counter = raidPtr->mod_counter;
385 c_label.serial_number = raidPtr->serial_number;
386 c_label.row = row;
387 c_label.column = col;
388 c_label.num_rows = raidPtr->numRow;
389 c_label.num_columns = raidPtr->numCol;
390 c_label.clean = RF_RAID_DIRTY;
391 c_label.status = rf_ds_optimal;
392
393 raidwrite_component_label(
394 raidPtr->raid_cinfo[srow][scol].ci_dev,
395 raidPtr->raid_cinfo[srow][scol].ci_vp,
396 &c_label);
397
398 }
399 return (rc);
400 }
401
402 /*
403
404 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
405 and you don't get a spare until the next Monday. With this function
406 (and hot-swappable drives) you can now put your new disk containing
407 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
408 rebuild the data "on the spot".
409
410 */
411
412 int
413 rf_ReconstructInPlace(raidPtr, row, col)
414 RF_Raid_t *raidPtr;
415 RF_RowCol_t row;
416 RF_RowCol_t col;
417 {
418 RF_RaidDisk_t *spareDiskPtr = NULL;
419 RF_RaidReconDesc_t *reconDesc;
420 RF_LayoutSW_t *lp;
421 RF_RaidDisk_t *badDisk;
422 RF_ComponentLabel_t c_label;
423 int numDisksDone = 0, rc;
424 struct partinfo dpart;
425 struct vnode *vp;
426 struct vattr va;
427 struct proc *proc;
428 int retcode;
429
430 lp = raidPtr->Layout.map;
431 if (lp->SubmitReconBuffer) {
432 /*
433 * The current infrastructure only supports reconstructing one
434 * disk at a time for each array.
435 */
436 RF_LOCK_MUTEX(raidPtr->mutex);
437 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
438 (raidPtr->numFailures > 0)) {
439 /* XXX 0 above shouldn't be constant!!! */
440 /* some component other than this has failed.
441 Let's not make things worse than they already
442 are... */
443 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
444 printf(" Row: %d Col: %d Too many failures.\n",
445 row, col);
446 RF_UNLOCK_MUTEX(raidPtr->mutex);
447 return (EINVAL);
448 }
449 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
450 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
451 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
452
453 RF_UNLOCK_MUTEX(raidPtr->mutex);
454 return (EINVAL);
455 }
456
457
458 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
459 /* "It's gone..." */
460 raidPtr->numFailures++;
461 raidPtr->Disks[row][col].status = rf_ds_failed;
462 raidPtr->status[row] = rf_rs_degraded;
463 }
464
465 while (raidPtr->reconInProgress) {
466 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
467 }
468
469 raidPtr->reconInProgress++;
470
471
472 /* first look for a spare drive onto which to reconstruct
473 the data. spare disk descriptors are stored in row 0.
474 This may have to change eventually */
475
476 /* Actually, we don't care if it's failed or not...
477 On a RAID set with correct parity, this function
478 should be callable on any component without ill affects. */
479 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
480 */
481
482 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
483 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
484
485 raidPtr->reconInProgress--;
486 RF_UNLOCK_MUTEX(raidPtr->mutex);
487 return (EINVAL);
488 }
489
490 /* XXX need goop here to see if the disk is alive,
491 and, if not, make it so... */
492
493
494
495 badDisk = &raidPtr->Disks[row][col];
496
497 proc = raidPtr->engine_thread;
498
499 /* This device may have been opened successfully the
500 first time. Close it before trying to open it again.. */
501
502 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
503 printf("Closed the open device: %s\n",
504 raidPtr->Disks[row][col].devname);
505 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0);
506 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp,
507 FREAD | FWRITE, proc->p_ucred, proc);
508 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
509 }
510 printf("About to (re-)open the device for rebuilding: %s\n",
511 raidPtr->Disks[row][col].devname);
512
513 retcode = raidlookup(raidPtr->Disks[row][col].devname,
514 proc, &vp);
515
516 if (retcode) {
517 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
518 raidPtr->Disks[row][col].devname, retcode);
519
520 /* XXX the component isn't responding properly...
521 must be still dead :-( */
522 raidPtr->reconInProgress--;
523 RF_UNLOCK_MUTEX(raidPtr->mutex);
524 return(retcode);
525
526 } else {
527
528 /* Ok, so we can at least do a lookup...
529 How about actually getting a vp for it? */
530
531 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
532 proc)) != 0) {
533 raidPtr->reconInProgress--;
534 RF_UNLOCK_MUTEX(raidPtr->mutex);
535 return(retcode);
536 }
537 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
538 FREAD, proc->p_ucred, proc);
539 if (retcode) {
540 raidPtr->reconInProgress--;
541 RF_UNLOCK_MUTEX(raidPtr->mutex);
542 return(retcode);
543 }
544 raidPtr->Disks[row][col].blockSize =
545 dpart.disklab->d_secsize;
546
547 raidPtr->Disks[row][col].numBlocks =
548 dpart.part->p_size - rf_protectedSectors;
549
550 raidPtr->raid_cinfo[row][col].ci_vp = vp;
551 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
552
553 raidPtr->Disks[row][col].dev = va.va_rdev;
554
555 /* we allow the user to specify that only a
556 fraction of the disks should be used this is
557 just for debug: it speeds up
558 * the parity scan */
559 raidPtr->Disks[row][col].numBlocks =
560 raidPtr->Disks[row][col].numBlocks *
561 rf_sizePercentage / 100;
562 }
563
564
565
566 spareDiskPtr = &raidPtr->Disks[row][col];
567 spareDiskPtr->status = rf_ds_used_spare;
568
569 printf("RECON: initiating in-place reconstruction on\n");
570 printf(" row %d col %d -> spare at row %d col %d\n",
571 row, col, row, col);
572
573 RF_UNLOCK_MUTEX(raidPtr->mutex);
574
575 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
576 spareDiskPtr, numDisksDone,
577 row, col);
578 raidPtr->reconDesc = (void *) reconDesc;
579 #if RF_RECON_STATS > 0
580 reconDesc->hsStallCount = 0;
581 reconDesc->numReconExecDelays = 0;
582 reconDesc->numReconEventWaits = 0;
583 #endif /* RF_RECON_STATS > 0 */
584 reconDesc->reconExecTimerRunning = 0;
585 reconDesc->reconExecTicks = 0;
586 reconDesc->maxReconExecTicks = 0;
587 rc = rf_ContinueReconstructFailedDisk(reconDesc);
588
589 RF_LOCK_MUTEX(raidPtr->mutex);
590 raidPtr->reconInProgress--;
591 RF_UNLOCK_MUTEX(raidPtr->mutex);
592
593 } else {
594 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
595 lp->parityConfig);
596 rc = EIO;
597 }
598 RF_LOCK_MUTEX(raidPtr->mutex);
599
600 if (!rc) {
601 /* Need to set these here, as at this point it'll be claiming
602 that the disk is in rf_ds_spared! But we know better :-) */
603
604 raidPtr->Disks[row][col].status = rf_ds_optimal;
605 raidPtr->status[row] = rf_rs_optimal;
606
607 /* fix up the component label */
608 /* Don't actually need the read here.. */
609 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
610 raidPtr->raid_cinfo[row][col].ci_vp,
611 &c_label);
612
613 c_label.version = RF_COMPONENT_LABEL_VERSION;
614 c_label.mod_counter = raidPtr->mod_counter;
615 c_label.serial_number = raidPtr->serial_number;
616 c_label.row = row;
617 c_label.column = col;
618 c_label.num_rows = raidPtr->numRow;
619 c_label.num_columns = raidPtr->numCol;
620 c_label.clean = RF_RAID_DIRTY;
621 c_label.status = rf_ds_optimal;
622
623 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
624 raidPtr->raid_cinfo[row][col].ci_vp,
625 &c_label);
626
627 }
628 RF_UNLOCK_MUTEX(raidPtr->mutex);
629 RF_SIGNAL_COND(raidPtr->waitForReconCond);
630 wakeup(&raidPtr->waitForReconCond);
631 return (rc);
632 }
633
634
635 int
636 rf_ContinueReconstructFailedDisk(reconDesc)
637 RF_RaidReconDesc_t *reconDesc;
638 {
639 RF_Raid_t *raidPtr = reconDesc->raidPtr;
640 RF_RowCol_t row = reconDesc->row;
641 RF_RowCol_t col = reconDesc->col;
642 RF_RowCol_t srow = reconDesc->srow;
643 RF_RowCol_t scol = reconDesc->scol;
644 RF_ReconMap_t *mapPtr;
645
646 RF_ReconEvent_t *event;
647 struct timeval etime, elpsd;
648 unsigned long xor_s, xor_resid_us;
649 int retcode, i, ds;
650
651 switch (reconDesc->state) {
652
653
654 case 0:
655
656 raidPtr->accumXorTimeUs = 0;
657
658 /* create one trace record per physical disk */
659 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
660
661 /* quiesce the array prior to starting recon. this is needed
662 * to assure no nasty interactions with pending user writes.
663 * We need to do this before we change the disk or row status. */
664 reconDesc->state = 1;
665
666 Dprintf("RECON: begin request suspend\n");
667 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
668 Dprintf("RECON: end request suspend\n");
669 rf_StartUserStats(raidPtr); /* zero out the stats kept on
670 * user accs */
671
672 /* fall through to state 1 */
673
674 case 1:
675
676 RF_LOCK_MUTEX(raidPtr->mutex);
677
678 /* create the reconstruction control pointer and install it in
679 * the right slot */
680 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
681 mapPtr = raidPtr->reconControl[row]->reconMap;
682 raidPtr->status[row] = rf_rs_reconstructing;
683 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
684 raidPtr->Disks[row][col].spareRow = srow;
685 raidPtr->Disks[row][col].spareCol = scol;
686
687 RF_UNLOCK_MUTEX(raidPtr->mutex);
688
689 RF_GETTIME(raidPtr->reconControl[row]->starttime);
690
691 /* now start up the actual reconstruction: issue a read for
692 * each surviving disk */
693 rf_start_cpu_monitor();
694 reconDesc->numDisksDone = 0;
695 for (i = 0; i < raidPtr->numCol; i++) {
696 if (i != col) {
697 /* find and issue the next I/O on the
698 * indicated disk */
699 if (IssueNextReadRequest(raidPtr, row, i)) {
700 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
701 reconDesc->numDisksDone++;
702 }
703 }
704 }
705
706 case 2:
707 Dprintf("RECON: resume requests\n");
708 rf_ResumeNewRequests(raidPtr);
709
710
711 reconDesc->state = 3;
712
713 case 3:
714
715 /* process reconstruction events until all disks report that
716 * they've completed all work */
717 mapPtr = raidPtr->reconControl[row]->reconMap;
718
719
720
721 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
722
723 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
724 RF_ASSERT(event);
725
726 if (ProcessReconEvent(raidPtr, row, event))
727 reconDesc->numDisksDone++;
728 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
729 if (rf_prReconSched) {
730 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
731 }
732 }
733
734
735
736 reconDesc->state = 4;
737
738
739 case 4:
740 mapPtr = raidPtr->reconControl[row]->reconMap;
741 if (rf_reconDebug) {
742 printf("RECON: all reads completed\n");
743 }
744 /* at this point all the reads have completed. We now wait
745 * for any pending writes to complete, and then we're done */
746
747 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
748
749 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
750 RF_ASSERT(event);
751
752 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
753 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
754 if (rf_prReconSched) {
755 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
756 }
757 }
758 reconDesc->state = 5;
759
760 case 5:
761 rf_stop_cpu_monitor();
762
763 /* Success: mark the dead disk as reconstructed. We quiesce
764 * the array here to assure no nasty interactions with pending
765 * user accesses when we free up the psstatus structure as
766 * part of FreeReconControl() */
767
768
769
770 reconDesc->state = 6;
771
772 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
773 rf_StopUserStats(raidPtr);
774 rf_PrintUserStats(raidPtr); /* print out the stats on user
775 * accs accumulated during
776 * recon */
777
778 /* fall through to state 6 */
779 case 6:
780
781
782
783 RF_LOCK_MUTEX(raidPtr->mutex);
784 raidPtr->numFailures--;
785 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
786 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
787 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
788 RF_UNLOCK_MUTEX(raidPtr->mutex);
789 RF_GETTIME(etime);
790 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
791
792 /* XXX -- why is state 7 different from state 6 if there is no
793 * return() here? -- XXX Note that I set elpsd above & use it
794 * below, so if you put a return here you'll have to fix this.
795 * (also, FreeReconControl is called below) */
796
797 case 7:
798
799 rf_ResumeNewRequests(raidPtr);
800
801 printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col);
802 xor_s = raidPtr->accumXorTimeUs / 1000000;
803 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
804 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
805 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
806 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
807 (int) raidPtr->reconControl[row]->starttime.tv_sec,
808 (int) raidPtr->reconControl[row]->starttime.tv_usec,
809 (int) etime.tv_sec, (int) etime.tv_usec);
810 rf_print_cpu_util("reconstruction");
811 #if RF_RECON_STATS > 0
812 printf("Total head-sep stall count was %d\n",
813 (int) reconDesc->hsStallCount);
814 #endif /* RF_RECON_STATS > 0 */
815 rf_FreeReconControl(raidPtr, row);
816 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
817 FreeReconDesc(reconDesc);
818
819 }
820
821 SignalReconDone(raidPtr);
822 return (0);
823 }
824 /*****************************************************************************************
825 * do the right thing upon each reconstruction event.
826 * returns nonzero if and only if there is nothing left unread on the indicated disk
827 ****************************************************************************************/
828 static int
829 ProcessReconEvent(raidPtr, frow, event)
830 RF_Raid_t *raidPtr;
831 RF_RowCol_t frow;
832 RF_ReconEvent_t *event;
833 {
834 int retcode = 0, submitblocked;
835 RF_ReconBuffer_t *rbuf;
836 RF_SectorCount_t sectorsPerRU;
837
838 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
839 switch (event->type) {
840
841 /* a read I/O has completed */
842 case RF_REVENT_READDONE:
843 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
844 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
845 frow, event->col, rbuf->parityStripeID);
846 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
847 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
848 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
849 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
850 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
851 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
852 if (!submitblocked)
853 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
854 break;
855
856 /* a write I/O has completed */
857 case RF_REVENT_WRITEDONE:
858 if (rf_floatingRbufDebug) {
859 rf_CheckFloatingRbufCount(raidPtr, 1);
860 }
861 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
862 rbuf = (RF_ReconBuffer_t *) event->arg;
863 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
864 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
865 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
866 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
867 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
868 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
869
870 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
871 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
872 raidPtr->numFullReconBuffers--;
873 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
874 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
875 } else
876 if (rbuf->type == RF_RBUF_TYPE_FORCED)
877 rf_FreeReconBuffer(rbuf);
878 else
879 RF_ASSERT(0);
880 break;
881
882 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
883 * cleared */
884 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
885 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
886 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
887 * BUFCLEAR event if we
888 * couldn't submit */
889 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
890 break;
891
892 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
893 * blockage has been cleared */
894 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
895 retcode = TryToRead(raidPtr, frow, event->col);
896 break;
897
898 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
899 * reconstruction blockage has been
900 * cleared */
901 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
902 retcode = TryToRead(raidPtr, frow, event->col);
903 break;
904
905 /* a buffer has become ready to write */
906 case RF_REVENT_BUFREADY:
907 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
908 retcode = IssueNextWriteRequest(raidPtr, frow);
909 if (rf_floatingRbufDebug) {
910 rf_CheckFloatingRbufCount(raidPtr, 1);
911 }
912 break;
913
914 /* we need to skip the current RU entirely because it got
915 * recon'd while we were waiting for something else to happen */
916 case RF_REVENT_SKIP:
917 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
918 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
919 break;
920
921 /* a forced-reconstruction read access has completed. Just
922 * submit the buffer */
923 case RF_REVENT_FORCEDREADDONE:
924 rbuf = (RF_ReconBuffer_t *) event->arg;
925 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
926 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
927 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
928 RF_ASSERT(!submitblocked);
929 break;
930
931 default:
932 RF_PANIC();
933 }
934 rf_FreeReconEventDesc(event);
935 return (retcode);
936 }
937 /*****************************************************************************************
938 *
939 * find the next thing that's needed on the indicated disk, and issue a read
940 * request for it. We assume that the reconstruction buffer associated with this
941 * process is free to receive the data. If reconstruction is blocked on the
942 * indicated RU, we issue a blockage-release request instead of a physical disk
943 * read request. If the current disk gets too far ahead of the others, we issue
944 * a head-separation wait request and return.
945 *
946 * ctrl->{ru_count, curPSID, diskOffset} and rbuf->failedDiskSectorOffset are
947 * maintained to point the the unit we're currently accessing. Note that this deviates
948 * from the standard C idiom of having counters point to the next thing to be
949 * accessed. This allows us to easily retry when we're blocked by head separation
950 * or reconstruction-blockage events.
951 *
952 * returns nonzero if and only if there is nothing left unread on the indicated disk
953 ****************************************************************************************/
954 static int
955 IssueNextReadRequest(raidPtr, row, col)
956 RF_Raid_t *raidPtr;
957 RF_RowCol_t row;
958 RF_RowCol_t col;
959 {
960 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
961 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
962 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
963 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
964 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
965 int do_new_check = 0, retcode = 0, status;
966
967 /* if we are currently the slowest disk, mark that we have to do a new
968 * check */
969 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
970 do_new_check = 1;
971
972 while (1) {
973
974 ctrl->ru_count++;
975 if (ctrl->ru_count < RUsPerPU) {
976 ctrl->diskOffset += sectorsPerRU;
977 rbuf->failedDiskSectorOffset += sectorsPerRU;
978 } else {
979 ctrl->curPSID++;
980 ctrl->ru_count = 0;
981 /* code left over from when head-sep was based on
982 * parity stripe id */
983 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
984 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
985 return (1); /* finito! */
986 }
987 /* find the disk offsets of the start of the parity
988 * stripe on both the current disk and the failed
989 * disk. skip this entire parity stripe if either disk
990 * does not appear in the indicated PS */
991 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
992 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
993 if (status) {
994 ctrl->ru_count = RUsPerPU - 1;
995 continue;
996 }
997 }
998 rbuf->which_ru = ctrl->ru_count;
999
1000 /* skip this RU if it's already been reconstructed */
1001 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1002 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1003 continue;
1004 }
1005 break;
1006 }
1007 ctrl->headSepCounter++;
1008 if (do_new_check)
1009 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1010
1011
1012 /* at this point, we have definitely decided what to do, and we have
1013 * only to see if we can actually do it now */
1014 rbuf->parityStripeID = ctrl->curPSID;
1015 rbuf->which_ru = ctrl->ru_count;
1016 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
1017 raidPtr->recon_tracerecs[col].reconacc = 1;
1018 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1019 retcode = TryToRead(raidPtr, row, col);
1020 return (retcode);
1021 }
1022 /* tries to issue the next read on the indicated disk. We may be blocked by (a) the heads being too
1023 * far apart, or (b) recon on the indicated RU being blocked due to a write by a user thread.
1024 * In this case, we issue a head-sep or blockage wait request, which will cause this same routine
1025 * to be invoked again later when the blockage has cleared.
1026 */
1027 static int
1028 TryToRead(raidPtr, row, col)
1029 RF_Raid_t *raidPtr;
1030 RF_RowCol_t row;
1031 RF_RowCol_t col;
1032 {
1033 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1034 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1035 RF_StripeNum_t psid = ctrl->curPSID;
1036 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1037 RF_DiskQueueData_t *req;
1038 int status, created = 0;
1039 RF_ReconParityStripeStatus_t *pssPtr;
1040
1041 /* if the current disk is too far ahead of the others, issue a
1042 * head-separation wait and return */
1043 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1044 return (0);
1045 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1046 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1047
1048 /* if recon is blocked on the indicated parity stripe, issue a
1049 * block-wait request and return. this also must mark the indicated RU
1050 * in the stripe as under reconstruction if not blocked. */
1051 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1052 if (status == RF_PSS_RECON_BLOCKED) {
1053 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1054 goto out;
1055 } else
1056 if (status == RF_PSS_FORCED_ON_WRITE) {
1057 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1058 goto out;
1059 }
1060 /* make one last check to be sure that the indicated RU didn't get
1061 * reconstructed while we were waiting for something else to happen.
1062 * This is unfortunate in that it causes us to make this check twice
1063 * in the normal case. Might want to make some attempt to re-work
1064 * this so that we only do this check if we've definitely blocked on
1065 * one of the above checks. When this condition is detected, we may
1066 * have just created a bogus status entry, which we need to delete. */
1067 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1068 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1069 if (created)
1070 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1071 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1072 goto out;
1073 }
1074 /* found something to read. issue the I/O */
1075 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1076 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1077 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1078 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1079 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1080 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1081 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1082
1083 /* should be ok to use a NULL proc pointer here, all the bufs we use
1084 * should be in kernel space */
1085 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1086 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1087
1088 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1089
1090 ctrl->rbuf->arg = (void *) req;
1091 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1092 pssPtr->issued[col] = 1;
1093
1094 out:
1095 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1096 return (0);
1097 }
1098
1099
1100 /* given a parity stripe ID, we want to find out whether both the current disk and the
1101 * failed disk exist in that parity stripe. If not, we want to skip this whole PS.
1102 * If so, we want to find the disk offset of the start of the PS on both the current
1103 * disk and the failed disk.
1104 *
1105 * this works by getting a list of disks comprising the indicated parity stripe, and
1106 * searching the list for the current and failed disks. Once we've decided they both
1107 * exist in the parity stripe, we need to decide whether each is data or parity,
1108 * so that we'll know which mapping function to call to get the corresponding disk
1109 * offsets.
1110 *
1111 * this is kind of unpleasant, but doing it this way allows the reconstruction code
1112 * to use parity stripe IDs rather than physical disks address to march through the
1113 * failed disk, which greatly simplifies a lot of code, as well as eliminating the
1114 * need for a reverse-mapping function. I also think it will execute faster, since
1115 * the calls to the mapping module are kept to a minimum.
1116 *
1117 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING THE STRIPE
1118 * IN THE CORRECT ORDER
1119 */
1120 static int
1121 ComputePSDiskOffsets(
1122 RF_Raid_t * raidPtr, /* raid descriptor */
1123 RF_StripeNum_t psid, /* parity stripe identifier */
1124 RF_RowCol_t row, /* row and column of disk to find the offsets
1125 * for */
1126 RF_RowCol_t col,
1127 RF_SectorNum_t * outDiskOffset,
1128 RF_SectorNum_t * outFailedDiskSectorOffset,
1129 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1130 RF_RowCol_t * spCol,
1131 RF_SectorNum_t * spOffset)
1132 { /* OUT: offset into disk containing spare unit */
1133 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1134 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1135 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1136 RF_RowCol_t *diskids;
1137 u_int i, j, k, i_offset, j_offset;
1138 RF_RowCol_t prow, pcol;
1139 int testcol, testrow;
1140 RF_RowCol_t stripe;
1141 RF_SectorNum_t poffset;
1142 char i_is_parity = 0, j_is_parity = 0;
1143 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1144
1145 /* get a listing of the disks comprising that stripe */
1146 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1147 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1148 RF_ASSERT(diskids);
1149
1150 /* reject this entire parity stripe if it does not contain the
1151 * indicated disk or it does not contain the failed disk */
1152 if (row != stripe)
1153 goto skipit;
1154 for (i = 0; i < stripeWidth; i++) {
1155 if (col == diskids[i])
1156 break;
1157 }
1158 if (i == stripeWidth)
1159 goto skipit;
1160 for (j = 0; j < stripeWidth; j++) {
1161 if (fcol == diskids[j])
1162 break;
1163 }
1164 if (j == stripeWidth) {
1165 goto skipit;
1166 }
1167 /* find out which disk the parity is on */
1168 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1169
1170 /* find out if either the current RU or the failed RU is parity */
1171 /* also, if the parity occurs in this stripe prior to the data and/or
1172 * failed col, we need to decrement i and/or j */
1173 for (k = 0; k < stripeWidth; k++)
1174 if (diskids[k] == pcol)
1175 break;
1176 RF_ASSERT(k < stripeWidth);
1177 i_offset = i;
1178 j_offset = j;
1179 if (k < i)
1180 i_offset--;
1181 else
1182 if (k == i) {
1183 i_is_parity = 1;
1184 i_offset = 0;
1185 } /* set offsets to zero to disable multiply
1186 * below */
1187 if (k < j)
1188 j_offset--;
1189 else
1190 if (k == j) {
1191 j_is_parity = 1;
1192 j_offset = 0;
1193 }
1194 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1195 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1196 * tells us how far into the stripe the [current,failed] disk is. */
1197
1198 /* call the mapping routine to get the offset into the current disk,
1199 * repeat for failed disk. */
1200 if (i_is_parity)
1201 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1202 else
1203 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1204
1205 RF_ASSERT(row == testrow && col == testcol);
1206
1207 if (j_is_parity)
1208 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1209 else
1210 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1211 RF_ASSERT(row == testrow && fcol == testcol);
1212
1213 /* now locate the spare unit for the failed unit */
1214 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1215 if (j_is_parity)
1216 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1217 else
1218 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1219 } else {
1220 *spRow = raidPtr->reconControl[row]->spareRow;
1221 *spCol = raidPtr->reconControl[row]->spareCol;
1222 *spOffset = *outFailedDiskSectorOffset;
1223 }
1224
1225 return (0);
1226
1227 skipit:
1228 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1229 psid, row, col);
1230 return (1);
1231 }
1232 /* this is called when a buffer has become ready to write to the replacement disk */
1233 static int
1234 IssueNextWriteRequest(raidPtr, row)
1235 RF_Raid_t *raidPtr;
1236 RF_RowCol_t row;
1237 {
1238 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1239 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1240 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1241 RF_ReconBuffer_t *rbuf;
1242 RF_DiskQueueData_t *req;
1243
1244 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1245 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1246 * have gotten the event that sent us here */
1247 RF_ASSERT(rbuf->pssPtr);
1248
1249 rbuf->pssPtr->writeRbuf = rbuf;
1250 rbuf->pssPtr = NULL;
1251
1252 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1253 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1254 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1255 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1256 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1257 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1258
1259 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1260 * kernel space */
1261 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1262 sectorsPerRU, rbuf->buffer,
1263 rbuf->parityStripeID, rbuf->which_ru,
1264 ReconWriteDoneProc, (void *) rbuf, NULL,
1265 &raidPtr->recon_tracerecs[fcol],
1266 (void *) raidPtr, 0, NULL);
1267
1268 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1269
1270 rbuf->arg = (void *) req;
1271 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1272
1273 return (0);
1274 }
1275 /* this gets called upon the completion of a reconstruction read operation
1276 * the arg is a pointer to the per-disk reconstruction control structure
1277 * for the process that just finished a read.
1278 *
1279 * called at interrupt context in the kernel, so don't do anything illegal here.
1280 */
1281 static int
1282 ReconReadDoneProc(arg, status)
1283 void *arg;
1284 int status;
1285 {
1286 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1287 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1288
1289 if (status) {
1290 /*
1291 * XXX
1292 */
1293 printf("Recon read failed!\n");
1294 RF_PANIC();
1295 }
1296 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1297 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1298 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1299 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1300 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1301
1302 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1303 return (0);
1304 }
1305 /* this gets called upon the completion of a reconstruction write operation.
1306 * the arg is a pointer to the rbuf that was just written
1307 *
1308 * called at interrupt context in the kernel, so don't do anything illegal here.
1309 */
1310 static int
1311 ReconWriteDoneProc(arg, status)
1312 void *arg;
1313 int status;
1314 {
1315 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1316
1317 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1318 if (status) {
1319 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1320 * write failed!\n"); */
1321 RF_PANIC();
1322 }
1323 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1324 return (0);
1325 }
1326
1327
1328 /* computes a new minimum head sep, and wakes up anyone who needs to be woken as a result */
1329 static void
1330 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1331 RF_Raid_t *raidPtr;
1332 RF_RowCol_t row;
1333 RF_HeadSepLimit_t hsCtr;
1334 {
1335 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1336 RF_HeadSepLimit_t new_min;
1337 RF_RowCol_t i;
1338 RF_CallbackDesc_t *p;
1339 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1340 * of a minimum */
1341
1342
1343 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1344
1345 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1346 for (i = 0; i < raidPtr->numCol; i++)
1347 if (i != reconCtrlPtr->fcol) {
1348 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1349 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1350 }
1351 /* set the new minimum and wake up anyone who can now run again */
1352 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1353 reconCtrlPtr->minHeadSepCounter = new_min;
1354 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1355 while (reconCtrlPtr->headSepCBList) {
1356 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1357 break;
1358 p = reconCtrlPtr->headSepCBList;
1359 reconCtrlPtr->headSepCBList = p->next;
1360 p->next = NULL;
1361 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1362 rf_FreeCallbackDesc(p);
1363 }
1364
1365 }
1366 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1367 }
1368 /* checks to see that the maximum head separation will not be violated
1369 * if we initiate a reconstruction I/O on the indicated disk. Limiting the
1370 * maximum head separation between two disks eliminates the nasty buffer-stall
1371 * conditions that occur when one disk races ahead of the others and consumes
1372 * all of the floating recon buffers. This code is complex and unpleasant
1373 * but it's necessary to avoid some very nasty, albeit fairly rare,
1374 * reconstruction behavior.
1375 *
1376 * returns non-zero if and only if we have to stop working on the indicated disk
1377 * due to a head-separation delay.
1378 */
1379 static int
1380 CheckHeadSeparation(
1381 RF_Raid_t * raidPtr,
1382 RF_PerDiskReconCtrl_t * ctrl,
1383 RF_RowCol_t row,
1384 RF_RowCol_t col,
1385 RF_HeadSepLimit_t hsCtr,
1386 RF_ReconUnitNum_t which_ru)
1387 {
1388 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1389 RF_CallbackDesc_t *cb, *p, *pt;
1390 int retval = 0;
1391
1392 /* if we're too far ahead of the slowest disk, stop working on this
1393 * disk until the slower ones catch up. We do this by scheduling a
1394 * wakeup callback for the time when the slowest disk has caught up.
1395 * We define "caught up" with 20% hysteresis, i.e. the head separation
1396 * must have fallen to at most 80% of the max allowable head
1397 * separation before we'll wake up.
1398 *
1399 */
1400 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1401 if ((raidPtr->headSepLimit >= 0) &&
1402 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1403 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1404 raidPtr->raidid, row, col, ctrl->headSepCounter,
1405 reconCtrlPtr->minHeadSepCounter,
1406 raidPtr->headSepLimit);
1407 cb = rf_AllocCallbackDesc();
1408 /* the minHeadSepCounter value we have to get to before we'll
1409 * wake up. build in 20% hysteresis. */
1410 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1411 cb->row = row;
1412 cb->col = col;
1413 cb->next = NULL;
1414
1415 /* insert this callback descriptor into the sorted list of
1416 * pending head-sep callbacks */
1417 p = reconCtrlPtr->headSepCBList;
1418 if (!p)
1419 reconCtrlPtr->headSepCBList = cb;
1420 else
1421 if (cb->callbackArg.v < p->callbackArg.v) {
1422 cb->next = reconCtrlPtr->headSepCBList;
1423 reconCtrlPtr->headSepCBList = cb;
1424 } else {
1425 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1426 cb->next = p;
1427 pt->next = cb;
1428 }
1429 retval = 1;
1430 #if RF_RECON_STATS > 0
1431 ctrl->reconCtrl->reconDesc->hsStallCount++;
1432 #endif /* RF_RECON_STATS > 0 */
1433 }
1434 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1435
1436 return (retval);
1437 }
1438 /* checks to see if reconstruction has been either forced or blocked by a user operation.
1439 * if forced, we skip this RU entirely.
1440 * else if blocked, put ourselves on the wait list.
1441 * else return 0.
1442 *
1443 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1444 */
1445 static int
1446 CheckForcedOrBlockedReconstruction(
1447 RF_Raid_t * raidPtr,
1448 RF_ReconParityStripeStatus_t * pssPtr,
1449 RF_PerDiskReconCtrl_t * ctrl,
1450 RF_RowCol_t row,
1451 RF_RowCol_t col,
1452 RF_StripeNum_t psid,
1453 RF_ReconUnitNum_t which_ru)
1454 {
1455 RF_CallbackDesc_t *cb;
1456 int retcode = 0;
1457
1458 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1459 retcode = RF_PSS_FORCED_ON_WRITE;
1460 else
1461 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1462 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1463 cb = rf_AllocCallbackDesc(); /* append ourselves to
1464 * the blockage-wait
1465 * list */
1466 cb->row = row;
1467 cb->col = col;
1468 cb->next = pssPtr->blockWaitList;
1469 pssPtr->blockWaitList = cb;
1470 retcode = RF_PSS_RECON_BLOCKED;
1471 }
1472 if (!retcode)
1473 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1474 * reconstruction */
1475
1476 return (retcode);
1477 }
1478 /* if reconstruction is currently ongoing for the indicated stripeID, reconstruction
1479 * is forced to completion and we return non-zero to indicate that the caller must
1480 * wait. If not, then reconstruction is blocked on the indicated stripe and the
1481 * routine returns zero. If and only if we return non-zero, we'll cause the cbFunc
1482 * to get invoked with the cbArg when the reconstruction has completed.
1483 */
1484 int
1485 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1486 RF_Raid_t *raidPtr;
1487 RF_AccessStripeMap_t *asmap;
1488 void (*cbFunc) (RF_Raid_t *, void *);
1489 void *cbArg;
1490 {
1491 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1492 * we're working on */
1493 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1494 * forcing recon on */
1495 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1496 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1497 * stripe status structure */
1498 RF_StripeNum_t psid; /* parity stripe id */
1499 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1500 * offset */
1501 RF_RowCol_t *diskids;
1502 RF_RowCol_t stripe;
1503 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1504 RF_RowCol_t fcol, diskno, i;
1505 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1506 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1507 RF_CallbackDesc_t *cb;
1508 int created = 0, nPromoted;
1509
1510 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1511
1512 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1513
1514 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1515
1516 /* if recon is not ongoing on this PS, just return */
1517 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1518 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1519 return (0);
1520 }
1521 /* otherwise, we have to wait for reconstruction to complete on this
1522 * RU. */
1523 /* In order to avoid waiting for a potentially large number of
1524 * low-priority accesses to complete, we force a normal-priority (i.e.
1525 * not low-priority) reconstruction on this RU. */
1526 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1527 DDprintf1("Forcing recon on psid %ld\n", psid);
1528 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1529 * forced recon */
1530 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1531 * that we just set */
1532 fcol = raidPtr->reconControl[row]->fcol;
1533
1534 /* get a listing of the disks comprising the indicated stripe */
1535 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1536 RF_ASSERT(row == stripe);
1537
1538 /* For previously issued reads, elevate them to normal
1539 * priority. If the I/O has already completed, it won't be
1540 * found in the queue, and hence this will be a no-op. For
1541 * unissued reads, allocate buffers and issue new reads. The
1542 * fact that we've set the FORCED bit means that the regular
1543 * recon procs will not re-issue these reqs */
1544 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1545 if ((diskno = diskids[i]) != fcol) {
1546 if (pssPtr->issued[diskno]) {
1547 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1548 if (rf_reconDebug && nPromoted)
1549 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1550 } else {
1551 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1552 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1553 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1554 * location */
1555 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1556 new_rbuf->which_ru = which_ru;
1557 new_rbuf->failedDiskSectorOffset = fd_offset;
1558 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1559
1560 /* use NULL b_proc b/c all addrs
1561 * should be in kernel space */
1562 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1563 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1564 NULL, (void *) raidPtr, 0, NULL);
1565
1566 RF_ASSERT(req); /* XXX -- fix this --
1567 * XXX */
1568
1569 new_rbuf->arg = req;
1570 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1571 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1572 }
1573 }
1574 /* if the write is sitting in the disk queue, elevate its
1575 * priority */
1576 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1577 printf("raid%d: promoted write to row %d col %d\n",
1578 raidPtr->raidid, row, fcol);
1579 }
1580 /* install a callback descriptor to be invoked when recon completes on
1581 * this parity stripe. */
1582 cb = rf_AllocCallbackDesc();
1583 /* XXX the following is bogus.. These functions don't really match!!
1584 * GO */
1585 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1586 cb->callbackArg.p = (void *) cbArg;
1587 cb->next = pssPtr->procWaitList;
1588 pssPtr->procWaitList = cb;
1589 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1590 raidPtr->raidid, psid);
1591
1592 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1593 return (1);
1594 }
1595 /* called upon the completion of a forced reconstruction read.
1596 * all we do is schedule the FORCEDREADONE event.
1597 * called at interrupt context in the kernel, so don't do anything illegal here.
1598 */
1599 static void
1600 ForceReconReadDoneProc(arg, status)
1601 void *arg;
1602 int status;
1603 {
1604 RF_ReconBuffer_t *rbuf = arg;
1605
1606 if (status) {
1607 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1608 * recon read
1609 * failed!\n"); */
1610 RF_PANIC();
1611 }
1612 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1613 }
1614 /* releases a block on the reconstruction of the indicated stripe */
1615 int
1616 rf_UnblockRecon(raidPtr, asmap)
1617 RF_Raid_t *raidPtr;
1618 RF_AccessStripeMap_t *asmap;
1619 {
1620 RF_RowCol_t row = asmap->origRow;
1621 RF_StripeNum_t stripeID = asmap->stripeID;
1622 RF_ReconParityStripeStatus_t *pssPtr;
1623 RF_ReconUnitNum_t which_ru;
1624 RF_StripeNum_t psid;
1625 int created = 0;
1626 RF_CallbackDesc_t *cb;
1627
1628 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1629 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1630 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1631
1632 /* When recon is forced, the pss desc can get deleted before we get
1633 * back to unblock recon. But, this can _only_ happen when recon is
1634 * forced. It would be good to put some kind of sanity check here, but
1635 * how to decide if recon was just forced or not? */
1636 if (!pssPtr) {
1637 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1638 * RU %d\n",psid,which_ru); */
1639 if (rf_reconDebug || rf_pssDebug)
1640 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1641 goto out;
1642 }
1643 pssPtr->blockCount--;
1644 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1645 raidPtr->raidid, psid, pssPtr->blockCount);
1646 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1647
1648 /* unblock recon before calling CauseReconEvent in case
1649 * CauseReconEvent causes us to try to issue a new read before
1650 * returning here. */
1651 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1652
1653
1654 while (pssPtr->blockWaitList) { /* spin through the block-wait
1655 * list and release all the
1656 * waiters */
1657 cb = pssPtr->blockWaitList;
1658 pssPtr->blockWaitList = cb->next;
1659 cb->next = NULL;
1660 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1661 rf_FreeCallbackDesc(cb);
1662 }
1663 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { /* if no recon was
1664 * requested while recon
1665 * was blocked */
1666 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1667 }
1668 }
1669 out:
1670 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1671 return (0);
1672 }
1673