rf_reconstruct.c revision 1.103.6.2 1 /* $NetBSD: rf_reconstruct.c,v 1.103.6.2 2008/10/10 22:33:10 skrll Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.103.6.2 2008/10/10 22:33:10 skrll Exp $");
37
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <dev/raidframe/raidframevar.h>
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_debugprint.h"
58 #include "rf_general.h"
59 #include "rf_driver.h"
60 #include "rf_utils.h"
61 #include "rf_shutdown.h"
62
63 #include "rf_kintf.h"
64
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
66
67 #if RF_DEBUG_RECON
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 #else /* RF_DEBUG_RECON */
81
82 #define Dprintf(s) {}
83 #define Dprintf1(s,a) {}
84 #define Dprintf2(s,a,b) {}
85 #define Dprintf3(s,a,b,c) {}
86 #define Dprintf4(s,a,b,c,d) {}
87 #define Dprintf5(s,a,b,c,d,e) {}
88 #define Dprintf6(s,a,b,c,d,e,f) {}
89 #define Dprintf7(s,a,b,c,d,e,f,g) {}
90
91 #define DDprintf1(s,a) {}
92 #define DDprintf2(s,a,b) {}
93
94 #endif /* RF_DEBUG_RECON */
95
96 #define RF_RECON_DONE_READS 1
97 #define RF_RECON_READ_ERROR 2
98 #define RF_RECON_WRITE_ERROR 3
99 #define RF_RECON_READ_STOPPED 4
100 #define RF_RECON_WRITE_DONE 5
101
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 RF_RowCol_t, RF_HeadSepLimit_t,
120 RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 RF_ReconParityStripeStatus_t *,
123 RF_PerDiskReconCtrl_t *,
124 RF_RowCol_t, RF_StripeNum_t,
125 RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128
129 struct RF_ReconDoneProc_s {
130 void (*proc) (RF_Raid_t *, void *);
131 void *arg;
132 RF_ReconDoneProc_t *next;
133 };
134
135 /**************************************************************************
136 *
137 * sets up the parameters that will be used by the reconstruction process
138 * currently there are none, except for those that the layout-specific
139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140 *
141 * in the kernel, we fire off the recon thread.
142 *
143 **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 pool_destroy(&rf_pools.reconbuffer);
148 }
149
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153
154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157
158 return (0);
159 }
160
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 RF_RowCol_t scol)
165 {
166
167 RF_RaidReconDesc_t *reconDesc;
168
169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 (RF_RaidReconDesc_t *));
171 reconDesc->raidPtr = raidPtr;
172 reconDesc->col = col;
173 reconDesc->spareDiskPtr = spareDiskPtr;
174 reconDesc->numDisksDone = numDisksDone;
175 reconDesc->scol = scol;
176 reconDesc->next = NULL;
177
178 return (reconDesc);
179 }
180
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 reconDesc->raidPtr->raidid,
187 (long) reconDesc->numReconEventWaits,
188 (long) reconDesc->numReconExecDelays);
189 #endif /* RF_RECON_STATS > 0 */
190 printf("raid%d: %lu max exec ticks\n",
191 reconDesc->raidPtr->raidid,
192 (long) reconDesc->maxReconExecTicks);
193 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
194 }
195
196
197 /*****************************************************************************
198 *
199 * primary routine to reconstruct a failed disk. This should be called from
200 * within its own thread. It won't return until reconstruction completes,
201 * fails, or is aborted.
202 *****************************************************************************/
203 int
204 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
205 {
206 const RF_LayoutSW_t *lp;
207 int rc;
208
209 lp = raidPtr->Layout.map;
210 if (lp->SubmitReconBuffer) {
211 /*
212 * The current infrastructure only supports reconstructing one
213 * disk at a time for each array.
214 */
215 RF_LOCK_MUTEX(raidPtr->mutex);
216 while (raidPtr->reconInProgress) {
217 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
218 }
219 raidPtr->reconInProgress++;
220 RF_UNLOCK_MUTEX(raidPtr->mutex);
221 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
222 RF_LOCK_MUTEX(raidPtr->mutex);
223 raidPtr->reconInProgress--;
224 RF_UNLOCK_MUTEX(raidPtr->mutex);
225 } else {
226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
227 lp->parityConfig);
228 rc = EIO;
229 }
230 RF_SIGNAL_COND(raidPtr->waitForReconCond);
231 return (rc);
232 }
233
234 int
235 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
236 {
237 RF_ComponentLabel_t c_label;
238 RF_RaidDisk_t *spareDiskPtr = NULL;
239 RF_RaidReconDesc_t *reconDesc;
240 RF_RowCol_t scol;
241 int numDisksDone = 0, rc;
242
243 /* first look for a spare drive onto which to reconstruct the data */
244 /* spare disk descriptors are stored in row 0. This may have to
245 * change eventually */
246
247 RF_LOCK_MUTEX(raidPtr->mutex);
248 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
249 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
250 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
251 if (raidPtr->status != rf_rs_degraded) {
252 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
253 RF_UNLOCK_MUTEX(raidPtr->mutex);
254 return (EINVAL);
255 }
256 scol = (-1);
257 } else {
258 #endif
259 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
260 if (raidPtr->Disks[scol].status == rf_ds_spare) {
261 spareDiskPtr = &raidPtr->Disks[scol];
262 spareDiskPtr->status = rf_ds_used_spare;
263 break;
264 }
265 }
266 if (!spareDiskPtr) {
267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
268 RF_UNLOCK_MUTEX(raidPtr->mutex);
269 return (ENOSPC);
270 }
271 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
272 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
273 }
274 #endif
275 RF_UNLOCK_MUTEX(raidPtr->mutex);
276
277 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
278 raidPtr->reconDesc = (void *) reconDesc;
279 #if RF_RECON_STATS > 0
280 reconDesc->hsStallCount = 0;
281 reconDesc->numReconExecDelays = 0;
282 reconDesc->numReconEventWaits = 0;
283 #endif /* RF_RECON_STATS > 0 */
284 reconDesc->reconExecTimerRunning = 0;
285 reconDesc->reconExecTicks = 0;
286 reconDesc->maxReconExecTicks = 0;
287 rc = rf_ContinueReconstructFailedDisk(reconDesc);
288
289 if (!rc) {
290 /* fix up the component label */
291 /* Don't actually need the read here.. */
292 raidread_component_label(
293 raidPtr->raid_cinfo[scol].ci_dev,
294 raidPtr->raid_cinfo[scol].ci_vp,
295 &c_label);
296
297 raid_init_component_label( raidPtr, &c_label);
298 c_label.row = 0;
299 c_label.column = col;
300 c_label.clean = RF_RAID_DIRTY;
301 c_label.status = rf_ds_optimal;
302 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
303
304 /* We've just done a rebuild based on all the other
305 disks, so at this point the parity is known to be
306 clean, even if it wasn't before. */
307
308 /* XXX doesn't hold for RAID 6!!*/
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 raidPtr->parity_good = RF_RAID_CLEAN;
312 RF_UNLOCK_MUTEX(raidPtr->mutex);
313
314 /* XXXX MORE NEEDED HERE */
315
316 raidwrite_component_label(
317 raidPtr->raid_cinfo[scol].ci_dev,
318 raidPtr->raid_cinfo[scol].ci_vp,
319 &c_label);
320
321 } else {
322 /* Reconstruct failed. */
323
324 RF_LOCK_MUTEX(raidPtr->mutex);
325 /* Failed disk goes back to "failed" status */
326 raidPtr->Disks[col].status = rf_ds_failed;
327
328 /* Spare disk goes back to "spare" status. */
329 spareDiskPtr->status = rf_ds_spare;
330 RF_UNLOCK_MUTEX(raidPtr->mutex);
331
332 }
333 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
334 return (rc);
335 }
336
337 /*
338
339 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
340 and you don't get a spare until the next Monday. With this function
341 (and hot-swappable drives) you can now put your new disk containing
342 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
343 rebuild the data "on the spot".
344
345 */
346
347 int
348 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
349 {
350 RF_RaidDisk_t *spareDiskPtr = NULL;
351 RF_RaidReconDesc_t *reconDesc;
352 const RF_LayoutSW_t *lp;
353 RF_ComponentLabel_t c_label;
354 int numDisksDone = 0, rc;
355 struct partinfo dpart;
356 struct vnode *vp;
357 struct vattr va;
358 int retcode;
359 int ac;
360
361 lp = raidPtr->Layout.map;
362 if (!lp->SubmitReconBuffer) {
363 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
364 lp->parityConfig);
365 /* wakeup anyone who might be waiting to do a reconstruct */
366 RF_SIGNAL_COND(raidPtr->waitForReconCond);
367 return(EIO);
368 }
369
370 /*
371 * The current infrastructure only supports reconstructing one
372 * disk at a time for each array.
373 */
374 RF_LOCK_MUTEX(raidPtr->mutex);
375
376 if (raidPtr->Disks[col].status != rf_ds_failed) {
377 /* "It's gone..." */
378 raidPtr->numFailures++;
379 raidPtr->Disks[col].status = rf_ds_failed;
380 raidPtr->status = rf_rs_degraded;
381 RF_UNLOCK_MUTEX(raidPtr->mutex);
382 rf_update_component_labels(raidPtr,
383 RF_NORMAL_COMPONENT_UPDATE);
384 RF_LOCK_MUTEX(raidPtr->mutex);
385 }
386
387 while (raidPtr->reconInProgress) {
388 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
389 }
390
391 raidPtr->reconInProgress++;
392
393 /* first look for a spare drive onto which to reconstruct the
394 data. spare disk descriptors are stored in row 0. This
395 may have to change eventually */
396
397 /* Actually, we don't care if it's failed or not... On a RAID
398 set with correct parity, this function should be callable
399 on any component without ill effects. */
400 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
401
402 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
403 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
404 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
405
406 raidPtr->reconInProgress--;
407 RF_UNLOCK_MUTEX(raidPtr->mutex);
408 RF_SIGNAL_COND(raidPtr->waitForReconCond);
409 return (EINVAL);
410 }
411 #endif
412
413 /* This device may have been opened successfully the
414 first time. Close it before trying to open it again.. */
415
416 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
417 #if 0
418 printf("Closed the open device: %s\n",
419 raidPtr->Disks[col].devname);
420 #endif
421 vp = raidPtr->raid_cinfo[col].ci_vp;
422 ac = raidPtr->Disks[col].auto_configured;
423 RF_UNLOCK_MUTEX(raidPtr->mutex);
424 rf_close_component(raidPtr, vp, ac);
425 RF_LOCK_MUTEX(raidPtr->mutex);
426 raidPtr->raid_cinfo[col].ci_vp = NULL;
427 }
428 /* note that this disk was *not* auto_configured (any longer)*/
429 raidPtr->Disks[col].auto_configured = 0;
430
431 #if 0
432 printf("About to (re-)open the device for rebuilding: %s\n",
433 raidPtr->Disks[col].devname);
434 #endif
435 RF_UNLOCK_MUTEX(raidPtr->mutex);
436 retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE);
437
438 if (retcode) {
439 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
440 raidPtr->Disks[col].devname, retcode);
441
442 /* the component isn't responding properly...
443 must be still dead :-( */
444 RF_LOCK_MUTEX(raidPtr->mutex);
445 raidPtr->reconInProgress--;
446 RF_UNLOCK_MUTEX(raidPtr->mutex);
447 RF_SIGNAL_COND(raidPtr->waitForReconCond);
448 return(retcode);
449 }
450
451 /* Ok, so we can at least do a lookup...
452 How about actually getting a vp for it? */
453
454 if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) {
455 RF_LOCK_MUTEX(raidPtr->mutex);
456 raidPtr->reconInProgress--;
457 RF_UNLOCK_MUTEX(raidPtr->mutex);
458 RF_SIGNAL_COND(raidPtr->waitForReconCond);
459 return(retcode);
460 }
461
462 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred);
463 if (retcode) {
464 RF_LOCK_MUTEX(raidPtr->mutex);
465 raidPtr->reconInProgress--;
466 RF_UNLOCK_MUTEX(raidPtr->mutex);
467 RF_SIGNAL_COND(raidPtr->waitForReconCond);
468 return(retcode);
469 }
470 RF_LOCK_MUTEX(raidPtr->mutex);
471 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
472
473 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
474 rf_protectedSectors;
475
476 raidPtr->raid_cinfo[col].ci_vp = vp;
477 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
478
479 raidPtr->Disks[col].dev = va.va_rdev;
480
481 /* we allow the user to specify that only a fraction
482 of the disks should be used this is just for debug:
483 it speeds up * the parity scan */
484 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
485 rf_sizePercentage / 100;
486 RF_UNLOCK_MUTEX(raidPtr->mutex);
487
488 spareDiskPtr = &raidPtr->Disks[col];
489 spareDiskPtr->status = rf_ds_used_spare;
490
491 printf("raid%d: initiating in-place reconstruction on column %d\n",
492 raidPtr->raidid, col);
493
494 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
495 numDisksDone, col);
496 raidPtr->reconDesc = (void *) reconDesc;
497 #if RF_RECON_STATS > 0
498 reconDesc->hsStallCount = 0;
499 reconDesc->numReconExecDelays = 0;
500 reconDesc->numReconEventWaits = 0;
501 #endif /* RF_RECON_STATS > 0 */
502 reconDesc->reconExecTimerRunning = 0;
503 reconDesc->reconExecTicks = 0;
504 reconDesc->maxReconExecTicks = 0;
505 rc = rf_ContinueReconstructFailedDisk(reconDesc);
506
507 if (!rc) {
508 RF_LOCK_MUTEX(raidPtr->mutex);
509 /* Need to set these here, as at this point it'll be claiming
510 that the disk is in rf_ds_spared! But we know better :-) */
511
512 raidPtr->Disks[col].status = rf_ds_optimal;
513 raidPtr->status = rf_rs_optimal;
514 RF_UNLOCK_MUTEX(raidPtr->mutex);
515
516 /* fix up the component label */
517 /* Don't actually need the read here.. */
518 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
519 raidPtr->raid_cinfo[col].ci_vp,
520 &c_label);
521
522 RF_LOCK_MUTEX(raidPtr->mutex);
523 raid_init_component_label(raidPtr, &c_label);
524
525 c_label.row = 0;
526 c_label.column = col;
527
528 /* We've just done a rebuild based on all the other
529 disks, so at this point the parity is known to be
530 clean, even if it wasn't before. */
531
532 /* XXX doesn't hold for RAID 6!!*/
533
534 raidPtr->parity_good = RF_RAID_CLEAN;
535 RF_UNLOCK_MUTEX(raidPtr->mutex);
536
537 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
538 raidPtr->raid_cinfo[col].ci_vp,
539 &c_label);
540
541 } else {
542 /* Reconstruct-in-place failed. Disk goes back to
543 "failed" status, regardless of what it was before. */
544 RF_LOCK_MUTEX(raidPtr->mutex);
545 raidPtr->Disks[col].status = rf_ds_failed;
546 RF_UNLOCK_MUTEX(raidPtr->mutex);
547 }
548
549 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
550
551 RF_LOCK_MUTEX(raidPtr->mutex);
552 raidPtr->reconInProgress--;
553 RF_UNLOCK_MUTEX(raidPtr->mutex);
554
555 RF_SIGNAL_COND(raidPtr->waitForReconCond);
556 return (rc);
557 }
558
559
560 int
561 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
562 {
563 RF_Raid_t *raidPtr = reconDesc->raidPtr;
564 RF_RowCol_t col = reconDesc->col;
565 RF_RowCol_t scol = reconDesc->scol;
566 RF_ReconMap_t *mapPtr;
567 RF_ReconCtrl_t *tmp_reconctrl;
568 RF_ReconEvent_t *event;
569 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
570 RF_ReconUnitCount_t RUsPerPU;
571 struct timeval etime, elpsd;
572 unsigned long xor_s, xor_resid_us;
573 int i, ds;
574 int status, done;
575 int recon_error, write_error;
576
577 raidPtr->accumXorTimeUs = 0;
578 #if RF_ACC_TRACE > 0
579 /* create one trace record per physical disk */
580 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
581 #endif
582
583 /* quiesce the array prior to starting recon. this is needed
584 * to assure no nasty interactions with pending user writes.
585 * We need to do this before we change the disk or row status. */
586
587 Dprintf("RECON: begin request suspend\n");
588 rf_SuspendNewRequestsAndWait(raidPtr);
589 Dprintf("RECON: end request suspend\n");
590
591 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
592 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
593
594 RF_LOCK_MUTEX(raidPtr->mutex);
595
596 /* create the reconstruction control pointer and install it in
597 * the right slot */
598 raidPtr->reconControl = tmp_reconctrl;
599 mapPtr = raidPtr->reconControl->reconMap;
600 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
601 raidPtr->reconControl->numRUsComplete = 0;
602 raidPtr->status = rf_rs_reconstructing;
603 raidPtr->Disks[col].status = rf_ds_reconstructing;
604 raidPtr->Disks[col].spareCol = scol;
605
606 RF_UNLOCK_MUTEX(raidPtr->mutex);
607
608 RF_GETTIME(raidPtr->reconControl->starttime);
609
610 Dprintf("RECON: resume requests\n");
611 rf_ResumeNewRequests(raidPtr);
612
613
614 mapPtr = raidPtr->reconControl->reconMap;
615
616 incPSID = RF_RECONMAP_SIZE;
617 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
618 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
619 recon_error = 0;
620 write_error = 0;
621 pending_writes = incPSID;
622 raidPtr->reconControl->lastPSID = incPSID;
623
624 /* start the actual reconstruction */
625
626 done = 0;
627 while (!done) {
628
629 num_writes = 0;
630
631 /* issue a read for each surviving disk */
632
633 reconDesc->numDisksDone = 0;
634 for (i = 0; i < raidPtr->numCol; i++) {
635 if (i != col) {
636 /* find and issue the next I/O on the
637 * indicated disk */
638 if (IssueNextReadRequest(raidPtr, i)) {
639 Dprintf1("RECON: done issuing for c%d\n", i);
640 reconDesc->numDisksDone++;
641 }
642 }
643 }
644
645 /* process reconstruction events until all disks report that
646 * they've completed all work */
647
648 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
649
650 event = rf_GetNextReconEvent(reconDesc);
651 status = ProcessReconEvent(raidPtr, event);
652
653 /* the normal case is that a read completes, and all is well. */
654 if (status == RF_RECON_DONE_READS) {
655 reconDesc->numDisksDone++;
656 } else if ((status == RF_RECON_READ_ERROR) ||
657 (status == RF_RECON_WRITE_ERROR)) {
658 /* an error was encountered while reconstructing...
659 Pretend we've finished this disk.
660 */
661 recon_error = 1;
662 raidPtr->reconControl->error = 1;
663
664 /* bump the numDisksDone count for reads,
665 but not for writes */
666 if (status == RF_RECON_READ_ERROR)
667 reconDesc->numDisksDone++;
668
669 /* write errors are special -- when we are
670 done dealing with the reads that are
671 finished, we don't want to wait for any
672 writes */
673 if (status == RF_RECON_WRITE_ERROR)
674 write_error = 1;
675
676 } else if (status == RF_RECON_READ_STOPPED) {
677 /* count this component as being "done" */
678 reconDesc->numDisksDone++;
679 } else if (status == RF_RECON_WRITE_DONE) {
680 num_writes++;
681 }
682
683 if (recon_error) {
684 /* make sure any stragglers are woken up so that
685 their theads will complete, and we can get out
686 of here with all IO processed */
687
688 rf_WakeupHeadSepCBWaiters(raidPtr);
689 }
690
691 raidPtr->reconControl->numRUsTotal =
692 mapPtr->totalRUs;
693 raidPtr->reconControl->numRUsComplete =
694 mapPtr->totalRUs -
695 rf_UnitsLeftToReconstruct(mapPtr);
696
697 #if RF_DEBUG_RECON
698 raidPtr->reconControl->percentComplete =
699 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
700 if (rf_prReconSched) {
701 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
702 }
703 #endif
704 }
705
706 /* reads done, wakup any waiters, and then wait for writes */
707
708 rf_WakeupHeadSepCBWaiters(raidPtr);
709
710 while (!recon_error && (num_writes < pending_writes)) {
711 event = rf_GetNextReconEvent(reconDesc);
712 status = ProcessReconEvent(raidPtr, event);
713
714 if (status == RF_RECON_WRITE_ERROR) {
715 recon_error = 1;
716 raidPtr->reconControl->error = 1;
717 /* an error was encountered at the very end... bail */
718 } else if (status == RF_RECON_WRITE_DONE) {
719 num_writes++;
720 }
721 }
722 if (recon_error ||
723 (raidPtr->reconControl->lastPSID == lastPSID)) {
724 done = 1;
725 break;
726 }
727
728 prev = raidPtr->reconControl->lastPSID;
729 raidPtr->reconControl->lastPSID += incPSID;
730
731 if (raidPtr->reconControl->lastPSID > lastPSID) {
732 pending_writes = lastPSID - prev;
733 raidPtr->reconControl->lastPSID = lastPSID;
734 }
735
736 /* back down curPSID to get ready for the next round... */
737 for (i = 0; i < raidPtr->numCol; i++) {
738 if (i != col) {
739 raidPtr->reconControl->perDiskInfo[i].curPSID--;
740 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
741 }
742 }
743 }
744
745 mapPtr = raidPtr->reconControl->reconMap;
746 if (rf_reconDebug) {
747 printf("RECON: all reads completed\n");
748 }
749 /* at this point all the reads have completed. We now wait
750 * for any pending writes to complete, and then we're done */
751
752 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
753
754 event = rf_GetNextReconEvent(reconDesc);
755 status = ProcessReconEvent(raidPtr, event);
756
757 if (status == RF_RECON_WRITE_ERROR) {
758 recon_error = 1;
759 raidPtr->reconControl->error = 1;
760 /* an error was encountered at the very end... bail */
761 } else {
762 #if RF_DEBUG_RECON
763 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
764 if (rf_prReconSched) {
765 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
766 }
767 #endif
768 }
769 }
770
771 if (recon_error) {
772 /* we've encountered an error in reconstructing. */
773 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
774
775 /* we start by blocking IO to the RAID set. */
776 rf_SuspendNewRequestsAndWait(raidPtr);
777
778 RF_LOCK_MUTEX(raidPtr->mutex);
779 /* mark set as being degraded, rather than
780 rf_rs_reconstructing as we were before the problem.
781 After this is done we can update status of the
782 component disks without worrying about someone
783 trying to read from a failed component.
784 */
785 raidPtr->status = rf_rs_degraded;
786 RF_UNLOCK_MUTEX(raidPtr->mutex);
787
788 /* resume IO */
789 rf_ResumeNewRequests(raidPtr);
790
791 /* At this point there are two cases:
792 1) If we've experienced a read error, then we've
793 already waited for all the reads we're going to get,
794 and we just need to wait for the writes.
795
796 2) If we've experienced a write error, we've also
797 already waited for all the reads to complete,
798 but there is little point in waiting for the writes --
799 when they do complete, they will just be ignored.
800
801 So we just wait for writes to complete if we didn't have a
802 write error.
803 */
804
805 if (!write_error) {
806 /* wait for writes to complete */
807 while (raidPtr->reconControl->pending_writes > 0) {
808
809 event = rf_GetNextReconEvent(reconDesc);
810 status = ProcessReconEvent(raidPtr, event);
811
812 if (status == RF_RECON_WRITE_ERROR) {
813 raidPtr->reconControl->error = 1;
814 /* an error was encountered at the very end... bail.
815 This will be very bad news for the user, since
816 at this point there will have been a read error
817 on one component, and a write error on another!
818 */
819 break;
820 }
821 }
822 }
823
824
825 /* cleanup */
826
827 /* drain the event queue - after waiting for the writes above,
828 there shouldn't be much (if anything!) left in the queue. */
829
830 rf_DrainReconEventQueue(reconDesc);
831
832 /* XXX As much as we'd like to free the recon control structure
833 and the reconDesc, we have no way of knowing if/when those will
834 be touched by IO that has yet to occur. It is rather poor to be
835 basically causing a 'memory leak' here, but there doesn't seem to be
836 a cleaner alternative at this time. Perhaps when the reconstruct code
837 gets a makeover this problem will go away.
838 */
839 #if 0
840 rf_FreeReconControl(raidPtr);
841 #endif
842
843 #if RF_ACC_TRACE > 0
844 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
845 #endif
846 /* XXX see comment above */
847 #if 0
848 FreeReconDesc(reconDesc);
849 #endif
850
851 return (1);
852 }
853
854 /* Success: mark the dead disk as reconstructed. We quiesce
855 * the array here to assure no nasty interactions with pending
856 * user accesses when we free up the psstatus structure as
857 * part of FreeReconControl() */
858
859 rf_SuspendNewRequestsAndWait(raidPtr);
860
861 RF_LOCK_MUTEX(raidPtr->mutex);
862 raidPtr->numFailures--;
863 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
864 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
865 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
866 RF_UNLOCK_MUTEX(raidPtr->mutex);
867 RF_GETTIME(etime);
868 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
869
870 rf_ResumeNewRequests(raidPtr);
871
872 printf("raid%d: Reconstruction of disk at col %d completed\n",
873 raidPtr->raidid, col);
874 xor_s = raidPtr->accumXorTimeUs / 1000000;
875 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
876 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
877 raidPtr->raidid,
878 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
879 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
880 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
881 raidPtr->raidid,
882 (int) raidPtr->reconControl->starttime.tv_sec,
883 (int) raidPtr->reconControl->starttime.tv_usec,
884 (int) etime.tv_sec, (int) etime.tv_usec);
885 #if RF_RECON_STATS > 0
886 printf("raid%d: Total head-sep stall count was %d\n",
887 raidPtr->raidid, (int) reconDesc->hsStallCount);
888 #endif /* RF_RECON_STATS > 0 */
889 rf_FreeReconControl(raidPtr);
890 #if RF_ACC_TRACE > 0
891 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
892 #endif
893 FreeReconDesc(reconDesc);
894
895 return (0);
896
897 }
898 /*****************************************************************************
899 * do the right thing upon each reconstruction event.
900 *****************************************************************************/
901 static int
902 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
903 {
904 int retcode = 0, submitblocked;
905 RF_ReconBuffer_t *rbuf;
906 RF_SectorCount_t sectorsPerRU;
907
908 retcode = RF_RECON_READ_STOPPED;
909
910 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
911
912 switch (event->type) {
913
914 /* a read I/O has completed */
915 case RF_REVENT_READDONE:
916 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
917 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
918 event->col, rbuf->parityStripeID);
919 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
920 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
921 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
922 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
923 if (!raidPtr->reconControl->error) {
924 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
925 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
926 if (!submitblocked)
927 retcode = IssueNextReadRequest(raidPtr, event->col);
928 else
929 retcode = 0;
930 }
931 break;
932
933 /* a write I/O has completed */
934 case RF_REVENT_WRITEDONE:
935 #if RF_DEBUG_RECON
936 if (rf_floatingRbufDebug) {
937 rf_CheckFloatingRbufCount(raidPtr, 1);
938 }
939 #endif
940 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
941 rbuf = (RF_ReconBuffer_t *) event->arg;
942 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
943 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
944 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
945 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
946 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
947 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
948
949 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
950 raidPtr->reconControl->pending_writes--;
951 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
952
953 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
954 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
955 while(raidPtr->reconControl->rb_lock) {
956 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
957 &raidPtr->reconControl->rb_mutex);
958 }
959 raidPtr->reconControl->rb_lock = 1;
960 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
961
962 raidPtr->numFullReconBuffers--;
963 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
964
965 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
966 raidPtr->reconControl->rb_lock = 0;
967 wakeup(&raidPtr->reconControl->rb_lock);
968 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
969 } else
970 if (rbuf->type == RF_RBUF_TYPE_FORCED)
971 rf_FreeReconBuffer(rbuf);
972 else
973 RF_ASSERT(0);
974 retcode = RF_RECON_WRITE_DONE;
975 break;
976
977 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
978 * cleared */
979 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
980 if (!raidPtr->reconControl->error) {
981 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
982 0, (int) (long) event->arg);
983 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
984 * BUFCLEAR event if we
985 * couldn't submit */
986 retcode = IssueNextReadRequest(raidPtr, event->col);
987 }
988 break;
989
990 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
991 * blockage has been cleared */
992 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
993 if (!raidPtr->reconControl->error) {
994 retcode = TryToRead(raidPtr, event->col);
995 }
996 break;
997
998 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
999 * reconstruction blockage has been
1000 * cleared */
1001 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1002 if (!raidPtr->reconControl->error) {
1003 retcode = TryToRead(raidPtr, event->col);
1004 }
1005 break;
1006
1007 /* a buffer has become ready to write */
1008 case RF_REVENT_BUFREADY:
1009 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1010 if (!raidPtr->reconControl->error) {
1011 retcode = IssueNextWriteRequest(raidPtr);
1012 #if RF_DEBUG_RECON
1013 if (rf_floatingRbufDebug) {
1014 rf_CheckFloatingRbufCount(raidPtr, 1);
1015 }
1016 #endif
1017 }
1018 break;
1019
1020 /* we need to skip the current RU entirely because it got
1021 * recon'd while we were waiting for something else to happen */
1022 case RF_REVENT_SKIP:
1023 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1024 if (!raidPtr->reconControl->error) {
1025 retcode = IssueNextReadRequest(raidPtr, event->col);
1026 }
1027 break;
1028
1029 /* a forced-reconstruction read access has completed. Just
1030 * submit the buffer */
1031 case RF_REVENT_FORCEDREADDONE:
1032 rbuf = (RF_ReconBuffer_t *) event->arg;
1033 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1034 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1035 if (!raidPtr->reconControl->error) {
1036 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1037 RF_ASSERT(!submitblocked);
1038 retcode = 0;
1039 }
1040 break;
1041
1042 /* A read I/O failed to complete */
1043 case RF_REVENT_READ_FAILED:
1044 retcode = RF_RECON_READ_ERROR;
1045 break;
1046
1047 /* A write I/O failed to complete */
1048 case RF_REVENT_WRITE_FAILED:
1049 retcode = RF_RECON_WRITE_ERROR;
1050
1051 rbuf = (RF_ReconBuffer_t *) event->arg;
1052
1053 /* cleanup the disk queue data */
1054 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1055
1056 /* At this point we're erroring out, badly, and floatingRbufs
1057 may not even be valid. Rather than putting this back onto
1058 the floatingRbufs list, just arrange for its immediate
1059 destruction.
1060 */
1061 rf_FreeReconBuffer(rbuf);
1062 break;
1063
1064 /* a forced read I/O failed to complete */
1065 case RF_REVENT_FORCEDREAD_FAILED:
1066 retcode = RF_RECON_READ_ERROR;
1067 break;
1068
1069 default:
1070 RF_PANIC();
1071 }
1072 rf_FreeReconEventDesc(event);
1073 return (retcode);
1074 }
1075 /*****************************************************************************
1076 *
1077 * find the next thing that's needed on the indicated disk, and issue
1078 * a read request for it. We assume that the reconstruction buffer
1079 * associated with this process is free to receive the data. If
1080 * reconstruction is blocked on the indicated RU, we issue a
1081 * blockage-release request instead of a physical disk read request.
1082 * If the current disk gets too far ahead of the others, we issue a
1083 * head-separation wait request and return.
1084 *
1085 * ctrl->{ru_count, curPSID, diskOffset} and
1086 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1087 * we're currently accessing. Note that this deviates from the
1088 * standard C idiom of having counters point to the next thing to be
1089 * accessed. This allows us to easily retry when we're blocked by
1090 * head separation or reconstruction-blockage events.
1091 *
1092 *****************************************************************************/
1093 static int
1094 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1095 {
1096 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1097 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1098 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1099 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1100 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1101 int do_new_check = 0, retcode = 0, status;
1102
1103 /* if we are currently the slowest disk, mark that we have to do a new
1104 * check */
1105 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1106 do_new_check = 1;
1107
1108 while (1) {
1109
1110 ctrl->ru_count++;
1111 if (ctrl->ru_count < RUsPerPU) {
1112 ctrl->diskOffset += sectorsPerRU;
1113 rbuf->failedDiskSectorOffset += sectorsPerRU;
1114 } else {
1115 ctrl->curPSID++;
1116 ctrl->ru_count = 0;
1117 /* code left over from when head-sep was based on
1118 * parity stripe id */
1119 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1120 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1121 return (RF_RECON_DONE_READS); /* finito! */
1122 }
1123 /* find the disk offsets of the start of the parity
1124 * stripe on both the current disk and the failed
1125 * disk. skip this entire parity stripe if either disk
1126 * does not appear in the indicated PS */
1127 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1128 &rbuf->spCol, &rbuf->spOffset);
1129 if (status) {
1130 ctrl->ru_count = RUsPerPU - 1;
1131 continue;
1132 }
1133 }
1134 rbuf->which_ru = ctrl->ru_count;
1135
1136 /* skip this RU if it's already been reconstructed */
1137 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1138 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1139 continue;
1140 }
1141 break;
1142 }
1143 ctrl->headSepCounter++;
1144 if (do_new_check)
1145 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1146
1147
1148 /* at this point, we have definitely decided what to do, and we have
1149 * only to see if we can actually do it now */
1150 rbuf->parityStripeID = ctrl->curPSID;
1151 rbuf->which_ru = ctrl->ru_count;
1152 #if RF_ACC_TRACE > 0
1153 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1154 sizeof(raidPtr->recon_tracerecs[col]));
1155 raidPtr->recon_tracerecs[col].reconacc = 1;
1156 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1157 #endif
1158 retcode = TryToRead(raidPtr, col);
1159 return (retcode);
1160 }
1161
1162 /*
1163 * tries to issue the next read on the indicated disk. We may be
1164 * blocked by (a) the heads being too far apart, or (b) recon on the
1165 * indicated RU being blocked due to a write by a user thread. In
1166 * this case, we issue a head-sep or blockage wait request, which will
1167 * cause this same routine to be invoked again later when the blockage
1168 * has cleared.
1169 */
1170
1171 static int
1172 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1173 {
1174 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1175 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1176 RF_StripeNum_t psid = ctrl->curPSID;
1177 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1178 RF_DiskQueueData_t *req;
1179 int status;
1180 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1181
1182 /* if the current disk is too far ahead of the others, issue a
1183 * head-separation wait and return */
1184 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1185 return (0);
1186
1187 /* allocate a new PSS in case we need it */
1188 newpssPtr = rf_AllocPSStatus(raidPtr);
1189
1190 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1191 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1192
1193 if (pssPtr != newpssPtr) {
1194 rf_FreePSStatus(raidPtr, newpssPtr);
1195 }
1196
1197 /* if recon is blocked on the indicated parity stripe, issue a
1198 * block-wait request and return. this also must mark the indicated RU
1199 * in the stripe as under reconstruction if not blocked. */
1200 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1201 if (status == RF_PSS_RECON_BLOCKED) {
1202 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1203 goto out;
1204 } else
1205 if (status == RF_PSS_FORCED_ON_WRITE) {
1206 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1207 goto out;
1208 }
1209 /* make one last check to be sure that the indicated RU didn't get
1210 * reconstructed while we were waiting for something else to happen.
1211 * This is unfortunate in that it causes us to make this check twice
1212 * in the normal case. Might want to make some attempt to re-work
1213 * this so that we only do this check if we've definitely blocked on
1214 * one of the above checks. When this condition is detected, we may
1215 * have just created a bogus status entry, which we need to delete. */
1216 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1217 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1218 if (pssPtr == newpssPtr)
1219 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1220 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1221 goto out;
1222 }
1223 /* found something to read. issue the I/O */
1224 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1225 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1226 #if RF_ACC_TRACE > 0
1227 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1228 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1229 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1230 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1231 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1232 #endif
1233 /* should be ok to use a NULL proc pointer here, all the bufs we use
1234 * should be in kernel space */
1235 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1236 ReconReadDoneProc, (void *) ctrl,
1237 #if RF_ACC_TRACE > 0
1238 &raidPtr->recon_tracerecs[col],
1239 #else
1240 NULL,
1241 #endif
1242 (void *) raidPtr, 0, NULL, PR_WAITOK);
1243
1244 ctrl->rbuf->arg = (void *) req;
1245 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1246 pssPtr->issued[col] = 1;
1247
1248 out:
1249 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1250 return (0);
1251 }
1252
1253
1254 /*
1255 * given a parity stripe ID, we want to find out whether both the
1256 * current disk and the failed disk exist in that parity stripe. If
1257 * not, we want to skip this whole PS. If so, we want to find the
1258 * disk offset of the start of the PS on both the current disk and the
1259 * failed disk.
1260 *
1261 * this works by getting a list of disks comprising the indicated
1262 * parity stripe, and searching the list for the current and failed
1263 * disks. Once we've decided they both exist in the parity stripe, we
1264 * need to decide whether each is data or parity, so that we'll know
1265 * which mapping function to call to get the corresponding disk
1266 * offsets.
1267 *
1268 * this is kind of unpleasant, but doing it this way allows the
1269 * reconstruction code to use parity stripe IDs rather than physical
1270 * disks address to march through the failed disk, which greatly
1271 * simplifies a lot of code, as well as eliminating the need for a
1272 * reverse-mapping function. I also think it will execute faster,
1273 * since the calls to the mapping module are kept to a minimum.
1274 *
1275 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1276 * THE STRIPE IN THE CORRECT ORDER
1277 *
1278 * raidPtr - raid descriptor
1279 * psid - parity stripe identifier
1280 * col - column of disk to find the offsets for
1281 * spCol - out: col of spare unit for failed unit
1282 * spOffset - out: offset into disk containing spare unit
1283 *
1284 */
1285
1286
1287 static int
1288 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1289 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1290 RF_SectorNum_t *outFailedDiskSectorOffset,
1291 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1292 {
1293 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1294 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1295 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1296 RF_RowCol_t *diskids;
1297 u_int i, j, k, i_offset, j_offset;
1298 RF_RowCol_t pcol;
1299 int testcol;
1300 RF_SectorNum_t poffset;
1301 char i_is_parity = 0, j_is_parity = 0;
1302 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1303
1304 /* get a listing of the disks comprising that stripe */
1305 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1306 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1307 RF_ASSERT(diskids);
1308
1309 /* reject this entire parity stripe if it does not contain the
1310 * indicated disk or it does not contain the failed disk */
1311
1312 for (i = 0; i < stripeWidth; i++) {
1313 if (col == diskids[i])
1314 break;
1315 }
1316 if (i == stripeWidth)
1317 goto skipit;
1318 for (j = 0; j < stripeWidth; j++) {
1319 if (fcol == diskids[j])
1320 break;
1321 }
1322 if (j == stripeWidth) {
1323 goto skipit;
1324 }
1325 /* find out which disk the parity is on */
1326 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1327
1328 /* find out if either the current RU or the failed RU is parity */
1329 /* also, if the parity occurs in this stripe prior to the data and/or
1330 * failed col, we need to decrement i and/or j */
1331 for (k = 0; k < stripeWidth; k++)
1332 if (diskids[k] == pcol)
1333 break;
1334 RF_ASSERT(k < stripeWidth);
1335 i_offset = i;
1336 j_offset = j;
1337 if (k < i)
1338 i_offset--;
1339 else
1340 if (k == i) {
1341 i_is_parity = 1;
1342 i_offset = 0;
1343 } /* set offsets to zero to disable multiply
1344 * below */
1345 if (k < j)
1346 j_offset--;
1347 else
1348 if (k == j) {
1349 j_is_parity = 1;
1350 j_offset = 0;
1351 }
1352 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1353 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1354 * tells us how far into the stripe the [current,failed] disk is. */
1355
1356 /* call the mapping routine to get the offset into the current disk,
1357 * repeat for failed disk. */
1358 if (i_is_parity)
1359 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1360 else
1361 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1362
1363 RF_ASSERT(col == testcol);
1364
1365 if (j_is_parity)
1366 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1367 else
1368 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1369 RF_ASSERT(fcol == testcol);
1370
1371 /* now locate the spare unit for the failed unit */
1372 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1373 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1374 if (j_is_parity)
1375 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1376 else
1377 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1378 } else {
1379 #endif
1380 *spCol = raidPtr->reconControl->spareCol;
1381 *spOffset = *outFailedDiskSectorOffset;
1382 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1383 }
1384 #endif
1385 return (0);
1386
1387 skipit:
1388 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1389 psid, col);
1390 return (1);
1391 }
1392 /* this is called when a buffer has become ready to write to the replacement disk */
1393 static int
1394 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1395 {
1396 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1397 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1398 #if RF_ACC_TRACE > 0
1399 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1400 #endif
1401 RF_ReconBuffer_t *rbuf;
1402 RF_DiskQueueData_t *req;
1403
1404 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1405 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1406 * have gotten the event that sent us here */
1407 RF_ASSERT(rbuf->pssPtr);
1408
1409 rbuf->pssPtr->writeRbuf = rbuf;
1410 rbuf->pssPtr = NULL;
1411
1412 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1413 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1414 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1415 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1416 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1417 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1418
1419 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1420 * kernel space */
1421 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1422 sectorsPerRU, rbuf->buffer,
1423 rbuf->parityStripeID, rbuf->which_ru,
1424 ReconWriteDoneProc, (void *) rbuf,
1425 #if RF_ACC_TRACE > 0
1426 &raidPtr->recon_tracerecs[fcol],
1427 #else
1428 NULL,
1429 #endif
1430 (void *) raidPtr, 0, NULL, PR_WAITOK);
1431
1432 rbuf->arg = (void *) req;
1433 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1434 raidPtr->reconControl->pending_writes++;
1435 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1436 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1437
1438 return (0);
1439 }
1440
1441 /*
1442 * this gets called upon the completion of a reconstruction read
1443 * operation the arg is a pointer to the per-disk reconstruction
1444 * control structure for the process that just finished a read.
1445 *
1446 * called at interrupt context in the kernel, so don't do anything
1447 * illegal here.
1448 */
1449 static int
1450 ReconReadDoneProc(void *arg, int status)
1451 {
1452 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1453 RF_Raid_t *raidPtr;
1454
1455 /* Detect that reconCtrl is no longer valid, and if that
1456 is the case, bail without calling rf_CauseReconEvent().
1457 There won't be anyone listening for this event anyway */
1458
1459 if (ctrl->reconCtrl == NULL)
1460 return(0);
1461
1462 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1463
1464 if (status) {
1465 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1466 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1467 return(0);
1468 }
1469 #if RF_ACC_TRACE > 0
1470 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1471 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1472 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1473 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1474 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1475 #endif
1476 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1477 return (0);
1478 }
1479 /* this gets called upon the completion of a reconstruction write operation.
1480 * the arg is a pointer to the rbuf that was just written
1481 *
1482 * called at interrupt context in the kernel, so don't do anything illegal here.
1483 */
1484 static int
1485 ReconWriteDoneProc(void *arg, int status)
1486 {
1487 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1488
1489 /* Detect that reconControl is no longer valid, and if that
1490 is the case, bail without calling rf_CauseReconEvent().
1491 There won't be anyone listening for this event anyway */
1492
1493 if (rbuf->raidPtr->reconControl == NULL)
1494 return(0);
1495
1496 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1497 if (status) {
1498 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1499 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1500 return(0);
1501 }
1502 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1503 return (0);
1504 }
1505
1506
1507 /*
1508 * computes a new minimum head sep, and wakes up anyone who needs to
1509 * be woken as a result
1510 */
1511 static void
1512 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1513 {
1514 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1515 RF_HeadSepLimit_t new_min;
1516 RF_RowCol_t i;
1517 RF_CallbackDesc_t *p;
1518 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1519 * of a minimum */
1520
1521
1522 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1523 while(reconCtrlPtr->rb_lock) {
1524 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1525 }
1526 reconCtrlPtr->rb_lock = 1;
1527 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1528
1529 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1530 for (i = 0; i < raidPtr->numCol; i++)
1531 if (i != reconCtrlPtr->fcol) {
1532 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1533 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1534 }
1535 /* set the new minimum and wake up anyone who can now run again */
1536 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1537 reconCtrlPtr->minHeadSepCounter = new_min;
1538 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1539 while (reconCtrlPtr->headSepCBList) {
1540 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1541 break;
1542 p = reconCtrlPtr->headSepCBList;
1543 reconCtrlPtr->headSepCBList = p->next;
1544 p->next = NULL;
1545 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1546 rf_FreeCallbackDesc(p);
1547 }
1548
1549 }
1550 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1551 reconCtrlPtr->rb_lock = 0;
1552 wakeup(&reconCtrlPtr->rb_lock);
1553 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1554 }
1555
1556 /*
1557 * checks to see that the maximum head separation will not be violated
1558 * if we initiate a reconstruction I/O on the indicated disk.
1559 * Limiting the maximum head separation between two disks eliminates
1560 * the nasty buffer-stall conditions that occur when one disk races
1561 * ahead of the others and consumes all of the floating recon buffers.
1562 * This code is complex and unpleasant but it's necessary to avoid
1563 * some very nasty, albeit fairly rare, reconstruction behavior.
1564 *
1565 * returns non-zero if and only if we have to stop working on the
1566 * indicated disk due to a head-separation delay.
1567 */
1568 static int
1569 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1570 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1571 RF_ReconUnitNum_t which_ru)
1572 {
1573 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1574 RF_CallbackDesc_t *cb, *p, *pt;
1575 int retval = 0;
1576
1577 /* if we're too far ahead of the slowest disk, stop working on this
1578 * disk until the slower ones catch up. We do this by scheduling a
1579 * wakeup callback for the time when the slowest disk has caught up.
1580 * We define "caught up" with 20% hysteresis, i.e. the head separation
1581 * must have fallen to at most 80% of the max allowable head
1582 * separation before we'll wake up.
1583 *
1584 */
1585 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1586 while(reconCtrlPtr->rb_lock) {
1587 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1588 }
1589 reconCtrlPtr->rb_lock = 1;
1590 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1591 if ((raidPtr->headSepLimit >= 0) &&
1592 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1593 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1594 raidPtr->raidid, col, ctrl->headSepCounter,
1595 reconCtrlPtr->minHeadSepCounter,
1596 raidPtr->headSepLimit);
1597 cb = rf_AllocCallbackDesc();
1598 /* the minHeadSepCounter value we have to get to before we'll
1599 * wake up. build in 20% hysteresis. */
1600 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1601 cb->col = col;
1602 cb->next = NULL;
1603
1604 /* insert this callback descriptor into the sorted list of
1605 * pending head-sep callbacks */
1606 p = reconCtrlPtr->headSepCBList;
1607 if (!p)
1608 reconCtrlPtr->headSepCBList = cb;
1609 else
1610 if (cb->callbackArg.v < p->callbackArg.v) {
1611 cb->next = reconCtrlPtr->headSepCBList;
1612 reconCtrlPtr->headSepCBList = cb;
1613 } else {
1614 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1615 cb->next = p;
1616 pt->next = cb;
1617 }
1618 retval = 1;
1619 #if RF_RECON_STATS > 0
1620 ctrl->reconCtrl->reconDesc->hsStallCount++;
1621 #endif /* RF_RECON_STATS > 0 */
1622 }
1623 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1624 reconCtrlPtr->rb_lock = 0;
1625 wakeup(&reconCtrlPtr->rb_lock);
1626 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1627
1628 return (retval);
1629 }
1630 /*
1631 * checks to see if reconstruction has been either forced or blocked
1632 * by a user operation. if forced, we skip this RU entirely. else if
1633 * blocked, put ourselves on the wait list. else return 0.
1634 *
1635 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1636 */
1637 static int
1638 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1639 RF_ReconParityStripeStatus_t *pssPtr,
1640 RF_PerDiskReconCtrl_t *ctrl,
1641 RF_RowCol_t col,
1642 RF_StripeNum_t psid,
1643 RF_ReconUnitNum_t which_ru)
1644 {
1645 RF_CallbackDesc_t *cb;
1646 int retcode = 0;
1647
1648 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1649 retcode = RF_PSS_FORCED_ON_WRITE;
1650 else
1651 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1652 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1653 cb = rf_AllocCallbackDesc(); /* append ourselves to
1654 * the blockage-wait
1655 * list */
1656 cb->col = col;
1657 cb->next = pssPtr->blockWaitList;
1658 pssPtr->blockWaitList = cb;
1659 retcode = RF_PSS_RECON_BLOCKED;
1660 }
1661 if (!retcode)
1662 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1663 * reconstruction */
1664
1665 return (retcode);
1666 }
1667 /*
1668 * if reconstruction is currently ongoing for the indicated stripeID,
1669 * reconstruction is forced to completion and we return non-zero to
1670 * indicate that the caller must wait. If not, then reconstruction is
1671 * blocked on the indicated stripe and the routine returns zero. If
1672 * and only if we return non-zero, we'll cause the cbFunc to get
1673 * invoked with the cbArg when the reconstruction has completed.
1674 */
1675 int
1676 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1677 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1678 {
1679 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1680 * forcing recon on */
1681 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1682 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1683 * stripe status structure */
1684 RF_StripeNum_t psid; /* parity stripe id */
1685 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1686 * offset */
1687 RF_RowCol_t *diskids;
1688 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1689 RF_RowCol_t fcol, diskno, i;
1690 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1691 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1692 RF_CallbackDesc_t *cb;
1693 int nPromoted;
1694
1695 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1696
1697 /* allocate a new PSS in case we need it */
1698 newpssPtr = rf_AllocPSStatus(raidPtr);
1699
1700 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1701
1702 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1703
1704 if (pssPtr != newpssPtr) {
1705 rf_FreePSStatus(raidPtr, newpssPtr);
1706 }
1707
1708 /* if recon is not ongoing on this PS, just return */
1709 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1710 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1711 return (0);
1712 }
1713 /* otherwise, we have to wait for reconstruction to complete on this
1714 * RU. */
1715 /* In order to avoid waiting for a potentially large number of
1716 * low-priority accesses to complete, we force a normal-priority (i.e.
1717 * not low-priority) reconstruction on this RU. */
1718 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1719 DDprintf1("Forcing recon on psid %ld\n", psid);
1720 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1721 * forced recon */
1722 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1723 * that we just set */
1724 fcol = raidPtr->reconControl->fcol;
1725
1726 /* get a listing of the disks comprising the indicated stripe */
1727 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1728
1729 /* For previously issued reads, elevate them to normal
1730 * priority. If the I/O has already completed, it won't be
1731 * found in the queue, and hence this will be a no-op. For
1732 * unissued reads, allocate buffers and issue new reads. The
1733 * fact that we've set the FORCED bit means that the regular
1734 * recon procs will not re-issue these reqs */
1735 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1736 if ((diskno = diskids[i]) != fcol) {
1737 if (pssPtr->issued[diskno]) {
1738 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1739 if (rf_reconDebug && nPromoted)
1740 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1741 } else {
1742 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1743 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1744 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1745 * location */
1746 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1747 new_rbuf->which_ru = which_ru;
1748 new_rbuf->failedDiskSectorOffset = fd_offset;
1749 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1750
1751 /* use NULL b_proc b/c all addrs
1752 * should be in kernel space */
1753 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1754 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1755 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1756
1757 new_rbuf->arg = req;
1758 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1759 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1760 }
1761 }
1762 /* if the write is sitting in the disk queue, elevate its
1763 * priority */
1764 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1765 if (rf_reconDebug)
1766 printf("raid%d: promoted write to col %d\n",
1767 raidPtr->raidid, fcol);
1768 }
1769 /* install a callback descriptor to be invoked when recon completes on
1770 * this parity stripe. */
1771 cb = rf_AllocCallbackDesc();
1772 /* XXX the following is bogus.. These functions don't really match!!
1773 * GO */
1774 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1775 cb->callbackArg.p = (void *) cbArg;
1776 cb->next = pssPtr->procWaitList;
1777 pssPtr->procWaitList = cb;
1778 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1779 raidPtr->raidid, psid);
1780
1781 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1782 return (1);
1783 }
1784 /* called upon the completion of a forced reconstruction read.
1785 * all we do is schedule the FORCEDREADONE event.
1786 * called at interrupt context in the kernel, so don't do anything illegal here.
1787 */
1788 static void
1789 ForceReconReadDoneProc(void *arg, int status)
1790 {
1791 RF_ReconBuffer_t *rbuf = arg;
1792
1793 /* Detect that reconControl is no longer valid, and if that
1794 is the case, bail without calling rf_CauseReconEvent().
1795 There won't be anyone listening for this event anyway */
1796
1797 if (rbuf->raidPtr->reconControl == NULL)
1798 return;
1799
1800 if (status) {
1801 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1802 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1803 return;
1804 }
1805 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1806 }
1807 /* releases a block on the reconstruction of the indicated stripe */
1808 int
1809 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1810 {
1811 RF_StripeNum_t stripeID = asmap->stripeID;
1812 RF_ReconParityStripeStatus_t *pssPtr;
1813 RF_ReconUnitNum_t which_ru;
1814 RF_StripeNum_t psid;
1815 RF_CallbackDesc_t *cb;
1816
1817 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1818 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1819 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1820
1821 /* When recon is forced, the pss desc can get deleted before we get
1822 * back to unblock recon. But, this can _only_ happen when recon is
1823 * forced. It would be good to put some kind of sanity check here, but
1824 * how to decide if recon was just forced or not? */
1825 if (!pssPtr) {
1826 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1827 * RU %d\n",psid,which_ru); */
1828 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1829 if (rf_reconDebug || rf_pssDebug)
1830 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1831 #endif
1832 goto out;
1833 }
1834 pssPtr->blockCount--;
1835 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1836 raidPtr->raidid, psid, pssPtr->blockCount);
1837 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1838
1839 /* unblock recon before calling CauseReconEvent in case
1840 * CauseReconEvent causes us to try to issue a new read before
1841 * returning here. */
1842 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1843
1844
1845 while (pssPtr->blockWaitList) {
1846 /* spin through the block-wait list and
1847 release all the waiters */
1848 cb = pssPtr->blockWaitList;
1849 pssPtr->blockWaitList = cb->next;
1850 cb->next = NULL;
1851 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1852 rf_FreeCallbackDesc(cb);
1853 }
1854 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1855 /* if no recon was requested while recon was blocked */
1856 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1857 }
1858 }
1859 out:
1860 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1861 return (0);
1862 }
1863
1864 void
1865 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1866 {
1867 RF_CallbackDesc_t *p;
1868
1869 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1870 while(raidPtr->reconControl->rb_lock) {
1871 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO,
1872 "rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex);
1873 }
1874
1875 raidPtr->reconControl->rb_lock = 1;
1876 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1877
1878 while (raidPtr->reconControl->headSepCBList) {
1879 p = raidPtr->reconControl->headSepCBList;
1880 raidPtr->reconControl->headSepCBList = p->next;
1881 p->next = NULL;
1882 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1883 rf_FreeCallbackDesc(p);
1884 }
1885 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1886 raidPtr->reconControl->rb_lock = 0;
1887 wakeup(&raidPtr->reconControl->rb_lock);
1888 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1889
1890 }
1891
1892