Home | History | Annotate | Line # | Download | only in raidframe
rf_reconstruct.c revision 1.105.4.4
      1 /*	$NetBSD: rf_reconstruct.c,v 1.105.4.4 2010/11/21 22:06:53 riz Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /************************************************************
     30  *
     31  * rf_reconstruct.c -- code to perform on-line reconstruction
     32  *
     33  ************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.105.4.4 2010/11/21 22:06:53 riz Exp $");
     37 
     38 #include <sys/param.h>
     39 #include <sys/time.h>
     40 #include <sys/buf.h>
     41 #include <sys/errno.h>
     42 #include <sys/systm.h>
     43 #include <sys/proc.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/vnode.h>
     47 #include <dev/raidframe/raidframevar.h>
     48 
     49 #include "rf_raid.h"
     50 #include "rf_reconutil.h"
     51 #include "rf_revent.h"
     52 #include "rf_reconbuffer.h"
     53 #include "rf_acctrace.h"
     54 #include "rf_etimer.h"
     55 #include "rf_dag.h"
     56 #include "rf_desc.h"
     57 #include "rf_debugprint.h"
     58 #include "rf_general.h"
     59 #include "rf_driver.h"
     60 #include "rf_utils.h"
     61 #include "rf_shutdown.h"
     62 
     63 #include "rf_kintf.h"
     64 
     65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
     66 
     67 #if RF_DEBUG_RECON
     68 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     69 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     70 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     71 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     72 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
     73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
     74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
     75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
     76 
     77 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     78 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     79 
     80 #else /* RF_DEBUG_RECON */
     81 
     82 #define Dprintf(s) {}
     83 #define Dprintf1(s,a) {}
     84 #define Dprintf2(s,a,b) {}
     85 #define Dprintf3(s,a,b,c) {}
     86 #define Dprintf4(s,a,b,c,d) {}
     87 #define Dprintf5(s,a,b,c,d,e) {}
     88 #define Dprintf6(s,a,b,c,d,e,f) {}
     89 #define Dprintf7(s,a,b,c,d,e,f,g) {}
     90 
     91 #define DDprintf1(s,a) {}
     92 #define DDprintf2(s,a,b) {}
     93 
     94 #endif /* RF_DEBUG_RECON */
     95 
     96 #define RF_RECON_DONE_READS   1
     97 #define RF_RECON_READ_ERROR   2
     98 #define RF_RECON_WRITE_ERROR  3
     99 #define RF_RECON_READ_STOPPED 4
    100 #define RF_RECON_WRITE_DONE   5
    101 
    102 #define RF_MAX_FREE_RECONBUFFER 32
    103 #define RF_MIN_FREE_RECONBUFFER 16
    104 
    105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
    106 					      RF_RaidDisk_t *, int, RF_RowCol_t);
    107 static void FreeReconDesc(RF_RaidReconDesc_t *);
    108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
    109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
    110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
    111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
    112 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
    113 				RF_SectorNum_t *);
    114 static int IssueNextWriteRequest(RF_Raid_t *);
    115 static int ReconReadDoneProc(void *, int);
    116 static int ReconWriteDoneProc(void *, int);
    117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
    118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
    119 			       RF_RowCol_t, RF_HeadSepLimit_t,
    120 			       RF_ReconUnitNum_t);
    121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
    122 					      RF_ReconParityStripeStatus_t *,
    123 					      RF_PerDiskReconCtrl_t *,
    124 					      RF_RowCol_t, RF_StripeNum_t,
    125 					      RF_ReconUnitNum_t);
    126 static void ForceReconReadDoneProc(void *, int);
    127 static void rf_ShutdownReconstruction(void *);
    128 
    129 struct RF_ReconDoneProc_s {
    130 	void    (*proc) (RF_Raid_t *, void *);
    131 	void   *arg;
    132 	RF_ReconDoneProc_t *next;
    133 };
    134 
    135 /**************************************************************************
    136  *
    137  * sets up the parameters that will be used by the reconstruction process
    138  * currently there are none, except for those that the layout-specific
    139  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
    140  *
    141  * in the kernel, we fire off the recon thread.
    142  *
    143  **************************************************************************/
    144 static void
    145 rf_ShutdownReconstruction(void *ignored)
    146 {
    147 	pool_destroy(&rf_pools.reconbuffer);
    148 }
    149 
    150 int
    151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
    152 {
    153 
    154 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
    155 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
    156 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
    157 
    158 	return (0);
    159 }
    160 
    161 static RF_RaidReconDesc_t *
    162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
    163 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
    164 		   RF_RowCol_t scol)
    165 {
    166 
    167 	RF_RaidReconDesc_t *reconDesc;
    168 
    169 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
    170 		  (RF_RaidReconDesc_t *));
    171 	reconDesc->raidPtr = raidPtr;
    172 	reconDesc->col = col;
    173 	reconDesc->spareDiskPtr = spareDiskPtr;
    174 	reconDesc->numDisksDone = numDisksDone;
    175 	reconDesc->scol = scol;
    176 	reconDesc->next = NULL;
    177 
    178 	return (reconDesc);
    179 }
    180 
    181 static void
    182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
    183 {
    184 #if RF_RECON_STATS > 0
    185 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
    186 	       reconDesc->raidPtr->raidid,
    187 	       (long) reconDesc->numReconEventWaits,
    188 	       (long) reconDesc->numReconExecDelays);
    189 #endif				/* RF_RECON_STATS > 0 */
    190 	printf("raid%d: %lu max exec ticks\n",
    191 	       reconDesc->raidPtr->raidid,
    192 	       (long) reconDesc->maxReconExecTicks);
    193 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
    194 }
    195 
    196 
    197 /*****************************************************************************
    198  *
    199  * primary routine to reconstruct a failed disk.  This should be called from
    200  * within its own thread.  It won't return until reconstruction completes,
    201  * fails, or is aborted.
    202  *****************************************************************************/
    203 int
    204 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
    205 {
    206 	const RF_LayoutSW_t *lp;
    207 	int     rc;
    208 
    209 	lp = raidPtr->Layout.map;
    210 	if (lp->SubmitReconBuffer) {
    211 		/*
    212 	         * The current infrastructure only supports reconstructing one
    213 	         * disk at a time for each array.
    214 	         */
    215 		RF_LOCK_MUTEX(raidPtr->mutex);
    216 		while (raidPtr->reconInProgress) {
    217 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    218 		}
    219 		raidPtr->reconInProgress++;
    220 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    221 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
    222 		RF_LOCK_MUTEX(raidPtr->mutex);
    223 		raidPtr->reconInProgress--;
    224 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    225 	} else {
    226 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    227 		    lp->parityConfig);
    228 		rc = EIO;
    229 	}
    230 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    231 	return (rc);
    232 }
    233 
    234 int
    235 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
    236 {
    237 	RF_ComponentLabel_t *c_label;
    238 	RF_RaidDisk_t *spareDiskPtr = NULL;
    239 	RF_RaidReconDesc_t *reconDesc;
    240 	RF_RowCol_t scol;
    241 	int     numDisksDone = 0, rc;
    242 
    243 	/* first look for a spare drive onto which to reconstruct the data */
    244 	/* spare disk descriptors are stored in row 0.  This may have to
    245 	 * change eventually */
    246 
    247 	RF_LOCK_MUTEX(raidPtr->mutex);
    248 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
    249 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    250 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    251 		if (raidPtr->status != rf_rs_degraded) {
    252 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
    253 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    254 			return (EINVAL);
    255 		}
    256 		scol = (-1);
    257 	} else {
    258 #endif
    259 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
    260 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
    261 				spareDiskPtr = &raidPtr->Disks[scol];
    262 				spareDiskPtr->status = rf_ds_used_spare;
    263 				break;
    264 			}
    265 		}
    266 		if (!spareDiskPtr) {
    267 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
    268 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    269 			return (ENOSPC);
    270 		}
    271 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
    272 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    273 	}
    274 #endif
    275 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    276 
    277 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
    278 	raidPtr->reconDesc = (void *) reconDesc;
    279 #if RF_RECON_STATS > 0
    280 	reconDesc->hsStallCount = 0;
    281 	reconDesc->numReconExecDelays = 0;
    282 	reconDesc->numReconEventWaits = 0;
    283 #endif				/* RF_RECON_STATS > 0 */
    284 	reconDesc->reconExecTimerRunning = 0;
    285 	reconDesc->reconExecTicks = 0;
    286 	reconDesc->maxReconExecTicks = 0;
    287 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    288 
    289 	if (!rc) {
    290 		/* fix up the component label */
    291 		/* Don't actually need the read here.. */
    292 		c_label = raidget_component_label(raidPtr, scol);
    293 
    294 		raid_init_component_label(raidPtr, c_label);
    295 		c_label->row = 0;
    296 		c_label->column = col;
    297 		c_label->clean = RF_RAID_DIRTY;
    298 		c_label->status = rf_ds_optimal;
    299 		c_label->partitionSize = raidPtr->Disks[scol].partitionSize;
    300 		c_label->partitionSizeHi =
    301 		   raidPtr->Disks[scol].partitionSize >> 32;
    302 
    303 		/* We've just done a rebuild based on all the other
    304 		   disks, so at this point the parity is known to be
    305 		   clean, even if it wasn't before. */
    306 
    307 		/* XXX doesn't hold for RAID 6!!*/
    308 
    309 		RF_LOCK_MUTEX(raidPtr->mutex);
    310 		raidPtr->parity_good = RF_RAID_CLEAN;
    311 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    312 
    313 		/* XXXX MORE NEEDED HERE */
    314 
    315 		raidflush_component_label(raidPtr, scol);
    316 	} else {
    317 		/* Reconstruct failed. */
    318 
    319 		RF_LOCK_MUTEX(raidPtr->mutex);
    320 		/* Failed disk goes back to "failed" status */
    321 		raidPtr->Disks[col].status = rf_ds_failed;
    322 
    323 		/* Spare disk goes back to "spare" status. */
    324 		spareDiskPtr->status = rf_ds_spare;
    325 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    326 
    327 	}
    328 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
    329 	return (rc);
    330 }
    331 
    332 /*
    333 
    334    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
    335    and you don't get a spare until the next Monday.  With this function
    336    (and hot-swappable drives) you can now put your new disk containing
    337    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
    338    rebuild the data "on the spot".
    339 
    340 */
    341 
    342 int
    343 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
    344 {
    345 	RF_RaidDisk_t *spareDiskPtr = NULL;
    346 	RF_RaidReconDesc_t *reconDesc;
    347 	const RF_LayoutSW_t *lp;
    348 	RF_ComponentLabel_t *c_label;
    349 	int     numDisksDone = 0, rc;
    350 	struct partinfo dpart;
    351 	struct vnode *vp;
    352 	struct vattr va;
    353 	int retcode;
    354 	int ac;
    355 
    356 	lp = raidPtr->Layout.map;
    357 	if (!lp->SubmitReconBuffer) {
    358 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    359 			     lp->parityConfig);
    360 		/* wakeup anyone who might be waiting to do a reconstruct */
    361 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    362 		return(EIO);
    363 	}
    364 
    365 	/*
    366 	 * The current infrastructure only supports reconstructing one
    367 	 * disk at a time for each array.
    368 	 */
    369 	RF_LOCK_MUTEX(raidPtr->mutex);
    370 
    371 	if (raidPtr->Disks[col].status != rf_ds_failed) {
    372 		/* "It's gone..." */
    373 		raidPtr->numFailures++;
    374 		raidPtr->Disks[col].status = rf_ds_failed;
    375 		raidPtr->status = rf_rs_degraded;
    376 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    377 		rf_update_component_labels(raidPtr,
    378 					   RF_NORMAL_COMPONENT_UPDATE);
    379 		RF_LOCK_MUTEX(raidPtr->mutex);
    380 	}
    381 
    382 	while (raidPtr->reconInProgress) {
    383 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    384 	}
    385 
    386 	raidPtr->reconInProgress++;
    387 
    388 	/* first look for a spare drive onto which to reconstruct the
    389 	   data.  spare disk descriptors are stored in row 0.  This
    390 	   may have to change eventually */
    391 
    392 	/* Actually, we don't care if it's failed or not...  On a RAID
    393 	   set with correct parity, this function should be callable
    394 	   on any component without ill effects. */
    395 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
    396 
    397 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    398 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    399 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
    400 
    401 		raidPtr->reconInProgress--;
    402 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    403 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    404 		return (EINVAL);
    405 	}
    406 #endif
    407 
    408 	/* This device may have been opened successfully the
    409 	   first time. Close it before trying to open it again.. */
    410 
    411 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
    412 #if 0
    413 		printf("Closed the open device: %s\n",
    414 		       raidPtr->Disks[col].devname);
    415 #endif
    416 		vp = raidPtr->raid_cinfo[col].ci_vp;
    417 		ac = raidPtr->Disks[col].auto_configured;
    418 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    419 		rf_close_component(raidPtr, vp, ac);
    420 		RF_LOCK_MUTEX(raidPtr->mutex);
    421 		raidPtr->raid_cinfo[col].ci_vp = NULL;
    422 	}
    423 	/* note that this disk was *not* auto_configured (any longer)*/
    424 	raidPtr->Disks[col].auto_configured = 0;
    425 
    426 #if 0
    427 	printf("About to (re-)open the device for rebuilding: %s\n",
    428 	       raidPtr->Disks[col].devname);
    429 #endif
    430 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    431 	retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE);
    432 
    433 	if (retcode) {
    434 		printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
    435 		       raidPtr->Disks[col].devname, retcode);
    436 
    437 		/* the component isn't responding properly...
    438 		   must be still dead :-( */
    439 		RF_LOCK_MUTEX(raidPtr->mutex);
    440 		raidPtr->reconInProgress--;
    441 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    442 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    443 		return(retcode);
    444 	}
    445 
    446 	/* Ok, so we can at least do a lookup...
    447 	   How about actually getting a vp for it? */
    448 
    449 	if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) {
    450 		RF_LOCK_MUTEX(raidPtr->mutex);
    451 		raidPtr->reconInProgress--;
    452 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    453 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    454 		return(retcode);
    455 	}
    456 
    457 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred);
    458 	if (retcode) {
    459 		RF_LOCK_MUTEX(raidPtr->mutex);
    460 		raidPtr->reconInProgress--;
    461 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    462 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    463 		return(retcode);
    464 	}
    465 	RF_LOCK_MUTEX(raidPtr->mutex);
    466 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
    467 
    468 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
    469 		rf_protectedSectors;
    470 
    471 	raidPtr->raid_cinfo[col].ci_vp = vp;
    472 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
    473 
    474 	raidPtr->Disks[col].dev = va.va_rdev;
    475 
    476 	/* we allow the user to specify that only a fraction
    477 	   of the disks should be used this is just for debug:
    478 	   it speeds up * the parity scan */
    479 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
    480 		rf_sizePercentage / 100;
    481 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    482 
    483 	spareDiskPtr = &raidPtr->Disks[col];
    484 	spareDiskPtr->status = rf_ds_used_spare;
    485 
    486 	printf("raid%d: initiating in-place reconstruction on column %d\n",
    487 	       raidPtr->raidid, col);
    488 
    489 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
    490 				       numDisksDone, col);
    491 	raidPtr->reconDesc = (void *) reconDesc;
    492 #if RF_RECON_STATS > 0
    493 	reconDesc->hsStallCount = 0;
    494 	reconDesc->numReconExecDelays = 0;
    495 	reconDesc->numReconEventWaits = 0;
    496 #endif				/* RF_RECON_STATS > 0 */
    497 	reconDesc->reconExecTimerRunning = 0;
    498 	reconDesc->reconExecTicks = 0;
    499 	reconDesc->maxReconExecTicks = 0;
    500 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    501 
    502 	if (!rc) {
    503 		RF_LOCK_MUTEX(raidPtr->mutex);
    504 		/* Need to set these here, as at this point it'll be claiming
    505 		   that the disk is in rf_ds_spared!  But we know better :-) */
    506 
    507 		raidPtr->Disks[col].status = rf_ds_optimal;
    508 		raidPtr->status = rf_rs_optimal;
    509 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    510 
    511 		/* fix up the component label */
    512 		/* Don't actually need the read here.. */
    513 		c_label = raidget_component_label(raidPtr, col);
    514 
    515 		RF_LOCK_MUTEX(raidPtr->mutex);
    516 		raid_init_component_label(raidPtr, c_label);
    517 
    518 		c_label->row = 0;
    519 		c_label->column = col;
    520 
    521 		/* We've just done a rebuild based on all the other
    522 		   disks, so at this point the parity is known to be
    523 		   clean, even if it wasn't before. */
    524 
    525 		/* XXX doesn't hold for RAID 6!!*/
    526 
    527 		raidPtr->parity_good = RF_RAID_CLEAN;
    528 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    529 
    530 		raidflush_component_label(raidPtr, col);
    531 	} else {
    532 		/* Reconstruct-in-place failed.  Disk goes back to
    533 		   "failed" status, regardless of what it was before.  */
    534 		RF_LOCK_MUTEX(raidPtr->mutex);
    535 		raidPtr->Disks[col].status = rf_ds_failed;
    536 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    537 	}
    538 
    539 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
    540 
    541 	RF_LOCK_MUTEX(raidPtr->mutex);
    542 	raidPtr->reconInProgress--;
    543 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    544 
    545 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    546 	return (rc);
    547 }
    548 
    549 
    550 int
    551 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
    552 {
    553 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
    554 	RF_RowCol_t col = reconDesc->col;
    555 	RF_RowCol_t scol = reconDesc->scol;
    556 	RF_ReconMap_t *mapPtr;
    557 	RF_ReconCtrl_t *tmp_reconctrl;
    558 	RF_ReconEvent_t *event;
    559 	RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
    560 	RF_ReconUnitCount_t RUsPerPU;
    561 	struct timeval etime, elpsd;
    562 	unsigned long xor_s, xor_resid_us;
    563 	int     i, ds;
    564 	int status, done;
    565 	int recon_error, write_error;
    566 
    567 	raidPtr->accumXorTimeUs = 0;
    568 #if RF_ACC_TRACE > 0
    569 	/* create one trace record per physical disk */
    570 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    571 #endif
    572 
    573 	/* quiesce the array prior to starting recon.  this is needed
    574 	 * to assure no nasty interactions with pending user writes.
    575 	 * We need to do this before we change the disk or row status. */
    576 
    577 	Dprintf("RECON: begin request suspend\n");
    578 	rf_SuspendNewRequestsAndWait(raidPtr);
    579 	Dprintf("RECON: end request suspend\n");
    580 
    581 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
    582 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
    583 
    584 	RF_LOCK_MUTEX(raidPtr->mutex);
    585 
    586 	/* create the reconstruction control pointer and install it in
    587 	 * the right slot */
    588 	raidPtr->reconControl = tmp_reconctrl;
    589 	mapPtr = raidPtr->reconControl->reconMap;
    590 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
    591 	raidPtr->reconControl->numRUsComplete =	0;
    592 	raidPtr->status = rf_rs_reconstructing;
    593 	raidPtr->Disks[col].status = rf_ds_reconstructing;
    594 	raidPtr->Disks[col].spareCol = scol;
    595 
    596 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    597 
    598 	RF_GETTIME(raidPtr->reconControl->starttime);
    599 
    600 	Dprintf("RECON: resume requests\n");
    601 	rf_ResumeNewRequests(raidPtr);
    602 
    603 
    604 	mapPtr = raidPtr->reconControl->reconMap;
    605 
    606 	incPSID = RF_RECONMAP_SIZE;
    607 	lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
    608 	RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
    609 	recon_error = 0;
    610 	write_error = 0;
    611 	pending_writes = incPSID;
    612 	raidPtr->reconControl->lastPSID = incPSID;
    613 
    614 	/* start the actual reconstruction */
    615 
    616 	done = 0;
    617 	while (!done) {
    618 
    619 		if (raidPtr->waitShutdown) {
    620 			/* someone is unconfiguring this array... bail on the reconstruct.. */
    621 			recon_error = 1;
    622 			break;
    623 		}
    624 
    625 		num_writes = 0;
    626 
    627 		/* issue a read for each surviving disk */
    628 
    629 		reconDesc->numDisksDone = 0;
    630 		for (i = 0; i < raidPtr->numCol; i++) {
    631 			if (i != col) {
    632 				/* find and issue the next I/O on the
    633 				 * indicated disk */
    634 				if (IssueNextReadRequest(raidPtr, i)) {
    635 					Dprintf1("RECON: done issuing for c%d\n", i);
    636 					reconDesc->numDisksDone++;
    637 				}
    638 			}
    639 		}
    640 
    641 		/* process reconstruction events until all disks report that
    642 		 * they've completed all work */
    643 
    644 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
    645 
    646 			event = rf_GetNextReconEvent(reconDesc);
    647 			status = ProcessReconEvent(raidPtr, event);
    648 
    649 			/* the normal case is that a read completes, and all is well. */
    650 			if (status == RF_RECON_DONE_READS) {
    651 				reconDesc->numDisksDone++;
    652 			} else if ((status == RF_RECON_READ_ERROR) ||
    653 				   (status == RF_RECON_WRITE_ERROR)) {
    654 				/* an error was encountered while reconstructing...
    655 				   Pretend we've finished this disk.
    656 				*/
    657 				recon_error = 1;
    658 				raidPtr->reconControl->error = 1;
    659 
    660 				/* bump the numDisksDone count for reads,
    661 				   but not for writes */
    662 				if (status == RF_RECON_READ_ERROR)
    663 					reconDesc->numDisksDone++;
    664 
    665 				/* write errors are special -- when we are
    666 				   done dealing with the reads that are
    667 				   finished, we don't want to wait for any
    668 				   writes */
    669 				if (status == RF_RECON_WRITE_ERROR) {
    670 					write_error = 1;
    671 					num_writes++;
    672 				}
    673 
    674 			} else if (status == RF_RECON_READ_STOPPED) {
    675 				/* count this component as being "done" */
    676 				reconDesc->numDisksDone++;
    677 			} else if (status == RF_RECON_WRITE_DONE) {
    678 				num_writes++;
    679 			}
    680 
    681 			if (recon_error) {
    682 				/* make sure any stragglers are woken up so that
    683 				   their theads will complete, and we can get out
    684 				   of here with all IO processed */
    685 
    686 				rf_WakeupHeadSepCBWaiters(raidPtr);
    687 			}
    688 
    689 			raidPtr->reconControl->numRUsTotal =
    690 				mapPtr->totalRUs;
    691 			raidPtr->reconControl->numRUsComplete =
    692 				mapPtr->totalRUs -
    693 				rf_UnitsLeftToReconstruct(mapPtr);
    694 
    695 #if RF_DEBUG_RECON
    696 			raidPtr->reconControl->percentComplete =
    697 				(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
    698 			if (rf_prReconSched) {
    699 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
    700 			}
    701 #endif
    702 		}
    703 
    704 		/* reads done, wakup any waiters, and then wait for writes */
    705 
    706 		rf_WakeupHeadSepCBWaiters(raidPtr);
    707 
    708 		while (!recon_error && (num_writes < pending_writes)) {
    709 			event = rf_GetNextReconEvent(reconDesc);
    710 			status = ProcessReconEvent(raidPtr, event);
    711 
    712 			if (status == RF_RECON_WRITE_ERROR) {
    713 				num_writes++;
    714 				recon_error = 1;
    715 				raidPtr->reconControl->error = 1;
    716 				/* an error was encountered at the very end... bail */
    717 			} else if (status == RF_RECON_WRITE_DONE) {
    718 				num_writes++;
    719 			} /* else it's something else, and we don't care */
    720 		}
    721 		if (recon_error ||
    722 		    (raidPtr->reconControl->lastPSID == lastPSID)) {
    723 			done = 1;
    724 			break;
    725 		}
    726 
    727 		prev = raidPtr->reconControl->lastPSID;
    728 		raidPtr->reconControl->lastPSID += incPSID;
    729 
    730 		if (raidPtr->reconControl->lastPSID > lastPSID) {
    731 			pending_writes = lastPSID - prev;
    732 			raidPtr->reconControl->lastPSID = lastPSID;
    733 		}
    734 
    735 		/* back down curPSID to get ready for the next round... */
    736 		for (i = 0; i < raidPtr->numCol; i++) {
    737 			if (i != col) {
    738 				raidPtr->reconControl->perDiskInfo[i].curPSID--;
    739 				raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
    740 			}
    741 		}
    742 	}
    743 
    744 	mapPtr = raidPtr->reconControl->reconMap;
    745 	if (rf_reconDebug) {
    746 		printf("RECON: all reads completed\n");
    747 	}
    748 	/* at this point all the reads have completed.  We now wait
    749 	 * for any pending writes to complete, and then we're done */
    750 
    751 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
    752 
    753 		event = rf_GetNextReconEvent(reconDesc);
    754 		status = ProcessReconEvent(raidPtr, event);
    755 
    756 		if (status == RF_RECON_WRITE_ERROR) {
    757 			recon_error = 1;
    758 			raidPtr->reconControl->error = 1;
    759 			/* an error was encountered at the very end... bail */
    760 		} else {
    761 #if RF_DEBUG_RECON
    762 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
    763 			if (rf_prReconSched) {
    764 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
    765 			}
    766 #endif
    767 		}
    768 	}
    769 
    770 	if (recon_error) {
    771 		/* we've encountered an error in reconstructing. */
    772 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
    773 
    774 		/* we start by blocking IO to the RAID set. */
    775 		rf_SuspendNewRequestsAndWait(raidPtr);
    776 
    777 		RF_LOCK_MUTEX(raidPtr->mutex);
    778 		/* mark set as being degraded, rather than
    779 		   rf_rs_reconstructing as we were before the problem.
    780 		   After this is done we can update status of the
    781 		   component disks without worrying about someone
    782 		   trying to read from a failed component.
    783 		*/
    784 		raidPtr->status = rf_rs_degraded;
    785 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    786 
    787 		/* resume IO */
    788 		rf_ResumeNewRequests(raidPtr);
    789 
    790 		/* At this point there are two cases:
    791 		   1) If we've experienced a read error, then we've
    792 		   already waited for all the reads we're going to get,
    793 		   and we just need to wait for the writes.
    794 
    795 		   2) If we've experienced a write error, we've also
    796 		   already waited for all the reads to complete,
    797 		   but there is little point in waiting for the writes --
    798 		   when they do complete, they will just be ignored.
    799 
    800 		   So we just wait for writes to complete if we didn't have a
    801 		   write error.
    802 		*/
    803 
    804 		if (!write_error) {
    805 			/* wait for writes to complete */
    806 			while (raidPtr->reconControl->pending_writes > 0) {
    807 
    808 				event = rf_GetNextReconEvent(reconDesc);
    809 				status = ProcessReconEvent(raidPtr, event);
    810 
    811 				if (status == RF_RECON_WRITE_ERROR) {
    812 					raidPtr->reconControl->error = 1;
    813 					/* an error was encountered at the very end... bail.
    814 					   This will be very bad news for the user, since
    815 					   at this point there will have been a read error
    816 					   on one component, and a write error on another!
    817 					*/
    818 					break;
    819 				}
    820 			}
    821 		}
    822 
    823 
    824 		/* cleanup */
    825 
    826 		/* drain the event queue - after waiting for the writes above,
    827 		   there shouldn't be much (if anything!) left in the queue. */
    828 
    829 		rf_DrainReconEventQueue(reconDesc);
    830 
    831 		/* XXX  As much as we'd like to free the recon control structure
    832 		   and the reconDesc, we have no way of knowing if/when those will
    833 		   be touched by IO that has yet to occur.  It is rather poor to be
    834 		   basically causing a 'memory leak' here, but there doesn't seem to be
    835 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
    836 		   gets a makeover this problem will go away.
    837 		*/
    838 #if 0
    839 		rf_FreeReconControl(raidPtr);
    840 #endif
    841 
    842 #if RF_ACC_TRACE > 0
    843 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    844 #endif
    845 		/* XXX see comment above */
    846 #if 0
    847 		FreeReconDesc(reconDesc);
    848 #endif
    849 
    850 		return (1);
    851 	}
    852 
    853 	/* Success:  mark the dead disk as reconstructed.  We quiesce
    854 	 * the array here to assure no nasty interactions with pending
    855 	 * user accesses when we free up the psstatus structure as
    856 	 * part of FreeReconControl() */
    857 
    858 	rf_SuspendNewRequestsAndWait(raidPtr);
    859 
    860 	RF_LOCK_MUTEX(raidPtr->mutex);
    861 	raidPtr->numFailures--;
    862 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
    863 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
    864 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
    865 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    866 	RF_GETTIME(etime);
    867 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
    868 
    869 	rf_ResumeNewRequests(raidPtr);
    870 
    871 	printf("raid%d: Reconstruction of disk at col %d completed\n",
    872 	       raidPtr->raidid, col);
    873 	xor_s = raidPtr->accumXorTimeUs / 1000000;
    874 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
    875 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
    876 	       raidPtr->raidid,
    877 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
    878 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
    879 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
    880 	       raidPtr->raidid,
    881 	       (int) raidPtr->reconControl->starttime.tv_sec,
    882 	       (int) raidPtr->reconControl->starttime.tv_usec,
    883 	       (int) etime.tv_sec, (int) etime.tv_usec);
    884 #if RF_RECON_STATS > 0
    885 	printf("raid%d: Total head-sep stall count was %d\n",
    886 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
    887 #endif				/* RF_RECON_STATS > 0 */
    888 	rf_FreeReconControl(raidPtr);
    889 #if RF_ACC_TRACE > 0
    890 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    891 #endif
    892 	FreeReconDesc(reconDesc);
    893 
    894 	return (0);
    895 
    896 }
    897 /*****************************************************************************
    898  * do the right thing upon each reconstruction event.
    899  *****************************************************************************/
    900 static int
    901 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
    902 {
    903 	int     retcode = 0, submitblocked;
    904 	RF_ReconBuffer_t *rbuf;
    905 	RF_SectorCount_t sectorsPerRU;
    906 
    907 	retcode = RF_RECON_READ_STOPPED;
    908 
    909 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
    910 
    911 	switch (event->type) {
    912 
    913 		/* a read I/O has completed */
    914 	case RF_REVENT_READDONE:
    915 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
    916 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
    917 		    event->col, rbuf->parityStripeID);
    918 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
    919 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
    920 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
    921 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    922 		if (!raidPtr->reconControl->error) {
    923 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
    924 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
    925 			if (!submitblocked)
    926 				retcode = IssueNextReadRequest(raidPtr, event->col);
    927 			else
    928 				retcode = 0;
    929 		}
    930 		break;
    931 
    932 		/* a write I/O has completed */
    933 	case RF_REVENT_WRITEDONE:
    934 #if RF_DEBUG_RECON
    935 		if (rf_floatingRbufDebug) {
    936 			rf_CheckFloatingRbufCount(raidPtr, 1);
    937 		}
    938 #endif
    939 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
    940 		rbuf = (RF_ReconBuffer_t *) event->arg;
    941 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    942 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
    943 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
    944 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
    945 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
    946 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
    947 
    948 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    949 		raidPtr->reconControl->pending_writes--;
    950 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    951 
    952 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
    953 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    954 			while(raidPtr->reconControl->rb_lock) {
    955 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
    956 					&raidPtr->reconControl->rb_mutex);
    957 			}
    958 			raidPtr->reconControl->rb_lock = 1;
    959 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    960 
    961 			raidPtr->numFullReconBuffers--;
    962 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
    963 
    964 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    965 			raidPtr->reconControl->rb_lock = 0;
    966 			wakeup(&raidPtr->reconControl->rb_lock);
    967 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    968 		} else
    969 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
    970 				rf_FreeReconBuffer(rbuf);
    971 			else
    972 				RF_ASSERT(0);
    973 		retcode = RF_RECON_WRITE_DONE;
    974 		break;
    975 
    976 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
    977 					 * cleared */
    978 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
    979 		if (!raidPtr->reconControl->error) {
    980 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
    981 							     0, (int) (long) event->arg);
    982 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
    983 							 * BUFCLEAR event if we
    984 							 * couldn't submit */
    985 			retcode = IssueNextReadRequest(raidPtr, event->col);
    986 		}
    987 		break;
    988 
    989 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
    990 					 * blockage has been cleared */
    991 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
    992 		if (!raidPtr->reconControl->error) {
    993 			retcode = TryToRead(raidPtr, event->col);
    994 		}
    995 		break;
    996 
    997 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
    998 					 * reconstruction blockage has been
    999 					 * cleared */
   1000 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
   1001 		if (!raidPtr->reconControl->error) {
   1002 			retcode = TryToRead(raidPtr, event->col);
   1003 		}
   1004 		break;
   1005 
   1006 		/* a buffer has become ready to write */
   1007 	case RF_REVENT_BUFREADY:
   1008 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
   1009 		if (!raidPtr->reconControl->error) {
   1010 			retcode = IssueNextWriteRequest(raidPtr);
   1011 #if RF_DEBUG_RECON
   1012 			if (rf_floatingRbufDebug) {
   1013 				rf_CheckFloatingRbufCount(raidPtr, 1);
   1014 			}
   1015 #endif
   1016 		}
   1017 		break;
   1018 
   1019 		/* we need to skip the current RU entirely because it got
   1020 		 * recon'd while we were waiting for something else to happen */
   1021 	case RF_REVENT_SKIP:
   1022 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
   1023 		if (!raidPtr->reconControl->error) {
   1024 			retcode = IssueNextReadRequest(raidPtr, event->col);
   1025 		}
   1026 		break;
   1027 
   1028 		/* a forced-reconstruction read access has completed.  Just
   1029 		 * submit the buffer */
   1030 	case RF_REVENT_FORCEDREADDONE:
   1031 		rbuf = (RF_ReconBuffer_t *) event->arg;
   1032 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
   1033 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
   1034 		if (!raidPtr->reconControl->error) {
   1035 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
   1036 			RF_ASSERT(!submitblocked);
   1037 			retcode = 0;
   1038 		}
   1039 		break;
   1040 
   1041 		/* A read I/O failed to complete */
   1042 	case RF_REVENT_READ_FAILED:
   1043 		retcode = RF_RECON_READ_ERROR;
   1044 		break;
   1045 
   1046 		/* A write I/O failed to complete */
   1047 	case RF_REVENT_WRITE_FAILED:
   1048 		retcode = RF_RECON_WRITE_ERROR;
   1049 
   1050 		/* This is an error, but it was a pending write.
   1051 		   Account for it. */
   1052 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1053 		raidPtr->reconControl->pending_writes--;
   1054 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1055 
   1056 		rbuf = (RF_ReconBuffer_t *) event->arg;
   1057 
   1058 		/* cleanup the disk queue data */
   1059 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
   1060 
   1061 		/* At this point we're erroring out, badly, and floatingRbufs
   1062 		   may not even be valid.  Rather than putting this back onto
   1063 		   the floatingRbufs list, just arrange for its immediate
   1064 		   destruction.
   1065 		*/
   1066 		rf_FreeReconBuffer(rbuf);
   1067 		break;
   1068 
   1069 		/* a forced read I/O failed to complete */
   1070 	case RF_REVENT_FORCEDREAD_FAILED:
   1071 		retcode = RF_RECON_READ_ERROR;
   1072 		break;
   1073 
   1074 	default:
   1075 		RF_PANIC();
   1076 	}
   1077 	rf_FreeReconEventDesc(event);
   1078 	return (retcode);
   1079 }
   1080 /*****************************************************************************
   1081  *
   1082  * find the next thing that's needed on the indicated disk, and issue
   1083  * a read request for it.  We assume that the reconstruction buffer
   1084  * associated with this process is free to receive the data.  If
   1085  * reconstruction is blocked on the indicated RU, we issue a
   1086  * blockage-release request instead of a physical disk read request.
   1087  * If the current disk gets too far ahead of the others, we issue a
   1088  * head-separation wait request and return.
   1089  *
   1090  * ctrl->{ru_count, curPSID, diskOffset} and
   1091  * rbuf->failedDiskSectorOffset are maintained to point to the unit
   1092  * we're currently accessing.  Note that this deviates from the
   1093  * standard C idiom of having counters point to the next thing to be
   1094  * accessed.  This allows us to easily retry when we're blocked by
   1095  * head separation or reconstruction-blockage events.
   1096  *
   1097  *****************************************************************************/
   1098 static int
   1099 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
   1100 {
   1101 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
   1102 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1103 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
   1104 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
   1105 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1106 	int     do_new_check = 0, retcode = 0, status;
   1107 
   1108 	/* if we are currently the slowest disk, mark that we have to do a new
   1109 	 * check */
   1110 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
   1111 		do_new_check = 1;
   1112 
   1113 	while (1) {
   1114 
   1115 		ctrl->ru_count++;
   1116 		if (ctrl->ru_count < RUsPerPU) {
   1117 			ctrl->diskOffset += sectorsPerRU;
   1118 			rbuf->failedDiskSectorOffset += sectorsPerRU;
   1119 		} else {
   1120 			ctrl->curPSID++;
   1121 			ctrl->ru_count = 0;
   1122 			/* code left over from when head-sep was based on
   1123 			 * parity stripe id */
   1124 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
   1125 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
   1126 				return (RF_RECON_DONE_READS);	/* finito! */
   1127 			}
   1128 			/* find the disk offsets of the start of the parity
   1129 			 * stripe on both the current disk and the failed
   1130 			 * disk. skip this entire parity stripe if either disk
   1131 			 * does not appear in the indicated PS */
   1132 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
   1133 			    &rbuf->spCol, &rbuf->spOffset);
   1134 			if (status) {
   1135 				ctrl->ru_count = RUsPerPU - 1;
   1136 				continue;
   1137 			}
   1138 		}
   1139 		rbuf->which_ru = ctrl->ru_count;
   1140 
   1141 		/* skip this RU if it's already been reconstructed */
   1142 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
   1143 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
   1144 			continue;
   1145 		}
   1146 		break;
   1147 	}
   1148 	ctrl->headSepCounter++;
   1149 	if (do_new_check)
   1150 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
   1151 
   1152 
   1153 	/* at this point, we have definitely decided what to do, and we have
   1154 	 * only to see if we can actually do it now */
   1155 	rbuf->parityStripeID = ctrl->curPSID;
   1156 	rbuf->which_ru = ctrl->ru_count;
   1157 #if RF_ACC_TRACE > 0
   1158 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
   1159 	    sizeof(raidPtr->recon_tracerecs[col]));
   1160 	raidPtr->recon_tracerecs[col].reconacc = 1;
   1161 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1162 #endif
   1163 	retcode = TryToRead(raidPtr, col);
   1164 	return (retcode);
   1165 }
   1166 
   1167 /*
   1168  * tries to issue the next read on the indicated disk.  We may be
   1169  * blocked by (a) the heads being too far apart, or (b) recon on the
   1170  * indicated RU being blocked due to a write by a user thread.  In
   1171  * this case, we issue a head-sep or blockage wait request, which will
   1172  * cause this same routine to be invoked again later when the blockage
   1173  * has cleared.
   1174  */
   1175 
   1176 static int
   1177 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
   1178 {
   1179 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
   1180 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
   1181 	RF_StripeNum_t psid = ctrl->curPSID;
   1182 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
   1183 	RF_DiskQueueData_t *req;
   1184 	int     status;
   1185 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
   1186 
   1187 	/* if the current disk is too far ahead of the others, issue a
   1188 	 * head-separation wait and return */
   1189 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
   1190 		return (0);
   1191 
   1192 	/* allocate a new PSS in case we need it */
   1193 	newpssPtr = rf_AllocPSStatus(raidPtr);
   1194 
   1195 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1196 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
   1197 
   1198 	if (pssPtr != newpssPtr) {
   1199 		rf_FreePSStatus(raidPtr, newpssPtr);
   1200 	}
   1201 
   1202 	/* if recon is blocked on the indicated parity stripe, issue a
   1203 	 * block-wait request and return. this also must mark the indicated RU
   1204 	 * in the stripe as under reconstruction if not blocked. */
   1205 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
   1206 	if (status == RF_PSS_RECON_BLOCKED) {
   1207 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
   1208 		goto out;
   1209 	} else
   1210 		if (status == RF_PSS_FORCED_ON_WRITE) {
   1211 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
   1212 			goto out;
   1213 		}
   1214 	/* make one last check to be sure that the indicated RU didn't get
   1215 	 * reconstructed while we were waiting for something else to happen.
   1216 	 * This is unfortunate in that it causes us to make this check twice
   1217 	 * in the normal case.  Might want to make some attempt to re-work
   1218 	 * this so that we only do this check if we've definitely blocked on
   1219 	 * one of the above checks.  When this condition is detected, we may
   1220 	 * have just created a bogus status entry, which we need to delete. */
   1221 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
   1222 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
   1223 		if (pssPtr == newpssPtr)
   1224 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
   1225 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
   1226 		goto out;
   1227 	}
   1228 	/* found something to read.  issue the I/O */
   1229 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
   1230 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
   1231 #if RF_ACC_TRACE > 0
   1232 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
   1233 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
   1234 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
   1235 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
   1236 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1237 #endif
   1238 	/* should be ok to use a NULL proc pointer here, all the bufs we use
   1239 	 * should be in kernel space */
   1240 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
   1241 	    ReconReadDoneProc, (void *) ctrl,
   1242 #if RF_ACC_TRACE > 0
   1243 				     &raidPtr->recon_tracerecs[col],
   1244 #else
   1245 				     NULL,
   1246 #endif
   1247 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
   1248 
   1249 	ctrl->rbuf->arg = (void *) req;
   1250 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
   1251 	pssPtr->issued[col] = 1;
   1252 
   1253 out:
   1254 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1255 	return (0);
   1256 }
   1257 
   1258 
   1259 /*
   1260  * given a parity stripe ID, we want to find out whether both the
   1261  * current disk and the failed disk exist in that parity stripe.  If
   1262  * not, we want to skip this whole PS.  If so, we want to find the
   1263  * disk offset of the start of the PS on both the current disk and the
   1264  * failed disk.
   1265  *
   1266  * this works by getting a list of disks comprising the indicated
   1267  * parity stripe, and searching the list for the current and failed
   1268  * disks.  Once we've decided they both exist in the parity stripe, we
   1269  * need to decide whether each is data or parity, so that we'll know
   1270  * which mapping function to call to get the corresponding disk
   1271  * offsets.
   1272  *
   1273  * this is kind of unpleasant, but doing it this way allows the
   1274  * reconstruction code to use parity stripe IDs rather than physical
   1275  * disks address to march through the failed disk, which greatly
   1276  * simplifies a lot of code, as well as eliminating the need for a
   1277  * reverse-mapping function.  I also think it will execute faster,
   1278  * since the calls to the mapping module are kept to a minimum.
   1279  *
   1280  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
   1281  * THE STRIPE IN THE CORRECT ORDER
   1282  *
   1283  * raidPtr          - raid descriptor
   1284  * psid             - parity stripe identifier
   1285  * col              - column of disk to find the offsets for
   1286  * spCol            - out: col of spare unit for failed unit
   1287  * spOffset         - out: offset into disk containing spare unit
   1288  *
   1289  */
   1290 
   1291 
   1292 static int
   1293 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
   1294 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
   1295 		     RF_SectorNum_t *outFailedDiskSectorOffset,
   1296 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
   1297 {
   1298 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1299 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
   1300 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
   1301 	RF_RowCol_t *diskids;
   1302 	u_int   i, j, k, i_offset, j_offset;
   1303 	RF_RowCol_t pcol;
   1304 	int     testcol;
   1305 	RF_SectorNum_t poffset;
   1306 	char    i_is_parity = 0, j_is_parity = 0;
   1307 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
   1308 
   1309 	/* get a listing of the disks comprising that stripe */
   1310 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
   1311 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
   1312 	RF_ASSERT(diskids);
   1313 
   1314 	/* reject this entire parity stripe if it does not contain the
   1315 	 * indicated disk or it does not contain the failed disk */
   1316 
   1317 	for (i = 0; i < stripeWidth; i++) {
   1318 		if (col == diskids[i])
   1319 			break;
   1320 	}
   1321 	if (i == stripeWidth)
   1322 		goto skipit;
   1323 	for (j = 0; j < stripeWidth; j++) {
   1324 		if (fcol == diskids[j])
   1325 			break;
   1326 	}
   1327 	if (j == stripeWidth) {
   1328 		goto skipit;
   1329 	}
   1330 	/* find out which disk the parity is on */
   1331 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
   1332 
   1333 	/* find out if either the current RU or the failed RU is parity */
   1334 	/* also, if the parity occurs in this stripe prior to the data and/or
   1335 	 * failed col, we need to decrement i and/or j */
   1336 	for (k = 0; k < stripeWidth; k++)
   1337 		if (diskids[k] == pcol)
   1338 			break;
   1339 	RF_ASSERT(k < stripeWidth);
   1340 	i_offset = i;
   1341 	j_offset = j;
   1342 	if (k < i)
   1343 		i_offset--;
   1344 	else
   1345 		if (k == i) {
   1346 			i_is_parity = 1;
   1347 			i_offset = 0;
   1348 		}		/* set offsets to zero to disable multiply
   1349 				 * below */
   1350 	if (k < j)
   1351 		j_offset--;
   1352 	else
   1353 		if (k == j) {
   1354 			j_is_parity = 1;
   1355 			j_offset = 0;
   1356 		}
   1357 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
   1358 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
   1359 	 * tells us how far into the stripe the [current,failed] disk is. */
   1360 
   1361 	/* call the mapping routine to get the offset into the current disk,
   1362 	 * repeat for failed disk. */
   1363 	if (i_is_parity)
   1364 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
   1365 	else
   1366 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
   1367 
   1368 	RF_ASSERT(col == testcol);
   1369 
   1370 	if (j_is_parity)
   1371 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1372 	else
   1373 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1374 	RF_ASSERT(fcol == testcol);
   1375 
   1376 	/* now locate the spare unit for the failed unit */
   1377 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
   1378 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
   1379 		if (j_is_parity)
   1380 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
   1381 		else
   1382 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
   1383 	} else {
   1384 #endif
   1385 		*spCol = raidPtr->reconControl->spareCol;
   1386 		*spOffset = *outFailedDiskSectorOffset;
   1387 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
   1388 	}
   1389 #endif
   1390 	return (0);
   1391 
   1392 skipit:
   1393 	Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
   1394 	    psid, col);
   1395 	return (1);
   1396 }
   1397 /* this is called when a buffer has become ready to write to the replacement disk */
   1398 static int
   1399 IssueNextWriteRequest(RF_Raid_t *raidPtr)
   1400 {
   1401 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1402 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1403 #if RF_ACC_TRACE > 0
   1404 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
   1405 #endif
   1406 	RF_ReconBuffer_t *rbuf;
   1407 	RF_DiskQueueData_t *req;
   1408 
   1409 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
   1410 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
   1411 				 * have gotten the event that sent us here */
   1412 	RF_ASSERT(rbuf->pssPtr);
   1413 
   1414 	rbuf->pssPtr->writeRbuf = rbuf;
   1415 	rbuf->pssPtr = NULL;
   1416 
   1417 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
   1418 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
   1419 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
   1420 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
   1421 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
   1422 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
   1423 
   1424 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
   1425 	 * kernel space */
   1426 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
   1427 	    sectorsPerRU, rbuf->buffer,
   1428 	    rbuf->parityStripeID, rbuf->which_ru,
   1429 	    ReconWriteDoneProc, (void *) rbuf,
   1430 #if RF_ACC_TRACE > 0
   1431 	    &raidPtr->recon_tracerecs[fcol],
   1432 #else
   1433 				     NULL,
   1434 #endif
   1435 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
   1436 
   1437 	rbuf->arg = (void *) req;
   1438 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1439 	raidPtr->reconControl->pending_writes++;
   1440 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1441 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
   1442 
   1443 	return (0);
   1444 }
   1445 
   1446 /*
   1447  * this gets called upon the completion of a reconstruction read
   1448  * operation the arg is a pointer to the per-disk reconstruction
   1449  * control structure for the process that just finished a read.
   1450  *
   1451  * called at interrupt context in the kernel, so don't do anything
   1452  * illegal here.
   1453  */
   1454 static int
   1455 ReconReadDoneProc(void *arg, int status)
   1456 {
   1457 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
   1458 	RF_Raid_t *raidPtr;
   1459 
   1460 	/* Detect that reconCtrl is no longer valid, and if that
   1461 	   is the case, bail without calling rf_CauseReconEvent().
   1462 	   There won't be anyone listening for this event anyway */
   1463 
   1464 	if (ctrl->reconCtrl == NULL)
   1465 		return(0);
   1466 
   1467 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
   1468 
   1469 	if (status) {
   1470 		printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
   1471 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
   1472 		return(0);
   1473 	}
   1474 #if RF_ACC_TRACE > 0
   1475 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1476 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1477 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
   1478 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1479 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1480 #endif
   1481 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
   1482 	return (0);
   1483 }
   1484 /* this gets called upon the completion of a reconstruction write operation.
   1485  * the arg is a pointer to the rbuf that was just written
   1486  *
   1487  * called at interrupt context in the kernel, so don't do anything illegal here.
   1488  */
   1489 static int
   1490 ReconWriteDoneProc(void *arg, int status)
   1491 {
   1492 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
   1493 
   1494 	/* Detect that reconControl is no longer valid, and if that
   1495 	   is the case, bail without calling rf_CauseReconEvent().
   1496 	   There won't be anyone listening for this event anyway */
   1497 
   1498 	if (rbuf->raidPtr->reconControl == NULL)
   1499 		return(0);
   1500 
   1501 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
   1502 	if (status) {
   1503 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
   1504 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
   1505 		return(0);
   1506 	}
   1507 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
   1508 	return (0);
   1509 }
   1510 
   1511 
   1512 /*
   1513  * computes a new minimum head sep, and wakes up anyone who needs to
   1514  * be woken as a result
   1515  */
   1516 static void
   1517 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
   1518 {
   1519 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
   1520 	RF_HeadSepLimit_t new_min;
   1521 	RF_RowCol_t i;
   1522 	RF_CallbackDesc_t *p;
   1523 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
   1524 								 * of a minimum */
   1525 
   1526 
   1527 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1528 	while(reconCtrlPtr->rb_lock) {
   1529 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
   1530 	}
   1531 	reconCtrlPtr->rb_lock = 1;
   1532 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1533 
   1534 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
   1535 	for (i = 0; i < raidPtr->numCol; i++)
   1536 		if (i != reconCtrlPtr->fcol) {
   1537 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
   1538 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
   1539 		}
   1540 	/* set the new minimum and wake up anyone who can now run again */
   1541 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
   1542 		reconCtrlPtr->minHeadSepCounter = new_min;
   1543 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
   1544 		while (reconCtrlPtr->headSepCBList) {
   1545 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
   1546 				break;
   1547 			p = reconCtrlPtr->headSepCBList;
   1548 			reconCtrlPtr->headSepCBList = p->next;
   1549 			p->next = NULL;
   1550 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
   1551 			rf_FreeCallbackDesc(p);
   1552 		}
   1553 
   1554 	}
   1555 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1556 	reconCtrlPtr->rb_lock = 0;
   1557 	wakeup(&reconCtrlPtr->rb_lock);
   1558 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1559 }
   1560 
   1561 /*
   1562  * checks to see that the maximum head separation will not be violated
   1563  * if we initiate a reconstruction I/O on the indicated disk.
   1564  * Limiting the maximum head separation between two disks eliminates
   1565  * the nasty buffer-stall conditions that occur when one disk races
   1566  * ahead of the others and consumes all of the floating recon buffers.
   1567  * This code is complex and unpleasant but it's necessary to avoid
   1568  * some very nasty, albeit fairly rare, reconstruction behavior.
   1569  *
   1570  * returns non-zero if and only if we have to stop working on the
   1571  * indicated disk due to a head-separation delay.
   1572  */
   1573 static int
   1574 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
   1575 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
   1576 		    RF_ReconUnitNum_t which_ru)
   1577 {
   1578 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
   1579 	RF_CallbackDesc_t *cb, *p, *pt;
   1580 	int     retval = 0;
   1581 
   1582 	/* if we're too far ahead of the slowest disk, stop working on this
   1583 	 * disk until the slower ones catch up.  We do this by scheduling a
   1584 	 * wakeup callback for the time when the slowest disk has caught up.
   1585 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
   1586 	 * must have fallen to at most 80% of the max allowable head
   1587 	 * separation before we'll wake up.
   1588 	 *
   1589 	 */
   1590 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1591 	while(reconCtrlPtr->rb_lock) {
   1592 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
   1593 	}
   1594 	reconCtrlPtr->rb_lock = 1;
   1595 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1596 	if ((raidPtr->headSepLimit >= 0) &&
   1597 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
   1598 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
   1599 			 raidPtr->raidid, col, ctrl->headSepCounter,
   1600 			 reconCtrlPtr->minHeadSepCounter,
   1601 			 raidPtr->headSepLimit);
   1602 		cb = rf_AllocCallbackDesc();
   1603 		/* the minHeadSepCounter value we have to get to before we'll
   1604 		 * wake up.  build in 20% hysteresis. */
   1605 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
   1606 		cb->col = col;
   1607 		cb->next = NULL;
   1608 
   1609 		/* insert this callback descriptor into the sorted list of
   1610 		 * pending head-sep callbacks */
   1611 		p = reconCtrlPtr->headSepCBList;
   1612 		if (!p)
   1613 			reconCtrlPtr->headSepCBList = cb;
   1614 		else
   1615 			if (cb->callbackArg.v < p->callbackArg.v) {
   1616 				cb->next = reconCtrlPtr->headSepCBList;
   1617 				reconCtrlPtr->headSepCBList = cb;
   1618 			} else {
   1619 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
   1620 				cb->next = p;
   1621 				pt->next = cb;
   1622 			}
   1623 		retval = 1;
   1624 #if RF_RECON_STATS > 0
   1625 		ctrl->reconCtrl->reconDesc->hsStallCount++;
   1626 #endif				/* RF_RECON_STATS > 0 */
   1627 	}
   1628 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1629 	reconCtrlPtr->rb_lock = 0;
   1630 	wakeup(&reconCtrlPtr->rb_lock);
   1631 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1632 
   1633 	return (retval);
   1634 }
   1635 /*
   1636  * checks to see if reconstruction has been either forced or blocked
   1637  * by a user operation.  if forced, we skip this RU entirely.  else if
   1638  * blocked, put ourselves on the wait list.  else return 0.
   1639  *
   1640  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
   1641  */
   1642 static int
   1643 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
   1644 				   RF_ReconParityStripeStatus_t *pssPtr,
   1645 				   RF_PerDiskReconCtrl_t *ctrl,
   1646 				   RF_RowCol_t col,
   1647 				   RF_StripeNum_t psid,
   1648 				   RF_ReconUnitNum_t which_ru)
   1649 {
   1650 	RF_CallbackDesc_t *cb;
   1651 	int     retcode = 0;
   1652 
   1653 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
   1654 		retcode = RF_PSS_FORCED_ON_WRITE;
   1655 	else
   1656 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
   1657 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
   1658 			cb = rf_AllocCallbackDesc();	/* append ourselves to
   1659 							 * the blockage-wait
   1660 							 * list */
   1661 			cb->col = col;
   1662 			cb->next = pssPtr->blockWaitList;
   1663 			pssPtr->blockWaitList = cb;
   1664 			retcode = RF_PSS_RECON_BLOCKED;
   1665 		}
   1666 	if (!retcode)
   1667 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
   1668 							 * reconstruction */
   1669 
   1670 	return (retcode);
   1671 }
   1672 /*
   1673  * if reconstruction is currently ongoing for the indicated stripeID,
   1674  * reconstruction is forced to completion and we return non-zero to
   1675  * indicate that the caller must wait.  If not, then reconstruction is
   1676  * blocked on the indicated stripe and the routine returns zero.  If
   1677  * and only if we return non-zero, we'll cause the cbFunc to get
   1678  * invoked with the cbArg when the reconstruction has completed.
   1679  */
   1680 int
   1681 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1682 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
   1683 {
   1684 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
   1685 							 * forcing recon on */
   1686 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
   1687 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
   1688 						 * stripe status structure */
   1689 	RF_StripeNum_t psid;	/* parity stripe id */
   1690 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
   1691 						 * offset */
   1692 	RF_RowCol_t *diskids;
   1693 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
   1694 	RF_RowCol_t fcol, diskno, i;
   1695 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
   1696 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
   1697 	RF_CallbackDesc_t *cb;
   1698 	int     nPromoted;
   1699 
   1700 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1701 
   1702 	/* allocate a new PSS in case we need it */
   1703         newpssPtr = rf_AllocPSStatus(raidPtr);
   1704 
   1705 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1706 
   1707 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
   1708 
   1709         if (pssPtr != newpssPtr) {
   1710                 rf_FreePSStatus(raidPtr, newpssPtr);
   1711         }
   1712 
   1713 	/* if recon is not ongoing on this PS, just return */
   1714 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1715 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1716 		return (0);
   1717 	}
   1718 	/* otherwise, we have to wait for reconstruction to complete on this
   1719 	 * RU. */
   1720 	/* In order to avoid waiting for a potentially large number of
   1721 	 * low-priority accesses to complete, we force a normal-priority (i.e.
   1722 	 * not low-priority) reconstruction on this RU. */
   1723 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
   1724 		DDprintf1("Forcing recon on psid %ld\n", psid);
   1725 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
   1726 								 * forced recon */
   1727 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
   1728 							 * that we just set */
   1729 		fcol = raidPtr->reconControl->fcol;
   1730 
   1731 		/* get a listing of the disks comprising the indicated stripe */
   1732 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
   1733 
   1734 		/* For previously issued reads, elevate them to normal
   1735 		 * priority.  If the I/O has already completed, it won't be
   1736 		 * found in the queue, and hence this will be a no-op. For
   1737 		 * unissued reads, allocate buffers and issue new reads.  The
   1738 		 * fact that we've set the FORCED bit means that the regular
   1739 		 * recon procs will not re-issue these reqs */
   1740 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
   1741 			if ((diskno = diskids[i]) != fcol) {
   1742 				if (pssPtr->issued[diskno]) {
   1743 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
   1744 					if (rf_reconDebug && nPromoted)
   1745 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
   1746 				} else {
   1747 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
   1748 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
   1749 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
   1750 													 * location */
   1751 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
   1752 					new_rbuf->which_ru = which_ru;
   1753 					new_rbuf->failedDiskSectorOffset = fd_offset;
   1754 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
   1755 
   1756 					/* use NULL b_proc b/c all addrs
   1757 					 * should be in kernel space */
   1758 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
   1759 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
   1760 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
   1761 
   1762 					new_rbuf->arg = req;
   1763 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
   1764 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
   1765 				}
   1766 			}
   1767 		/* if the write is sitting in the disk queue, elevate its
   1768 		 * priority */
   1769 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
   1770 			if (rf_reconDebug)
   1771 				printf("raid%d: promoted write to col %d\n",
   1772 				       raidPtr->raidid, fcol);
   1773 	}
   1774 	/* install a callback descriptor to be invoked when recon completes on
   1775 	 * this parity stripe. */
   1776 	cb = rf_AllocCallbackDesc();
   1777 	/* XXX the following is bogus.. These functions don't really match!!
   1778 	 * GO */
   1779 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
   1780 	cb->callbackArg.p = (void *) cbArg;
   1781 	cb->next = pssPtr->procWaitList;
   1782 	pssPtr->procWaitList = cb;
   1783 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
   1784 		  raidPtr->raidid, psid);
   1785 
   1786 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1787 	return (1);
   1788 }
   1789 /* called upon the completion of a forced reconstruction read.
   1790  * all we do is schedule the FORCEDREADONE event.
   1791  * called at interrupt context in the kernel, so don't do anything illegal here.
   1792  */
   1793 static void
   1794 ForceReconReadDoneProc(void *arg, int status)
   1795 {
   1796 	RF_ReconBuffer_t *rbuf = arg;
   1797 
   1798 	/* Detect that reconControl is no longer valid, and if that
   1799 	   is the case, bail without calling rf_CauseReconEvent().
   1800 	   There won't be anyone listening for this event anyway */
   1801 
   1802 	if (rbuf->raidPtr->reconControl == NULL)
   1803 		return;
   1804 
   1805 	if (status) {
   1806 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
   1807 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
   1808 		return;
   1809 	}
   1810 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
   1811 }
   1812 /* releases a block on the reconstruction of the indicated stripe */
   1813 int
   1814 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
   1815 {
   1816 	RF_StripeNum_t stripeID = asmap->stripeID;
   1817 	RF_ReconParityStripeStatus_t *pssPtr;
   1818 	RF_ReconUnitNum_t which_ru;
   1819 	RF_StripeNum_t psid;
   1820 	RF_CallbackDesc_t *cb;
   1821 
   1822 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1823 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1824 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
   1825 
   1826 	/* When recon is forced, the pss desc can get deleted before we get
   1827 	 * back to unblock recon. But, this can _only_ happen when recon is
   1828 	 * forced. It would be good to put some kind of sanity check here, but
   1829 	 * how to decide if recon was just forced or not? */
   1830 	if (!pssPtr) {
   1831 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
   1832 		 * RU %d\n",psid,which_ru); */
   1833 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
   1834 		if (rf_reconDebug || rf_pssDebug)
   1835 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
   1836 #endif
   1837 		goto out;
   1838 	}
   1839 	pssPtr->blockCount--;
   1840 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
   1841 		 raidPtr->raidid, psid, pssPtr->blockCount);
   1842 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
   1843 
   1844 		/* unblock recon before calling CauseReconEvent in case
   1845 		 * CauseReconEvent causes us to try to issue a new read before
   1846 		 * returning here. */
   1847 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
   1848 
   1849 
   1850 		while (pssPtr->blockWaitList) {
   1851 			/* spin through the block-wait list and
   1852 			   release all the waiters */
   1853 			cb = pssPtr->blockWaitList;
   1854 			pssPtr->blockWaitList = cb->next;
   1855 			cb->next = NULL;
   1856 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
   1857 			rf_FreeCallbackDesc(cb);
   1858 		}
   1859 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1860 			/* if no recon was requested while recon was blocked */
   1861 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
   1862 		}
   1863 	}
   1864 out:
   1865 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1866 	return (0);
   1867 }
   1868 
   1869 void
   1870 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
   1871 {
   1872 	RF_CallbackDesc_t *p;
   1873 
   1874 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1875 	while(raidPtr->reconControl->rb_lock) {
   1876 		ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO,
   1877 			"rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex);
   1878 	}
   1879 
   1880 	raidPtr->reconControl->rb_lock = 1;
   1881 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1882 
   1883 	while (raidPtr->reconControl->headSepCBList) {
   1884 		p = raidPtr->reconControl->headSepCBList;
   1885 		raidPtr->reconControl->headSepCBList = p->next;
   1886 		p->next = NULL;
   1887 		rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
   1888 		rf_FreeCallbackDesc(p);
   1889 	}
   1890 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1891 	raidPtr->reconControl->rb_lock = 0;
   1892 	wakeup(&raidPtr->reconControl->rb_lock);
   1893 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1894 
   1895 }
   1896 
   1897