rf_reconstruct.c revision 1.105.4.6 1 /* $NetBSD: rf_reconstruct.c,v 1.105.4.6 2012/06/13 14:00:49 sborrill Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.105.4.6 2012/06/13 14:00:49 sborrill Exp $");
37
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <dev/raidframe/raidframevar.h>
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_debugprint.h"
58 #include "rf_general.h"
59 #include "rf_driver.h"
60 #include "rf_utils.h"
61 #include "rf_shutdown.h"
62
63 #include "rf_kintf.h"
64
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
66
67 #if RF_DEBUG_RECON
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 #else /* RF_DEBUG_RECON */
81
82 #define Dprintf(s) {}
83 #define Dprintf1(s,a) {}
84 #define Dprintf2(s,a,b) {}
85 #define Dprintf3(s,a,b,c) {}
86 #define Dprintf4(s,a,b,c,d) {}
87 #define Dprintf5(s,a,b,c,d,e) {}
88 #define Dprintf6(s,a,b,c,d,e,f) {}
89 #define Dprintf7(s,a,b,c,d,e,f,g) {}
90
91 #define DDprintf1(s,a) {}
92 #define DDprintf2(s,a,b) {}
93
94 #endif /* RF_DEBUG_RECON */
95
96 #define RF_RECON_DONE_READS 1
97 #define RF_RECON_READ_ERROR 2
98 #define RF_RECON_WRITE_ERROR 3
99 #define RF_RECON_READ_STOPPED 4
100 #define RF_RECON_WRITE_DONE 5
101
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 RF_RowCol_t, RF_HeadSepLimit_t,
120 RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 RF_ReconParityStripeStatus_t *,
123 RF_PerDiskReconCtrl_t *,
124 RF_RowCol_t, RF_StripeNum_t,
125 RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128
129 struct RF_ReconDoneProc_s {
130 void (*proc) (RF_Raid_t *, void *);
131 void *arg;
132 RF_ReconDoneProc_t *next;
133 };
134
135 /**************************************************************************
136 *
137 * sets up the parameters that will be used by the reconstruction process
138 * currently there are none, except for those that the layout-specific
139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140 *
141 * in the kernel, we fire off the recon thread.
142 *
143 **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 pool_destroy(&rf_pools.reconbuffer);
148 }
149
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153
154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157
158 return (0);
159 }
160
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 RF_RowCol_t scol)
165 {
166
167 RF_RaidReconDesc_t *reconDesc;
168
169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 (RF_RaidReconDesc_t *));
171 reconDesc->raidPtr = raidPtr;
172 reconDesc->col = col;
173 reconDesc->spareDiskPtr = spareDiskPtr;
174 reconDesc->numDisksDone = numDisksDone;
175 reconDesc->scol = scol;
176 reconDesc->next = NULL;
177
178 return (reconDesc);
179 }
180
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 reconDesc->raidPtr->raidid,
187 (long) reconDesc->numReconEventWaits,
188 (long) reconDesc->numReconExecDelays);
189 #endif /* RF_RECON_STATS > 0 */
190 printf("raid%d: %lu max exec ticks\n",
191 reconDesc->raidPtr->raidid,
192 (long) reconDesc->maxReconExecTicks);
193 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
194 }
195
196
197 /*****************************************************************************
198 *
199 * primary routine to reconstruct a failed disk. This should be called from
200 * within its own thread. It won't return until reconstruction completes,
201 * fails, or is aborted.
202 *****************************************************************************/
203 int
204 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
205 {
206 const RF_LayoutSW_t *lp;
207 int rc;
208
209 lp = raidPtr->Layout.map;
210 if (lp->SubmitReconBuffer) {
211 /*
212 * The current infrastructure only supports reconstructing one
213 * disk at a time for each array.
214 */
215 RF_LOCK_MUTEX(raidPtr->mutex);
216 while (raidPtr->reconInProgress) {
217 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
218 }
219 raidPtr->reconInProgress++;
220 RF_UNLOCK_MUTEX(raidPtr->mutex);
221 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
222 RF_LOCK_MUTEX(raidPtr->mutex);
223 raidPtr->reconInProgress--;
224 RF_UNLOCK_MUTEX(raidPtr->mutex);
225 } else {
226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
227 lp->parityConfig);
228 rc = EIO;
229 }
230 RF_SIGNAL_COND(raidPtr->waitForReconCond);
231 return (rc);
232 }
233
234 int
235 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
236 {
237 RF_ComponentLabel_t *c_label;
238 RF_RaidDisk_t *spareDiskPtr = NULL;
239 RF_RaidReconDesc_t *reconDesc;
240 RF_RowCol_t scol;
241 int numDisksDone = 0, rc;
242
243 /* first look for a spare drive onto which to reconstruct the data */
244 /* spare disk descriptors are stored in row 0. This may have to
245 * change eventually */
246
247 RF_LOCK_MUTEX(raidPtr->mutex);
248 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
249 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
250 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
251 if (raidPtr->status != rf_rs_degraded) {
252 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
253 RF_UNLOCK_MUTEX(raidPtr->mutex);
254 return (EINVAL);
255 }
256 scol = (-1);
257 } else {
258 #endif
259 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
260 if (raidPtr->Disks[scol].status == rf_ds_spare) {
261 spareDiskPtr = &raidPtr->Disks[scol];
262 spareDiskPtr->status = rf_ds_used_spare;
263 break;
264 }
265 }
266 if (!spareDiskPtr) {
267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
268 RF_UNLOCK_MUTEX(raidPtr->mutex);
269 return (ENOSPC);
270 }
271 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
272 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
273 }
274 #endif
275 RF_UNLOCK_MUTEX(raidPtr->mutex);
276
277 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
278 raidPtr->reconDesc = (void *) reconDesc;
279 #if RF_RECON_STATS > 0
280 reconDesc->hsStallCount = 0;
281 reconDesc->numReconExecDelays = 0;
282 reconDesc->numReconEventWaits = 0;
283 #endif /* RF_RECON_STATS > 0 */
284 reconDesc->reconExecTimerRunning = 0;
285 reconDesc->reconExecTicks = 0;
286 reconDesc->maxReconExecTicks = 0;
287 rc = rf_ContinueReconstructFailedDisk(reconDesc);
288
289 if (!rc) {
290 /* fix up the component label */
291 /* Don't actually need the read here.. */
292 c_label = raidget_component_label(raidPtr, scol);
293
294 raid_init_component_label(raidPtr, c_label);
295 c_label->row = 0;
296 c_label->column = col;
297 c_label->clean = RF_RAID_DIRTY;
298 c_label->status = rf_ds_optimal;
299 rf_component_label_set_partitionsize(c_label,
300 raidPtr->Disks[scol].partitionSize);
301
302 /* We've just done a rebuild based on all the other
303 disks, so at this point the parity is known to be
304 clean, even if it wasn't before. */
305
306 /* XXX doesn't hold for RAID 6!!*/
307
308 RF_LOCK_MUTEX(raidPtr->mutex);
309 raidPtr->parity_good = RF_RAID_CLEAN;
310 RF_UNLOCK_MUTEX(raidPtr->mutex);
311
312 /* XXXX MORE NEEDED HERE */
313
314 raidflush_component_label(raidPtr, scol);
315 } else {
316 /* Reconstruct failed. */
317
318 RF_LOCK_MUTEX(raidPtr->mutex);
319 /* Failed disk goes back to "failed" status */
320 raidPtr->Disks[col].status = rf_ds_failed;
321
322 /* Spare disk goes back to "spare" status. */
323 spareDiskPtr->status = rf_ds_spare;
324 RF_UNLOCK_MUTEX(raidPtr->mutex);
325
326 }
327 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
328 return (rc);
329 }
330
331 /*
332
333 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
334 and you don't get a spare until the next Monday. With this function
335 (and hot-swappable drives) you can now put your new disk containing
336 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
337 rebuild the data "on the spot".
338
339 */
340
341 int
342 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
343 {
344 RF_RaidDisk_t *spareDiskPtr = NULL;
345 RF_RaidReconDesc_t *reconDesc;
346 const RF_LayoutSW_t *lp;
347 RF_ComponentLabel_t *c_label;
348 int numDisksDone = 0, rc;
349 struct partinfo dpart;
350 struct vnode *vp;
351 struct vattr va;
352 int retcode;
353 int ac;
354
355 lp = raidPtr->Layout.map;
356 if (!lp->SubmitReconBuffer) {
357 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
358 lp->parityConfig);
359 /* wakeup anyone who might be waiting to do a reconstruct */
360 RF_SIGNAL_COND(raidPtr->waitForReconCond);
361 return(EIO);
362 }
363
364 /*
365 * The current infrastructure only supports reconstructing one
366 * disk at a time for each array.
367 */
368 RF_LOCK_MUTEX(raidPtr->mutex);
369
370 if (raidPtr->Disks[col].status != rf_ds_failed) {
371 /* "It's gone..." */
372 raidPtr->numFailures++;
373 raidPtr->Disks[col].status = rf_ds_failed;
374 raidPtr->status = rf_rs_degraded;
375 RF_UNLOCK_MUTEX(raidPtr->mutex);
376 rf_update_component_labels(raidPtr,
377 RF_NORMAL_COMPONENT_UPDATE);
378 RF_LOCK_MUTEX(raidPtr->mutex);
379 }
380
381 while (raidPtr->reconInProgress) {
382 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
383 }
384
385 raidPtr->reconInProgress++;
386
387 /* first look for a spare drive onto which to reconstruct the
388 data. spare disk descriptors are stored in row 0. This
389 may have to change eventually */
390
391 /* Actually, we don't care if it's failed or not... On a RAID
392 set with correct parity, this function should be callable
393 on any component without ill effects. */
394 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
395
396 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
397 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
398 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
399
400 raidPtr->reconInProgress--;
401 RF_UNLOCK_MUTEX(raidPtr->mutex);
402 RF_SIGNAL_COND(raidPtr->waitForReconCond);
403 return (EINVAL);
404 }
405 #endif
406
407 /* This device may have been opened successfully the
408 first time. Close it before trying to open it again.. */
409
410 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
411 #if 0
412 printf("Closed the open device: %s\n",
413 raidPtr->Disks[col].devname);
414 #endif
415 vp = raidPtr->raid_cinfo[col].ci_vp;
416 ac = raidPtr->Disks[col].auto_configured;
417 RF_UNLOCK_MUTEX(raidPtr->mutex);
418 rf_close_component(raidPtr, vp, ac);
419 RF_LOCK_MUTEX(raidPtr->mutex);
420 raidPtr->raid_cinfo[col].ci_vp = NULL;
421 }
422 /* note that this disk was *not* auto_configured (any longer)*/
423 raidPtr->Disks[col].auto_configured = 0;
424
425 #if 0
426 printf("About to (re-)open the device for rebuilding: %s\n",
427 raidPtr->Disks[col].devname);
428 #endif
429 RF_UNLOCK_MUTEX(raidPtr->mutex);
430 retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE);
431
432 if (retcode) {
433 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
434 raidPtr->Disks[col].devname, retcode);
435
436 /* the component isn't responding properly...
437 must be still dead :-( */
438 RF_LOCK_MUTEX(raidPtr->mutex);
439 raidPtr->reconInProgress--;
440 RF_UNLOCK_MUTEX(raidPtr->mutex);
441 RF_SIGNAL_COND(raidPtr->waitForReconCond);
442 return(retcode);
443 }
444
445 /* Ok, so we can at least do a lookup...
446 How about actually getting a vp for it? */
447
448 if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) {
449 RF_LOCK_MUTEX(raidPtr->mutex);
450 raidPtr->reconInProgress--;
451 RF_UNLOCK_MUTEX(raidPtr->mutex);
452 RF_SIGNAL_COND(raidPtr->waitForReconCond);
453 return(retcode);
454 }
455
456 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred);
457 if (retcode) {
458 RF_LOCK_MUTEX(raidPtr->mutex);
459 raidPtr->reconInProgress--;
460 RF_UNLOCK_MUTEX(raidPtr->mutex);
461 RF_SIGNAL_COND(raidPtr->waitForReconCond);
462 return(retcode);
463 }
464 RF_LOCK_MUTEX(raidPtr->mutex);
465 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
466
467 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
468 rf_protectedSectors;
469
470 raidPtr->raid_cinfo[col].ci_vp = vp;
471 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
472
473 raidPtr->Disks[col].dev = va.va_rdev;
474
475 /* we allow the user to specify that only a fraction
476 of the disks should be used this is just for debug:
477 it speeds up * the parity scan */
478 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
479 rf_sizePercentage / 100;
480 RF_UNLOCK_MUTEX(raidPtr->mutex);
481
482 spareDiskPtr = &raidPtr->Disks[col];
483 spareDiskPtr->status = rf_ds_used_spare;
484
485 printf("raid%d: initiating in-place reconstruction on column %d\n",
486 raidPtr->raidid, col);
487
488 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
489 numDisksDone, col);
490 raidPtr->reconDesc = (void *) reconDesc;
491 #if RF_RECON_STATS > 0
492 reconDesc->hsStallCount = 0;
493 reconDesc->numReconExecDelays = 0;
494 reconDesc->numReconEventWaits = 0;
495 #endif /* RF_RECON_STATS > 0 */
496 reconDesc->reconExecTimerRunning = 0;
497 reconDesc->reconExecTicks = 0;
498 reconDesc->maxReconExecTicks = 0;
499 rc = rf_ContinueReconstructFailedDisk(reconDesc);
500
501 if (!rc) {
502 RF_LOCK_MUTEX(raidPtr->mutex);
503 /* Need to set these here, as at this point it'll be claiming
504 that the disk is in rf_ds_spared! But we know better :-) */
505
506 raidPtr->Disks[col].status = rf_ds_optimal;
507 raidPtr->status = rf_rs_optimal;
508 RF_UNLOCK_MUTEX(raidPtr->mutex);
509
510 /* fix up the component label */
511 /* Don't actually need the read here.. */
512 c_label = raidget_component_label(raidPtr, col);
513
514 RF_LOCK_MUTEX(raidPtr->mutex);
515 raid_init_component_label(raidPtr, c_label);
516
517 c_label->row = 0;
518 c_label->column = col;
519
520 /* We've just done a rebuild based on all the other
521 disks, so at this point the parity is known to be
522 clean, even if it wasn't before. */
523
524 /* XXX doesn't hold for RAID 6!!*/
525
526 raidPtr->parity_good = RF_RAID_CLEAN;
527 RF_UNLOCK_MUTEX(raidPtr->mutex);
528
529 raidflush_component_label(raidPtr, col);
530 } else {
531 /* Reconstruct-in-place failed. Disk goes back to
532 "failed" status, regardless of what it was before. */
533 RF_LOCK_MUTEX(raidPtr->mutex);
534 raidPtr->Disks[col].status = rf_ds_failed;
535 RF_UNLOCK_MUTEX(raidPtr->mutex);
536 }
537
538 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
539
540 RF_LOCK_MUTEX(raidPtr->mutex);
541 raidPtr->reconInProgress--;
542 RF_UNLOCK_MUTEX(raidPtr->mutex);
543
544 RF_SIGNAL_COND(raidPtr->waitForReconCond);
545 return (rc);
546 }
547
548
549 int
550 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
551 {
552 RF_Raid_t *raidPtr = reconDesc->raidPtr;
553 RF_RowCol_t col = reconDesc->col;
554 RF_RowCol_t scol = reconDesc->scol;
555 RF_ReconMap_t *mapPtr;
556 RF_ReconCtrl_t *tmp_reconctrl;
557 RF_ReconEvent_t *event;
558 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
559 #if RF_INCLUDE_RAID5_RS > 0
560 RF_StripeCount_t startPSID,endPSID,aPSID,bPSID,offPSID;
561 #endif
562 RF_ReconUnitCount_t RUsPerPU;
563 struct timeval etime, elpsd;
564 unsigned long xor_s, xor_resid_us;
565 int i, ds;
566 int status, done;
567 int recon_error, write_error;
568
569 raidPtr->accumXorTimeUs = 0;
570 #if RF_ACC_TRACE > 0
571 /* create one trace record per physical disk */
572 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
573 #endif
574
575 /* quiesce the array prior to starting recon. this is needed
576 * to assure no nasty interactions with pending user writes.
577 * We need to do this before we change the disk or row status. */
578
579 Dprintf("RECON: begin request suspend\n");
580 rf_SuspendNewRequestsAndWait(raidPtr);
581 Dprintf("RECON: end request suspend\n");
582
583 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
584 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
585
586 RF_LOCK_MUTEX(raidPtr->mutex);
587
588 /* create the reconstruction control pointer and install it in
589 * the right slot */
590 raidPtr->reconControl = tmp_reconctrl;
591 mapPtr = raidPtr->reconControl->reconMap;
592 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
593 raidPtr->reconControl->numRUsComplete = 0;
594 raidPtr->status = rf_rs_reconstructing;
595 raidPtr->Disks[col].status = rf_ds_reconstructing;
596 raidPtr->Disks[col].spareCol = scol;
597
598 RF_UNLOCK_MUTEX(raidPtr->mutex);
599
600 RF_GETTIME(raidPtr->reconControl->starttime);
601
602 Dprintf("RECON: resume requests\n");
603 rf_ResumeNewRequests(raidPtr);
604
605
606 mapPtr = raidPtr->reconControl->reconMap;
607
608 incPSID = RF_RECONMAP_SIZE;
609 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
610 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
611 recon_error = 0;
612 write_error = 0;
613 pending_writes = incPSID;
614 raidPtr->reconControl->lastPSID = incPSID - 1;
615
616 /* bounds check raidPtr->reconControl->lastPSID and
617 pending_writes so that we don't attempt to wait for more IO
618 than can possibly happen */
619
620 if (raidPtr->reconControl->lastPSID > lastPSID)
621 raidPtr->reconControl->lastPSID = lastPSID;
622
623 if (pending_writes > lastPSID)
624 pending_writes = lastPSID;
625
626 /* start the actual reconstruction */
627
628 done = 0;
629 while (!done) {
630
631 if (raidPtr->waitShutdown) {
632 /* someone is unconfiguring this array... bail on the reconstruct.. */
633 recon_error = 1;
634 break;
635 }
636
637 num_writes = 0;
638
639 #if RF_INCLUDE_RAID5_RS > 0
640 /* For RAID5 with Rotated Spares we will be 'short'
641 some number of writes since no writes will get
642 issued for stripes where the spare is on the
643 component being rebuilt. Account for the shortage
644 here so that we don't hang indefinitely below
645 waiting for writes to complete that were never
646 scheduled.
647
648 XXX: Should be fixed for PARITY_DECLUSTERING and
649 others too!
650
651 */
652
653 if (raidPtr->Layout.numDataCol <
654 raidPtr->numCol - raidPtr->Layout.numParityCol) {
655 /* numDataCol is at least 2 less than numCol, so
656 should be RAID 5 with Rotated Spares */
657
658 /* XXX need to update for RAID 6 */
659
660 startPSID = raidPtr->reconControl->lastPSID - pending_writes + 1;
661 endPSID = raidPtr->reconControl->lastPSID;
662
663 offPSID = raidPtr->numCol - col - 1;
664
665 aPSID = startPSID - startPSID % raidPtr->numCol + offPSID;
666 if (aPSID < startPSID) {
667 aPSID += raidPtr->numCol;
668 }
669
670 bPSID = endPSID - ((endPSID - offPSID) % raidPtr->numCol);
671
672 if (aPSID < endPSID) {
673 num_writes = ((bPSID - aPSID) / raidPtr->numCol) + 1;
674 }
675
676 if ((aPSID == endPSID) && (bPSID == endPSID)) {
677 num_writes++;
678 }
679 }
680 #endif
681
682 /* issue a read for each surviving disk */
683
684 reconDesc->numDisksDone = 0;
685 for (i = 0; i < raidPtr->numCol; i++) {
686 if (i != col) {
687 /* find and issue the next I/O on the
688 * indicated disk */
689 if (IssueNextReadRequest(raidPtr, i)) {
690 Dprintf1("RECON: done issuing for c%d\n", i);
691 reconDesc->numDisksDone++;
692 }
693 }
694 }
695
696 /* process reconstruction events until all disks report that
697 * they've completed all work */
698
699 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
700
701 event = rf_GetNextReconEvent(reconDesc);
702 status = ProcessReconEvent(raidPtr, event);
703
704 /* the normal case is that a read completes, and all is well. */
705 if (status == RF_RECON_DONE_READS) {
706 reconDesc->numDisksDone++;
707 } else if ((status == RF_RECON_READ_ERROR) ||
708 (status == RF_RECON_WRITE_ERROR)) {
709 /* an error was encountered while reconstructing...
710 Pretend we've finished this disk.
711 */
712 recon_error = 1;
713 raidPtr->reconControl->error = 1;
714
715 /* bump the numDisksDone count for reads,
716 but not for writes */
717 if (status == RF_RECON_READ_ERROR)
718 reconDesc->numDisksDone++;
719
720 /* write errors are special -- when we are
721 done dealing with the reads that are
722 finished, we don't want to wait for any
723 writes */
724 if (status == RF_RECON_WRITE_ERROR) {
725 write_error = 1;
726 num_writes++;
727 }
728
729 } else if (status == RF_RECON_READ_STOPPED) {
730 /* count this component as being "done" */
731 reconDesc->numDisksDone++;
732 } else if (status == RF_RECON_WRITE_DONE) {
733 num_writes++;
734 }
735
736 if (recon_error) {
737 /* make sure any stragglers are woken up so that
738 their theads will complete, and we can get out
739 of here with all IO processed */
740
741 rf_WakeupHeadSepCBWaiters(raidPtr);
742 }
743
744 raidPtr->reconControl->numRUsTotal =
745 mapPtr->totalRUs;
746 raidPtr->reconControl->numRUsComplete =
747 mapPtr->totalRUs -
748 rf_UnitsLeftToReconstruct(mapPtr);
749
750 #if RF_DEBUG_RECON
751 raidPtr->reconControl->percentComplete =
752 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
753 if (rf_prReconSched) {
754 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
755 }
756 #endif
757 }
758
759 /* reads done, wakeup any waiters, and then wait for writes */
760
761 rf_WakeupHeadSepCBWaiters(raidPtr);
762
763 while (!recon_error && (num_writes < pending_writes)) {
764 event = rf_GetNextReconEvent(reconDesc);
765 status = ProcessReconEvent(raidPtr, event);
766
767 if (status == RF_RECON_WRITE_ERROR) {
768 num_writes++;
769 recon_error = 1;
770 raidPtr->reconControl->error = 1;
771 /* an error was encountered at the very end... bail */
772 } else if (status == RF_RECON_WRITE_DONE) {
773 num_writes++;
774 } /* else it's something else, and we don't care */
775 }
776 if (recon_error ||
777 (raidPtr->reconControl->lastPSID == lastPSID)) {
778 done = 1;
779 break;
780 }
781
782 prev = raidPtr->reconControl->lastPSID;
783 raidPtr->reconControl->lastPSID += incPSID;
784
785 if (raidPtr->reconControl->lastPSID > lastPSID) {
786 pending_writes = lastPSID - prev;
787 raidPtr->reconControl->lastPSID = lastPSID;
788 }
789
790 /* back down curPSID to get ready for the next round... */
791 for (i = 0; i < raidPtr->numCol; i++) {
792 if (i != col) {
793 raidPtr->reconControl->perDiskInfo[i].curPSID--;
794 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
795 }
796 }
797 }
798
799 mapPtr = raidPtr->reconControl->reconMap;
800 if (rf_reconDebug) {
801 printf("RECON: all reads completed\n");
802 }
803 /* at this point all the reads have completed. We now wait
804 * for any pending writes to complete, and then we're done */
805
806 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
807
808 event = rf_GetNextReconEvent(reconDesc);
809 status = ProcessReconEvent(raidPtr, event);
810
811 if (status == RF_RECON_WRITE_ERROR) {
812 recon_error = 1;
813 raidPtr->reconControl->error = 1;
814 /* an error was encountered at the very end... bail */
815 } else {
816 #if RF_DEBUG_RECON
817 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
818 if (rf_prReconSched) {
819 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
820 }
821 #endif
822 }
823 }
824
825 if (recon_error) {
826 /* we've encountered an error in reconstructing. */
827 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
828
829 /* we start by blocking IO to the RAID set. */
830 rf_SuspendNewRequestsAndWait(raidPtr);
831
832 RF_LOCK_MUTEX(raidPtr->mutex);
833 /* mark set as being degraded, rather than
834 rf_rs_reconstructing as we were before the problem.
835 After this is done we can update status of the
836 component disks without worrying about someone
837 trying to read from a failed component.
838 */
839 raidPtr->status = rf_rs_degraded;
840 RF_UNLOCK_MUTEX(raidPtr->mutex);
841
842 /* resume IO */
843 rf_ResumeNewRequests(raidPtr);
844
845 /* At this point there are two cases:
846 1) If we've experienced a read error, then we've
847 already waited for all the reads we're going to get,
848 and we just need to wait for the writes.
849
850 2) If we've experienced a write error, we've also
851 already waited for all the reads to complete,
852 but there is little point in waiting for the writes --
853 when they do complete, they will just be ignored.
854
855 So we just wait for writes to complete if we didn't have a
856 write error.
857 */
858
859 if (!write_error) {
860 /* wait for writes to complete */
861 while (raidPtr->reconControl->pending_writes > 0) {
862
863 event = rf_GetNextReconEvent(reconDesc);
864 status = ProcessReconEvent(raidPtr, event);
865
866 if (status == RF_RECON_WRITE_ERROR) {
867 raidPtr->reconControl->error = 1;
868 /* an error was encountered at the very end... bail.
869 This will be very bad news for the user, since
870 at this point there will have been a read error
871 on one component, and a write error on another!
872 */
873 break;
874 }
875 }
876 }
877
878
879 /* cleanup */
880
881 /* drain the event queue - after waiting for the writes above,
882 there shouldn't be much (if anything!) left in the queue. */
883
884 rf_DrainReconEventQueue(reconDesc);
885
886 /* XXX As much as we'd like to free the recon control structure
887 and the reconDesc, we have no way of knowing if/when those will
888 be touched by IO that has yet to occur. It is rather poor to be
889 basically causing a 'memory leak' here, but there doesn't seem to be
890 a cleaner alternative at this time. Perhaps when the reconstruct code
891 gets a makeover this problem will go away.
892 */
893 #if 0
894 rf_FreeReconControl(raidPtr);
895 #endif
896
897 #if RF_ACC_TRACE > 0
898 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
899 #endif
900 /* XXX see comment above */
901 #if 0
902 FreeReconDesc(reconDesc);
903 #endif
904
905 return (1);
906 }
907
908 /* Success: mark the dead disk as reconstructed. We quiesce
909 * the array here to assure no nasty interactions with pending
910 * user accesses when we free up the psstatus structure as
911 * part of FreeReconControl() */
912
913 rf_SuspendNewRequestsAndWait(raidPtr);
914
915 RF_LOCK_MUTEX(raidPtr->mutex);
916 raidPtr->numFailures--;
917 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
918 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
919 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
920 RF_UNLOCK_MUTEX(raidPtr->mutex);
921 RF_GETTIME(etime);
922 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
923
924 rf_ResumeNewRequests(raidPtr);
925
926 printf("raid%d: Reconstruction of disk at col %d completed\n",
927 raidPtr->raidid, col);
928 xor_s = raidPtr->accumXorTimeUs / 1000000;
929 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
930 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
931 raidPtr->raidid,
932 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
933 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
934 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
935 raidPtr->raidid,
936 (int) raidPtr->reconControl->starttime.tv_sec,
937 (int) raidPtr->reconControl->starttime.tv_usec,
938 (int) etime.tv_sec, (int) etime.tv_usec);
939 #if RF_RECON_STATS > 0
940 printf("raid%d: Total head-sep stall count was %d\n",
941 raidPtr->raidid, (int) reconDesc->hsStallCount);
942 #endif /* RF_RECON_STATS > 0 */
943 rf_FreeReconControl(raidPtr);
944 #if RF_ACC_TRACE > 0
945 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
946 #endif
947 FreeReconDesc(reconDesc);
948
949 return (0);
950
951 }
952 /*****************************************************************************
953 * do the right thing upon each reconstruction event.
954 *****************************************************************************/
955 static int
956 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
957 {
958 int retcode = 0, submitblocked;
959 RF_ReconBuffer_t *rbuf;
960 RF_SectorCount_t sectorsPerRU;
961
962 retcode = RF_RECON_READ_STOPPED;
963
964 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
965
966 switch (event->type) {
967
968 /* a read I/O has completed */
969 case RF_REVENT_READDONE:
970 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
971 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
972 event->col, rbuf->parityStripeID);
973 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
974 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
975 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
976 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
977 if (!raidPtr->reconControl->error) {
978 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
979 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
980 if (!submitblocked)
981 retcode = IssueNextReadRequest(raidPtr, event->col);
982 else
983 retcode = 0;
984 }
985 break;
986
987 /* a write I/O has completed */
988 case RF_REVENT_WRITEDONE:
989 #if RF_DEBUG_RECON
990 if (rf_floatingRbufDebug) {
991 rf_CheckFloatingRbufCount(raidPtr, 1);
992 }
993 #endif
994 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
995 rbuf = (RF_ReconBuffer_t *) event->arg;
996 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
997 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
998 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
999 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
1000 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
1001 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
1002
1003 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1004 raidPtr->reconControl->pending_writes--;
1005 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1006
1007 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
1008 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1009 while(raidPtr->reconControl->rb_lock) {
1010 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
1011 &raidPtr->reconControl->rb_mutex);
1012 }
1013 raidPtr->reconControl->rb_lock = 1;
1014 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1015
1016 raidPtr->numFullReconBuffers--;
1017 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
1018
1019 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1020 raidPtr->reconControl->rb_lock = 0;
1021 wakeup(&raidPtr->reconControl->rb_lock);
1022 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1023 } else
1024 if (rbuf->type == RF_RBUF_TYPE_FORCED)
1025 rf_FreeReconBuffer(rbuf);
1026 else
1027 RF_ASSERT(0);
1028 retcode = RF_RECON_WRITE_DONE;
1029 break;
1030
1031 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
1032 * cleared */
1033 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
1034 if (!raidPtr->reconControl->error) {
1035 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
1036 0, (int) (long) event->arg);
1037 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
1038 * BUFCLEAR event if we
1039 * couldn't submit */
1040 retcode = IssueNextReadRequest(raidPtr, event->col);
1041 }
1042 break;
1043
1044 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
1045 * blockage has been cleared */
1046 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
1047 if (!raidPtr->reconControl->error) {
1048 retcode = TryToRead(raidPtr, event->col);
1049 }
1050 break;
1051
1052 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
1053 * reconstruction blockage has been
1054 * cleared */
1055 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1056 if (!raidPtr->reconControl->error) {
1057 retcode = TryToRead(raidPtr, event->col);
1058 }
1059 break;
1060
1061 /* a buffer has become ready to write */
1062 case RF_REVENT_BUFREADY:
1063 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1064 if (!raidPtr->reconControl->error) {
1065 retcode = IssueNextWriteRequest(raidPtr);
1066 #if RF_DEBUG_RECON
1067 if (rf_floatingRbufDebug) {
1068 rf_CheckFloatingRbufCount(raidPtr, 1);
1069 }
1070 #endif
1071 }
1072 break;
1073
1074 /* we need to skip the current RU entirely because it got
1075 * recon'd while we were waiting for something else to happen */
1076 case RF_REVENT_SKIP:
1077 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1078 if (!raidPtr->reconControl->error) {
1079 retcode = IssueNextReadRequest(raidPtr, event->col);
1080 }
1081 break;
1082
1083 /* a forced-reconstruction read access has completed. Just
1084 * submit the buffer */
1085 case RF_REVENT_FORCEDREADDONE:
1086 rbuf = (RF_ReconBuffer_t *) event->arg;
1087 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1088 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1089 if (!raidPtr->reconControl->error) {
1090 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1091 RF_ASSERT(!submitblocked);
1092 retcode = 0;
1093 }
1094 break;
1095
1096 /* A read I/O failed to complete */
1097 case RF_REVENT_READ_FAILED:
1098 retcode = RF_RECON_READ_ERROR;
1099 break;
1100
1101 /* A write I/O failed to complete */
1102 case RF_REVENT_WRITE_FAILED:
1103 retcode = RF_RECON_WRITE_ERROR;
1104
1105 /* This is an error, but it was a pending write.
1106 Account for it. */
1107 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1108 raidPtr->reconControl->pending_writes--;
1109 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1110
1111 rbuf = (RF_ReconBuffer_t *) event->arg;
1112
1113 /* cleanup the disk queue data */
1114 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1115
1116 /* At this point we're erroring out, badly, and floatingRbufs
1117 may not even be valid. Rather than putting this back onto
1118 the floatingRbufs list, just arrange for its immediate
1119 destruction.
1120 */
1121 rf_FreeReconBuffer(rbuf);
1122 break;
1123
1124 /* a forced read I/O failed to complete */
1125 case RF_REVENT_FORCEDREAD_FAILED:
1126 retcode = RF_RECON_READ_ERROR;
1127 break;
1128
1129 default:
1130 RF_PANIC();
1131 }
1132 rf_FreeReconEventDesc(event);
1133 return (retcode);
1134 }
1135 /*****************************************************************************
1136 *
1137 * find the next thing that's needed on the indicated disk, and issue
1138 * a read request for it. We assume that the reconstruction buffer
1139 * associated with this process is free to receive the data. If
1140 * reconstruction is blocked on the indicated RU, we issue a
1141 * blockage-release request instead of a physical disk read request.
1142 * If the current disk gets too far ahead of the others, we issue a
1143 * head-separation wait request and return.
1144 *
1145 * ctrl->{ru_count, curPSID, diskOffset} and
1146 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1147 * we're currently accessing. Note that this deviates from the
1148 * standard C idiom of having counters point to the next thing to be
1149 * accessed. This allows us to easily retry when we're blocked by
1150 * head separation or reconstruction-blockage events.
1151 *
1152 *****************************************************************************/
1153 static int
1154 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1155 {
1156 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1157 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1158 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1159 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1160 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1161 int do_new_check = 0, retcode = 0, status;
1162
1163 /* if we are currently the slowest disk, mark that we have to do a new
1164 * check */
1165 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1166 do_new_check = 1;
1167
1168 while (1) {
1169
1170 ctrl->ru_count++;
1171 if (ctrl->ru_count < RUsPerPU) {
1172 ctrl->diskOffset += sectorsPerRU;
1173 rbuf->failedDiskSectorOffset += sectorsPerRU;
1174 } else {
1175 ctrl->curPSID++;
1176 ctrl->ru_count = 0;
1177 /* code left over from when head-sep was based on
1178 * parity stripe id */
1179 if (ctrl->curPSID > raidPtr->reconControl->lastPSID) {
1180 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1181 return (RF_RECON_DONE_READS); /* finito! */
1182 }
1183 /* find the disk offsets of the start of the parity
1184 * stripe on both the current disk and the failed
1185 * disk. skip this entire parity stripe if either disk
1186 * does not appear in the indicated PS */
1187 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1188 &rbuf->spCol, &rbuf->spOffset);
1189 if (status) {
1190 ctrl->ru_count = RUsPerPU - 1;
1191 continue;
1192 }
1193 }
1194 rbuf->which_ru = ctrl->ru_count;
1195
1196 /* skip this RU if it's already been reconstructed */
1197 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1198 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1199 continue;
1200 }
1201 break;
1202 }
1203 ctrl->headSepCounter++;
1204 if (do_new_check)
1205 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1206
1207
1208 /* at this point, we have definitely decided what to do, and we have
1209 * only to see if we can actually do it now */
1210 rbuf->parityStripeID = ctrl->curPSID;
1211 rbuf->which_ru = ctrl->ru_count;
1212 #if RF_ACC_TRACE > 0
1213 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1214 sizeof(raidPtr->recon_tracerecs[col]));
1215 raidPtr->recon_tracerecs[col].reconacc = 1;
1216 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1217 #endif
1218 retcode = TryToRead(raidPtr, col);
1219 return (retcode);
1220 }
1221
1222 /*
1223 * tries to issue the next read on the indicated disk. We may be
1224 * blocked by (a) the heads being too far apart, or (b) recon on the
1225 * indicated RU being blocked due to a write by a user thread. In
1226 * this case, we issue a head-sep or blockage wait request, which will
1227 * cause this same routine to be invoked again later when the blockage
1228 * has cleared.
1229 */
1230
1231 static int
1232 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1233 {
1234 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1235 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1236 RF_StripeNum_t psid = ctrl->curPSID;
1237 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1238 RF_DiskQueueData_t *req;
1239 int status;
1240 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1241
1242 /* if the current disk is too far ahead of the others, issue a
1243 * head-separation wait and return */
1244 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1245 return (0);
1246
1247 /* allocate a new PSS in case we need it */
1248 newpssPtr = rf_AllocPSStatus(raidPtr);
1249
1250 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1251 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1252
1253 if (pssPtr != newpssPtr) {
1254 rf_FreePSStatus(raidPtr, newpssPtr);
1255 }
1256
1257 /* if recon is blocked on the indicated parity stripe, issue a
1258 * block-wait request and return. this also must mark the indicated RU
1259 * in the stripe as under reconstruction if not blocked. */
1260 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1261 if (status == RF_PSS_RECON_BLOCKED) {
1262 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1263 goto out;
1264 } else
1265 if (status == RF_PSS_FORCED_ON_WRITE) {
1266 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1267 goto out;
1268 }
1269 /* make one last check to be sure that the indicated RU didn't get
1270 * reconstructed while we were waiting for something else to happen.
1271 * This is unfortunate in that it causes us to make this check twice
1272 * in the normal case. Might want to make some attempt to re-work
1273 * this so that we only do this check if we've definitely blocked on
1274 * one of the above checks. When this condition is detected, we may
1275 * have just created a bogus status entry, which we need to delete. */
1276 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1277 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1278 if (pssPtr == newpssPtr)
1279 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1280 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1281 goto out;
1282 }
1283 /* found something to read. issue the I/O */
1284 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1285 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1286 #if RF_ACC_TRACE > 0
1287 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1288 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1289 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1290 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1291 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1292 #endif
1293 /* should be ok to use a NULL proc pointer here, all the bufs we use
1294 * should be in kernel space */
1295 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1296 ReconReadDoneProc, (void *) ctrl,
1297 #if RF_ACC_TRACE > 0
1298 &raidPtr->recon_tracerecs[col],
1299 #else
1300 NULL,
1301 #endif
1302 (void *) raidPtr, 0, NULL, PR_WAITOK);
1303
1304 ctrl->rbuf->arg = (void *) req;
1305 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1306 pssPtr->issued[col] = 1;
1307
1308 out:
1309 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1310 return (0);
1311 }
1312
1313
1314 /*
1315 * given a parity stripe ID, we want to find out whether both the
1316 * current disk and the failed disk exist in that parity stripe. If
1317 * not, we want to skip this whole PS. If so, we want to find the
1318 * disk offset of the start of the PS on both the current disk and the
1319 * failed disk.
1320 *
1321 * this works by getting a list of disks comprising the indicated
1322 * parity stripe, and searching the list for the current and failed
1323 * disks. Once we've decided they both exist in the parity stripe, we
1324 * need to decide whether each is data or parity, so that we'll know
1325 * which mapping function to call to get the corresponding disk
1326 * offsets.
1327 *
1328 * this is kind of unpleasant, but doing it this way allows the
1329 * reconstruction code to use parity stripe IDs rather than physical
1330 * disks address to march through the failed disk, which greatly
1331 * simplifies a lot of code, as well as eliminating the need for a
1332 * reverse-mapping function. I also think it will execute faster,
1333 * since the calls to the mapping module are kept to a minimum.
1334 *
1335 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1336 * THE STRIPE IN THE CORRECT ORDER
1337 *
1338 * raidPtr - raid descriptor
1339 * psid - parity stripe identifier
1340 * col - column of disk to find the offsets for
1341 * spCol - out: col of spare unit for failed unit
1342 * spOffset - out: offset into disk containing spare unit
1343 *
1344 */
1345
1346
1347 static int
1348 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1349 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1350 RF_SectorNum_t *outFailedDiskSectorOffset,
1351 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1352 {
1353 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1354 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1355 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1356 RF_RowCol_t *diskids;
1357 u_int i, j, k, i_offset, j_offset;
1358 RF_RowCol_t pcol;
1359 int testcol;
1360 RF_SectorNum_t poffset;
1361 char i_is_parity = 0, j_is_parity = 0;
1362 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1363
1364 /* get a listing of the disks comprising that stripe */
1365 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1366 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1367 RF_ASSERT(diskids);
1368
1369 /* reject this entire parity stripe if it does not contain the
1370 * indicated disk or it does not contain the failed disk */
1371
1372 for (i = 0; i < stripeWidth; i++) {
1373 if (col == diskids[i])
1374 break;
1375 }
1376 if (i == stripeWidth)
1377 goto skipit;
1378 for (j = 0; j < stripeWidth; j++) {
1379 if (fcol == diskids[j])
1380 break;
1381 }
1382 if (j == stripeWidth) {
1383 goto skipit;
1384 }
1385 /* find out which disk the parity is on */
1386 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1387
1388 /* find out if either the current RU or the failed RU is parity */
1389 /* also, if the parity occurs in this stripe prior to the data and/or
1390 * failed col, we need to decrement i and/or j */
1391 for (k = 0; k < stripeWidth; k++)
1392 if (diskids[k] == pcol)
1393 break;
1394 RF_ASSERT(k < stripeWidth);
1395 i_offset = i;
1396 j_offset = j;
1397 if (k < i)
1398 i_offset--;
1399 else
1400 if (k == i) {
1401 i_is_parity = 1;
1402 i_offset = 0;
1403 } /* set offsets to zero to disable multiply
1404 * below */
1405 if (k < j)
1406 j_offset--;
1407 else
1408 if (k == j) {
1409 j_is_parity = 1;
1410 j_offset = 0;
1411 }
1412 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1413 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1414 * tells us how far into the stripe the [current,failed] disk is. */
1415
1416 /* call the mapping routine to get the offset into the current disk,
1417 * repeat for failed disk. */
1418 if (i_is_parity)
1419 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1420 else
1421 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1422
1423 RF_ASSERT(col == testcol);
1424
1425 if (j_is_parity)
1426 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1427 else
1428 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1429 RF_ASSERT(fcol == testcol);
1430
1431 /* now locate the spare unit for the failed unit */
1432 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1433 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1434 if (j_is_parity)
1435 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1436 else
1437 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1438 } else {
1439 #endif
1440 *spCol = raidPtr->reconControl->spareCol;
1441 *spOffset = *outFailedDiskSectorOffset;
1442 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1443 }
1444 #endif
1445 return (0);
1446
1447 skipit:
1448 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1449 psid, col);
1450 return (1);
1451 }
1452 /* this is called when a buffer has become ready to write to the replacement disk */
1453 static int
1454 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1455 {
1456 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1457 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1458 #if RF_ACC_TRACE > 0
1459 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1460 #endif
1461 RF_ReconBuffer_t *rbuf;
1462 RF_DiskQueueData_t *req;
1463
1464 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1465 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1466 * have gotten the event that sent us here */
1467 RF_ASSERT(rbuf->pssPtr);
1468
1469 rbuf->pssPtr->writeRbuf = rbuf;
1470 rbuf->pssPtr = NULL;
1471
1472 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1473 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1474 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1475 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1476 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1477 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1478
1479 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1480 * kernel space */
1481 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1482 sectorsPerRU, rbuf->buffer,
1483 rbuf->parityStripeID, rbuf->which_ru,
1484 ReconWriteDoneProc, (void *) rbuf,
1485 #if RF_ACC_TRACE > 0
1486 &raidPtr->recon_tracerecs[fcol],
1487 #else
1488 NULL,
1489 #endif
1490 (void *) raidPtr, 0, NULL, PR_WAITOK);
1491
1492 rbuf->arg = (void *) req;
1493 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1494 raidPtr->reconControl->pending_writes++;
1495 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1496 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1497
1498 return (0);
1499 }
1500
1501 /*
1502 * this gets called upon the completion of a reconstruction read
1503 * operation the arg is a pointer to the per-disk reconstruction
1504 * control structure for the process that just finished a read.
1505 *
1506 * called at interrupt context in the kernel, so don't do anything
1507 * illegal here.
1508 */
1509 static int
1510 ReconReadDoneProc(void *arg, int status)
1511 {
1512 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1513 RF_Raid_t *raidPtr;
1514
1515 /* Detect that reconCtrl is no longer valid, and if that
1516 is the case, bail without calling rf_CauseReconEvent().
1517 There won't be anyone listening for this event anyway */
1518
1519 if (ctrl->reconCtrl == NULL)
1520 return(0);
1521
1522 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1523
1524 if (status) {
1525 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1526 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1527 return(0);
1528 }
1529 #if RF_ACC_TRACE > 0
1530 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1531 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1532 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1533 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1534 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1535 #endif
1536 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1537 return (0);
1538 }
1539 /* this gets called upon the completion of a reconstruction write operation.
1540 * the arg is a pointer to the rbuf that was just written
1541 *
1542 * called at interrupt context in the kernel, so don't do anything illegal here.
1543 */
1544 static int
1545 ReconWriteDoneProc(void *arg, int status)
1546 {
1547 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1548
1549 /* Detect that reconControl is no longer valid, and if that
1550 is the case, bail without calling rf_CauseReconEvent().
1551 There won't be anyone listening for this event anyway */
1552
1553 if (rbuf->raidPtr->reconControl == NULL)
1554 return(0);
1555
1556 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1557 if (status) {
1558 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1559 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1560 return(0);
1561 }
1562 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1563 return (0);
1564 }
1565
1566
1567 /*
1568 * computes a new minimum head sep, and wakes up anyone who needs to
1569 * be woken as a result
1570 */
1571 static void
1572 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1573 {
1574 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1575 RF_HeadSepLimit_t new_min;
1576 RF_RowCol_t i;
1577 RF_CallbackDesc_t *p;
1578 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1579 * of a minimum */
1580
1581
1582 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1583 while(reconCtrlPtr->rb_lock) {
1584 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1585 }
1586 reconCtrlPtr->rb_lock = 1;
1587 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1588
1589 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1590 for (i = 0; i < raidPtr->numCol; i++)
1591 if (i != reconCtrlPtr->fcol) {
1592 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1593 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1594 }
1595 /* set the new minimum and wake up anyone who can now run again */
1596 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1597 reconCtrlPtr->minHeadSepCounter = new_min;
1598 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1599 while (reconCtrlPtr->headSepCBList) {
1600 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1601 break;
1602 p = reconCtrlPtr->headSepCBList;
1603 reconCtrlPtr->headSepCBList = p->next;
1604 p->next = NULL;
1605 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1606 rf_FreeCallbackDesc(p);
1607 }
1608
1609 }
1610 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1611 reconCtrlPtr->rb_lock = 0;
1612 wakeup(&reconCtrlPtr->rb_lock);
1613 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1614 }
1615
1616 /*
1617 * checks to see that the maximum head separation will not be violated
1618 * if we initiate a reconstruction I/O on the indicated disk.
1619 * Limiting the maximum head separation between two disks eliminates
1620 * the nasty buffer-stall conditions that occur when one disk races
1621 * ahead of the others and consumes all of the floating recon buffers.
1622 * This code is complex and unpleasant but it's necessary to avoid
1623 * some very nasty, albeit fairly rare, reconstruction behavior.
1624 *
1625 * returns non-zero if and only if we have to stop working on the
1626 * indicated disk due to a head-separation delay.
1627 */
1628 static int
1629 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1630 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1631 RF_ReconUnitNum_t which_ru)
1632 {
1633 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1634 RF_CallbackDesc_t *cb, *p, *pt;
1635 int retval = 0;
1636
1637 /* if we're too far ahead of the slowest disk, stop working on this
1638 * disk until the slower ones catch up. We do this by scheduling a
1639 * wakeup callback for the time when the slowest disk has caught up.
1640 * We define "caught up" with 20% hysteresis, i.e. the head separation
1641 * must have fallen to at most 80% of the max allowable head
1642 * separation before we'll wake up.
1643 *
1644 */
1645 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1646 while(reconCtrlPtr->rb_lock) {
1647 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1648 }
1649 reconCtrlPtr->rb_lock = 1;
1650 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1651 if ((raidPtr->headSepLimit >= 0) &&
1652 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1653 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1654 raidPtr->raidid, col, ctrl->headSepCounter,
1655 reconCtrlPtr->minHeadSepCounter,
1656 raidPtr->headSepLimit);
1657 cb = rf_AllocCallbackDesc();
1658 /* the minHeadSepCounter value we have to get to before we'll
1659 * wake up. build in 20% hysteresis. */
1660 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1661 cb->col = col;
1662 cb->next = NULL;
1663
1664 /* insert this callback descriptor into the sorted list of
1665 * pending head-sep callbacks */
1666 p = reconCtrlPtr->headSepCBList;
1667 if (!p)
1668 reconCtrlPtr->headSepCBList = cb;
1669 else
1670 if (cb->callbackArg.v < p->callbackArg.v) {
1671 cb->next = reconCtrlPtr->headSepCBList;
1672 reconCtrlPtr->headSepCBList = cb;
1673 } else {
1674 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1675 cb->next = p;
1676 pt->next = cb;
1677 }
1678 retval = 1;
1679 #if RF_RECON_STATS > 0
1680 ctrl->reconCtrl->reconDesc->hsStallCount++;
1681 #endif /* RF_RECON_STATS > 0 */
1682 }
1683 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1684 reconCtrlPtr->rb_lock = 0;
1685 wakeup(&reconCtrlPtr->rb_lock);
1686 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1687
1688 return (retval);
1689 }
1690 /*
1691 * checks to see if reconstruction has been either forced or blocked
1692 * by a user operation. if forced, we skip this RU entirely. else if
1693 * blocked, put ourselves on the wait list. else return 0.
1694 *
1695 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1696 */
1697 static int
1698 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1699 RF_ReconParityStripeStatus_t *pssPtr,
1700 RF_PerDiskReconCtrl_t *ctrl,
1701 RF_RowCol_t col,
1702 RF_StripeNum_t psid,
1703 RF_ReconUnitNum_t which_ru)
1704 {
1705 RF_CallbackDesc_t *cb;
1706 int retcode = 0;
1707
1708 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1709 retcode = RF_PSS_FORCED_ON_WRITE;
1710 else
1711 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1712 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1713 cb = rf_AllocCallbackDesc(); /* append ourselves to
1714 * the blockage-wait
1715 * list */
1716 cb->col = col;
1717 cb->next = pssPtr->blockWaitList;
1718 pssPtr->blockWaitList = cb;
1719 retcode = RF_PSS_RECON_BLOCKED;
1720 }
1721 if (!retcode)
1722 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1723 * reconstruction */
1724
1725 return (retcode);
1726 }
1727 /*
1728 * if reconstruction is currently ongoing for the indicated stripeID,
1729 * reconstruction is forced to completion and we return non-zero to
1730 * indicate that the caller must wait. If not, then reconstruction is
1731 * blocked on the indicated stripe and the routine returns zero. If
1732 * and only if we return non-zero, we'll cause the cbFunc to get
1733 * invoked with the cbArg when the reconstruction has completed.
1734 */
1735 int
1736 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1737 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1738 {
1739 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1740 * forcing recon on */
1741 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1742 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1743 * stripe status structure */
1744 RF_StripeNum_t psid; /* parity stripe id */
1745 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1746 * offset */
1747 RF_RowCol_t *diskids;
1748 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1749 RF_RowCol_t fcol, diskno, i;
1750 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1751 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1752 RF_CallbackDesc_t *cb;
1753 int nPromoted;
1754
1755 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1756
1757 /* allocate a new PSS in case we need it */
1758 newpssPtr = rf_AllocPSStatus(raidPtr);
1759
1760 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1761
1762 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1763
1764 if (pssPtr != newpssPtr) {
1765 rf_FreePSStatus(raidPtr, newpssPtr);
1766 }
1767
1768 /* if recon is not ongoing on this PS, just return */
1769 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1770 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1771 return (0);
1772 }
1773 /* otherwise, we have to wait for reconstruction to complete on this
1774 * RU. */
1775 /* In order to avoid waiting for a potentially large number of
1776 * low-priority accesses to complete, we force a normal-priority (i.e.
1777 * not low-priority) reconstruction on this RU. */
1778 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1779 DDprintf1("Forcing recon on psid %ld\n", psid);
1780 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1781 * forced recon */
1782 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1783 * that we just set */
1784 fcol = raidPtr->reconControl->fcol;
1785
1786 /* get a listing of the disks comprising the indicated stripe */
1787 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1788
1789 /* For previously issued reads, elevate them to normal
1790 * priority. If the I/O has already completed, it won't be
1791 * found in the queue, and hence this will be a no-op. For
1792 * unissued reads, allocate buffers and issue new reads. The
1793 * fact that we've set the FORCED bit means that the regular
1794 * recon procs will not re-issue these reqs */
1795 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1796 if ((diskno = diskids[i]) != fcol) {
1797 if (pssPtr->issued[diskno]) {
1798 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1799 if (rf_reconDebug && nPromoted)
1800 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1801 } else {
1802 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1803 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1804 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1805 * location */
1806 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1807 new_rbuf->which_ru = which_ru;
1808 new_rbuf->failedDiskSectorOffset = fd_offset;
1809 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1810
1811 /* use NULL b_proc b/c all addrs
1812 * should be in kernel space */
1813 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1814 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1815 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1816
1817 new_rbuf->arg = req;
1818 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1819 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1820 }
1821 }
1822 /* if the write is sitting in the disk queue, elevate its
1823 * priority */
1824 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1825 if (rf_reconDebug)
1826 printf("raid%d: promoted write to col %d\n",
1827 raidPtr->raidid, fcol);
1828 }
1829 /* install a callback descriptor to be invoked when recon completes on
1830 * this parity stripe. */
1831 cb = rf_AllocCallbackDesc();
1832 /* XXX the following is bogus.. These functions don't really match!!
1833 * GO */
1834 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1835 cb->callbackArg.p = (void *) cbArg;
1836 cb->next = pssPtr->procWaitList;
1837 pssPtr->procWaitList = cb;
1838 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1839 raidPtr->raidid, psid);
1840
1841 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1842 return (1);
1843 }
1844 /* called upon the completion of a forced reconstruction read.
1845 * all we do is schedule the FORCEDREADONE event.
1846 * called at interrupt context in the kernel, so don't do anything illegal here.
1847 */
1848 static void
1849 ForceReconReadDoneProc(void *arg, int status)
1850 {
1851 RF_ReconBuffer_t *rbuf = arg;
1852
1853 /* Detect that reconControl is no longer valid, and if that
1854 is the case, bail without calling rf_CauseReconEvent().
1855 There won't be anyone listening for this event anyway */
1856
1857 if (rbuf->raidPtr->reconControl == NULL)
1858 return;
1859
1860 if (status) {
1861 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1862 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1863 return;
1864 }
1865 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1866 }
1867 /* releases a block on the reconstruction of the indicated stripe */
1868 int
1869 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1870 {
1871 RF_StripeNum_t stripeID = asmap->stripeID;
1872 RF_ReconParityStripeStatus_t *pssPtr;
1873 RF_ReconUnitNum_t which_ru;
1874 RF_StripeNum_t psid;
1875 RF_CallbackDesc_t *cb;
1876
1877 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1878 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1879 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1880
1881 /* When recon is forced, the pss desc can get deleted before we get
1882 * back to unblock recon. But, this can _only_ happen when recon is
1883 * forced. It would be good to put some kind of sanity check here, but
1884 * how to decide if recon was just forced or not? */
1885 if (!pssPtr) {
1886 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1887 * RU %d\n",psid,which_ru); */
1888 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1889 if (rf_reconDebug || rf_pssDebug)
1890 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1891 #endif
1892 goto out;
1893 }
1894 pssPtr->blockCount--;
1895 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1896 raidPtr->raidid, psid, pssPtr->blockCount);
1897 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1898
1899 /* unblock recon before calling CauseReconEvent in case
1900 * CauseReconEvent causes us to try to issue a new read before
1901 * returning here. */
1902 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1903
1904
1905 while (pssPtr->blockWaitList) {
1906 /* spin through the block-wait list and
1907 release all the waiters */
1908 cb = pssPtr->blockWaitList;
1909 pssPtr->blockWaitList = cb->next;
1910 cb->next = NULL;
1911 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1912 rf_FreeCallbackDesc(cb);
1913 }
1914 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1915 /* if no recon was requested while recon was blocked */
1916 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1917 }
1918 }
1919 out:
1920 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1921 return (0);
1922 }
1923
1924 void
1925 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1926 {
1927 RF_CallbackDesc_t *p;
1928
1929 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1930 while(raidPtr->reconControl->rb_lock) {
1931 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO,
1932 "rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex);
1933 }
1934
1935 raidPtr->reconControl->rb_lock = 1;
1936 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1937
1938 while (raidPtr->reconControl->headSepCBList) {
1939 p = raidPtr->reconControl->headSepCBList;
1940 raidPtr->reconControl->headSepCBList = p->next;
1941 p->next = NULL;
1942 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1943 rf_FreeCallbackDesc(p);
1944 }
1945 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1946 raidPtr->reconControl->rb_lock = 0;
1947 wakeup(&raidPtr->reconControl->rb_lock);
1948 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1949
1950 }
1951
1952