rf_reconstruct.c revision 1.108.4.2 1 /* $NetBSD: rf_reconstruct.c,v 1.108.4.2 2011/05/31 03:04:54 rmind Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.108.4.2 2011/05/31 03:04:54 rmind Exp $");
37
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <sys/namei.h> /* for pathbuf */
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97 #define RF_RECON_DONE_READS 1
98 #define RF_RECON_READ_ERROR 2
99 #define RF_RECON_WRITE_ERROR 3
100 #define RF_RECON_READ_STOPPED 4
101 #define RF_RECON_WRITE_DONE 5
102
103 #define RF_MAX_FREE_RECONBUFFER 32
104 #define RF_MIN_FREE_RECONBUFFER 16
105
106 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
107 RF_RaidDisk_t *, int, RF_RowCol_t);
108 static void FreeReconDesc(RF_RaidReconDesc_t *);
109 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
110 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
111 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
112 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
113 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
114 RF_SectorNum_t *);
115 static int IssueNextWriteRequest(RF_Raid_t *);
116 static int ReconReadDoneProc(void *, int);
117 static int ReconWriteDoneProc(void *, int);
118 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
119 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
120 RF_RowCol_t, RF_HeadSepLimit_t,
121 RF_ReconUnitNum_t);
122 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
123 RF_ReconParityStripeStatus_t *,
124 RF_PerDiskReconCtrl_t *,
125 RF_RowCol_t, RF_StripeNum_t,
126 RF_ReconUnitNum_t);
127 static void ForceReconReadDoneProc(void *, int);
128 static void rf_ShutdownReconstruction(void *);
129
130 struct RF_ReconDoneProc_s {
131 void (*proc) (RF_Raid_t *, void *);
132 void *arg;
133 RF_ReconDoneProc_t *next;
134 };
135
136 /**************************************************************************
137 *
138 * sets up the parameters that will be used by the reconstruction process
139 * currently there are none, except for those that the layout-specific
140 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
141 *
142 * in the kernel, we fire off the recon thread.
143 *
144 **************************************************************************/
145 static void
146 rf_ShutdownReconstruction(void *ignored)
147 {
148 pool_destroy(&rf_pools.reconbuffer);
149 }
150
151 int
152 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
153 {
154
155 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
156 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
157 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
158
159 return (0);
160 }
161
162 static RF_RaidReconDesc_t *
163 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
164 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
165 RF_RowCol_t scol)
166 {
167
168 RF_RaidReconDesc_t *reconDesc;
169
170 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
171 (RF_RaidReconDesc_t *));
172 reconDesc->raidPtr = raidPtr;
173 reconDesc->col = col;
174 reconDesc->spareDiskPtr = spareDiskPtr;
175 reconDesc->numDisksDone = numDisksDone;
176 reconDesc->scol = scol;
177 reconDesc->next = NULL;
178
179 return (reconDesc);
180 }
181
182 static void
183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
184 {
185 #if RF_RECON_STATS > 0
186 printf("raid%d: %lu recon event waits, %lu recon delays\n",
187 reconDesc->raidPtr->raidid,
188 (long) reconDesc->numReconEventWaits,
189 (long) reconDesc->numReconExecDelays);
190 #endif /* RF_RECON_STATS > 0 */
191 printf("raid%d: %lu max exec ticks\n",
192 reconDesc->raidPtr->raidid,
193 (long) reconDesc->maxReconExecTicks);
194 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
195 }
196
197
198 /*****************************************************************************
199 *
200 * primary routine to reconstruct a failed disk. This should be called from
201 * within its own thread. It won't return until reconstruction completes,
202 * fails, or is aborted.
203 *****************************************************************************/
204 int
205 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
206 {
207 const RF_LayoutSW_t *lp;
208 int rc;
209
210 lp = raidPtr->Layout.map;
211 if (lp->SubmitReconBuffer) {
212 /*
213 * The current infrastructure only supports reconstructing one
214 * disk at a time for each array.
215 */
216 rf_lock_mutex2(raidPtr->mutex);
217 while (raidPtr->reconInProgress) {
218 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
219 }
220 raidPtr->reconInProgress++;
221 rf_unlock_mutex2(raidPtr->mutex);
222 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
223 rf_lock_mutex2(raidPtr->mutex);
224 raidPtr->reconInProgress--;
225 } else {
226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
227 lp->parityConfig);
228 rc = EIO;
229 rf_lock_mutex2(raidPtr->mutex);
230 }
231 rf_signal_cond2(raidPtr->waitForReconCond);
232 rf_unlock_mutex2(raidPtr->mutex);
233 return (rc);
234 }
235
236 int
237 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
238 {
239 RF_ComponentLabel_t *c_label;
240 RF_RaidDisk_t *spareDiskPtr = NULL;
241 RF_RaidReconDesc_t *reconDesc;
242 RF_RowCol_t scol;
243 int numDisksDone = 0, rc;
244
245 /* first look for a spare drive onto which to reconstruct the data */
246 /* spare disk descriptors are stored in row 0. This may have to
247 * change eventually */
248
249 rf_lock_mutex2(raidPtr->mutex);
250 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
251 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
252 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
253 if (raidPtr->status != rf_rs_degraded) {
254 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
255 rf_unlock_mutex2(raidPtr->mutex);
256 return (EINVAL);
257 }
258 scol = (-1);
259 } else {
260 #endif
261 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
262 if (raidPtr->Disks[scol].status == rf_ds_spare) {
263 spareDiskPtr = &raidPtr->Disks[scol];
264 spareDiskPtr->status = rf_ds_used_spare;
265 break;
266 }
267 }
268 if (!spareDiskPtr) {
269 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
270 rf_unlock_mutex2(raidPtr->mutex);
271 return (ENOSPC);
272 }
273 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
274 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
275 }
276 #endif
277 rf_unlock_mutex2(raidPtr->mutex);
278
279 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
280 raidPtr->reconDesc = (void *) reconDesc;
281 #if RF_RECON_STATS > 0
282 reconDesc->hsStallCount = 0;
283 reconDesc->numReconExecDelays = 0;
284 reconDesc->numReconEventWaits = 0;
285 #endif /* RF_RECON_STATS > 0 */
286 reconDesc->reconExecTimerRunning = 0;
287 reconDesc->reconExecTicks = 0;
288 reconDesc->maxReconExecTicks = 0;
289 rc = rf_ContinueReconstructFailedDisk(reconDesc);
290
291 if (!rc) {
292 /* fix up the component label */
293 /* Don't actually need the read here.. */
294 c_label = raidget_component_label(raidPtr, scol);
295
296 raid_init_component_label(raidPtr, c_label);
297 c_label->row = 0;
298 c_label->column = col;
299 c_label->clean = RF_RAID_DIRTY;
300 c_label->status = rf_ds_optimal;
301 rf_component_label_set_partitionsize(c_label,
302 raidPtr->Disks[scol].partitionSize);
303
304 /* We've just done a rebuild based on all the other
305 disks, so at this point the parity is known to be
306 clean, even if it wasn't before. */
307
308 /* XXX doesn't hold for RAID 6!!*/
309
310 rf_lock_mutex2(raidPtr->mutex);
311 raidPtr->parity_good = RF_RAID_CLEAN;
312 rf_unlock_mutex2(raidPtr->mutex);
313
314 /* XXXX MORE NEEDED HERE */
315
316 raidflush_component_label(raidPtr, scol);
317 } else {
318 /* Reconstruct failed. */
319
320 rf_lock_mutex2(raidPtr->mutex);
321 /* Failed disk goes back to "failed" status */
322 raidPtr->Disks[col].status = rf_ds_failed;
323
324 /* Spare disk goes back to "spare" status. */
325 spareDiskPtr->status = rf_ds_spare;
326 rf_unlock_mutex2(raidPtr->mutex);
327
328 }
329 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
330 return (rc);
331 }
332
333 /*
334
335 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
336 and you don't get a spare until the next Monday. With this function
337 (and hot-swappable drives) you can now put your new disk containing
338 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
339 rebuild the data "on the spot".
340
341 */
342
343 int
344 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
345 {
346 RF_RaidDisk_t *spareDiskPtr = NULL;
347 RF_RaidReconDesc_t *reconDesc;
348 const RF_LayoutSW_t *lp;
349 RF_ComponentLabel_t *c_label;
350 int numDisksDone = 0, rc;
351 struct partinfo dpart;
352 struct pathbuf *pb;
353 struct vnode *vp;
354 struct vattr va;
355 int retcode;
356 int ac;
357
358 rf_lock_mutex2(raidPtr->mutex);
359 lp = raidPtr->Layout.map;
360 if (!lp->SubmitReconBuffer) {
361 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
362 lp->parityConfig);
363 /* wakeup anyone who might be waiting to do a reconstruct */
364 rf_signal_cond2(raidPtr->waitForReconCond);
365 rf_unlock_mutex2(raidPtr->mutex);
366 return(EIO);
367 }
368
369 /*
370 * The current infrastructure only supports reconstructing one
371 * disk at a time for each array.
372 */
373
374 if (raidPtr->Disks[col].status != rf_ds_failed) {
375 /* "It's gone..." */
376 raidPtr->numFailures++;
377 raidPtr->Disks[col].status = rf_ds_failed;
378 raidPtr->status = rf_rs_degraded;
379 rf_unlock_mutex2(raidPtr->mutex);
380 rf_update_component_labels(raidPtr,
381 RF_NORMAL_COMPONENT_UPDATE);
382 rf_lock_mutex2(raidPtr->mutex);
383 }
384
385 while (raidPtr->reconInProgress) {
386 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
387 }
388
389 raidPtr->reconInProgress++;
390
391 /* first look for a spare drive onto which to reconstruct the
392 data. spare disk descriptors are stored in row 0. This
393 may have to change eventually */
394
395 /* Actually, we don't care if it's failed or not... On a RAID
396 set with correct parity, this function should be callable
397 on any component without ill effects. */
398 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
399
400 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
401 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
402 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
403
404 raidPtr->reconInProgress--;
405 rf_signal_cond2(raidPtr->waitForReconCond);
406 rf_unlock_mutex2(raidPtr->mutex);
407 return (EINVAL);
408 }
409 #endif
410
411 /* This device may have been opened successfully the
412 first time. Close it before trying to open it again.. */
413
414 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
415 #if 0
416 printf("Closed the open device: %s\n",
417 raidPtr->Disks[col].devname);
418 #endif
419 vp = raidPtr->raid_cinfo[col].ci_vp;
420 ac = raidPtr->Disks[col].auto_configured;
421 rf_unlock_mutex2(raidPtr->mutex);
422 rf_close_component(raidPtr, vp, ac);
423 rf_lock_mutex2(raidPtr->mutex);
424 raidPtr->raid_cinfo[col].ci_vp = NULL;
425 }
426 /* note that this disk was *not* auto_configured (any longer)*/
427 raidPtr->Disks[col].auto_configured = 0;
428
429 #if 0
430 printf("About to (re-)open the device for rebuilding: %s\n",
431 raidPtr->Disks[col].devname);
432 #endif
433 rf_unlock_mutex2(raidPtr->mutex);
434 pb = pathbuf_create(raidPtr->Disks[col].devname);
435 if (pb == NULL) {
436 retcode = ENOMEM;
437 } else {
438 retcode = dk_lookup(pb, curlwp, &vp);
439 pathbuf_destroy(pb);
440 }
441
442 if (retcode) {
443 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
444 raidPtr->Disks[col].devname, retcode);
445
446 /* the component isn't responding properly...
447 must be still dead :-( */
448 rf_lock_mutex2(raidPtr->mutex);
449 raidPtr->reconInProgress--;
450 rf_signal_cond2(raidPtr->waitForReconCond);
451 rf_unlock_mutex2(raidPtr->mutex);
452 return(retcode);
453 }
454
455 /* Ok, so we can at least do a lookup...
456 How about actually getting a vp for it? */
457
458 if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) {
459 vn_close(vp, FREAD | FWRITE, kauth_cred_get());
460 rf_lock_mutex2(raidPtr->mutex);
461 raidPtr->reconInProgress--;
462 rf_signal_cond2(raidPtr->waitForReconCond);
463 rf_unlock_mutex2(raidPtr->mutex);
464 return(retcode);
465 }
466
467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred);
468 if (retcode) {
469 vn_close(vp, FREAD | FWRITE, kauth_cred_get());
470 rf_lock_mutex2(raidPtr->mutex);
471 raidPtr->reconInProgress--;
472 rf_signal_cond2(raidPtr->waitForReconCond);
473 rf_unlock_mutex2(raidPtr->mutex);
474 return(retcode);
475 }
476 rf_lock_mutex2(raidPtr->mutex);
477 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
478
479 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
480 rf_protectedSectors;
481
482 raidPtr->raid_cinfo[col].ci_vp = vp;
483 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
484
485 raidPtr->Disks[col].dev = va.va_rdev;
486
487 /* we allow the user to specify that only a fraction
488 of the disks should be used this is just for debug:
489 it speeds up * the parity scan */
490 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
491 rf_sizePercentage / 100;
492 rf_unlock_mutex2(raidPtr->mutex);
493
494 spareDiskPtr = &raidPtr->Disks[col];
495 spareDiskPtr->status = rf_ds_used_spare;
496
497 printf("raid%d: initiating in-place reconstruction on column %d\n",
498 raidPtr->raidid, col);
499
500 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
501 numDisksDone, col);
502 raidPtr->reconDesc = (void *) reconDesc;
503 #if RF_RECON_STATS > 0
504 reconDesc->hsStallCount = 0;
505 reconDesc->numReconExecDelays = 0;
506 reconDesc->numReconEventWaits = 0;
507 #endif /* RF_RECON_STATS > 0 */
508 reconDesc->reconExecTimerRunning = 0;
509 reconDesc->reconExecTicks = 0;
510 reconDesc->maxReconExecTicks = 0;
511 rc = rf_ContinueReconstructFailedDisk(reconDesc);
512
513 if (!rc) {
514 rf_lock_mutex2(raidPtr->mutex);
515 /* Need to set these here, as at this point it'll be claiming
516 that the disk is in rf_ds_spared! But we know better :-) */
517
518 raidPtr->Disks[col].status = rf_ds_optimal;
519 raidPtr->status = rf_rs_optimal;
520 rf_unlock_mutex2(raidPtr->mutex);
521
522 /* fix up the component label */
523 /* Don't actually need the read here.. */
524 c_label = raidget_component_label(raidPtr, col);
525
526 rf_lock_mutex2(raidPtr->mutex);
527 raid_init_component_label(raidPtr, c_label);
528
529 c_label->row = 0;
530 c_label->column = col;
531
532 /* We've just done a rebuild based on all the other
533 disks, so at this point the parity is known to be
534 clean, even if it wasn't before. */
535
536 /* XXX doesn't hold for RAID 6!!*/
537
538 raidPtr->parity_good = RF_RAID_CLEAN;
539 rf_unlock_mutex2(raidPtr->mutex);
540
541 raidflush_component_label(raidPtr, col);
542 } else {
543 /* Reconstruct-in-place failed. Disk goes back to
544 "failed" status, regardless of what it was before. */
545 rf_lock_mutex2(raidPtr->mutex);
546 raidPtr->Disks[col].status = rf_ds_failed;
547 rf_unlock_mutex2(raidPtr->mutex);
548 }
549
550 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
551
552 rf_lock_mutex2(raidPtr->mutex);
553 raidPtr->reconInProgress--;
554 rf_signal_cond2(raidPtr->waitForReconCond);
555 rf_unlock_mutex2(raidPtr->mutex);
556
557 return (rc);
558 }
559
560
561 int
562 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
563 {
564 RF_Raid_t *raidPtr = reconDesc->raidPtr;
565 RF_RowCol_t col = reconDesc->col;
566 RF_RowCol_t scol = reconDesc->scol;
567 RF_ReconMap_t *mapPtr;
568 RF_ReconCtrl_t *tmp_reconctrl;
569 RF_ReconEvent_t *event;
570 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
571 RF_ReconUnitCount_t RUsPerPU;
572 struct timeval etime, elpsd;
573 unsigned long xor_s, xor_resid_us;
574 int i, ds;
575 int status, done;
576 int recon_error, write_error;
577
578 raidPtr->accumXorTimeUs = 0;
579 #if RF_ACC_TRACE > 0
580 /* create one trace record per physical disk */
581 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
582 #endif
583
584 /* quiesce the array prior to starting recon. this is needed
585 * to assure no nasty interactions with pending user writes.
586 * We need to do this before we change the disk or row status. */
587
588 Dprintf("RECON: begin request suspend\n");
589 rf_SuspendNewRequestsAndWait(raidPtr);
590 Dprintf("RECON: end request suspend\n");
591
592 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
593 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
594
595 rf_lock_mutex2(raidPtr->mutex);
596
597 /* create the reconstruction control pointer and install it in
598 * the right slot */
599 raidPtr->reconControl = tmp_reconctrl;
600 mapPtr = raidPtr->reconControl->reconMap;
601 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
602 raidPtr->reconControl->numRUsComplete = 0;
603 raidPtr->status = rf_rs_reconstructing;
604 raidPtr->Disks[col].status = rf_ds_reconstructing;
605 raidPtr->Disks[col].spareCol = scol;
606
607 rf_unlock_mutex2(raidPtr->mutex);
608
609 RF_GETTIME(raidPtr->reconControl->starttime);
610
611 Dprintf("RECON: resume requests\n");
612 rf_ResumeNewRequests(raidPtr);
613
614
615 mapPtr = raidPtr->reconControl->reconMap;
616
617 incPSID = RF_RECONMAP_SIZE;
618 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
619 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
620 recon_error = 0;
621 write_error = 0;
622 pending_writes = incPSID;
623 raidPtr->reconControl->lastPSID = incPSID;
624
625 /* start the actual reconstruction */
626
627 done = 0;
628 while (!done) {
629
630 if (raidPtr->waitShutdown) {
631 /* someone is unconfiguring this array... bail on the reconstruct.. */
632 recon_error = 1;
633 break;
634 }
635
636 num_writes = 0;
637
638 /* issue a read for each surviving disk */
639
640 reconDesc->numDisksDone = 0;
641 for (i = 0; i < raidPtr->numCol; i++) {
642 if (i != col) {
643 /* find and issue the next I/O on the
644 * indicated disk */
645 if (IssueNextReadRequest(raidPtr, i)) {
646 Dprintf1("RECON: done issuing for c%d\n", i);
647 reconDesc->numDisksDone++;
648 }
649 }
650 }
651
652 /* process reconstruction events until all disks report that
653 * they've completed all work */
654
655 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
656
657 event = rf_GetNextReconEvent(reconDesc);
658 status = ProcessReconEvent(raidPtr, event);
659
660 /* the normal case is that a read completes, and all is well. */
661 if (status == RF_RECON_DONE_READS) {
662 reconDesc->numDisksDone++;
663 } else if ((status == RF_RECON_READ_ERROR) ||
664 (status == RF_RECON_WRITE_ERROR)) {
665 /* an error was encountered while reconstructing...
666 Pretend we've finished this disk.
667 */
668 recon_error = 1;
669 raidPtr->reconControl->error = 1;
670
671 /* bump the numDisksDone count for reads,
672 but not for writes */
673 if (status == RF_RECON_READ_ERROR)
674 reconDesc->numDisksDone++;
675
676 /* write errors are special -- when we are
677 done dealing with the reads that are
678 finished, we don't want to wait for any
679 writes */
680 if (status == RF_RECON_WRITE_ERROR) {
681 write_error = 1;
682 num_writes++;
683 }
684
685 } else if (status == RF_RECON_READ_STOPPED) {
686 /* count this component as being "done" */
687 reconDesc->numDisksDone++;
688 } else if (status == RF_RECON_WRITE_DONE) {
689 num_writes++;
690 }
691
692 if (recon_error) {
693 /* make sure any stragglers are woken up so that
694 their theads will complete, and we can get out
695 of here with all IO processed */
696
697 rf_WakeupHeadSepCBWaiters(raidPtr);
698 }
699
700 raidPtr->reconControl->numRUsTotal =
701 mapPtr->totalRUs;
702 raidPtr->reconControl->numRUsComplete =
703 mapPtr->totalRUs -
704 rf_UnitsLeftToReconstruct(mapPtr);
705
706 #if RF_DEBUG_RECON
707 raidPtr->reconControl->percentComplete =
708 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
709 if (rf_prReconSched) {
710 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
711 }
712 #endif
713 }
714
715 /* reads done, wakup any waiters, and then wait for writes */
716
717 rf_WakeupHeadSepCBWaiters(raidPtr);
718
719 while (!recon_error && (num_writes < pending_writes)) {
720 event = rf_GetNextReconEvent(reconDesc);
721 status = ProcessReconEvent(raidPtr, event);
722
723 if (status == RF_RECON_WRITE_ERROR) {
724 num_writes++;
725 recon_error = 1;
726 raidPtr->reconControl->error = 1;
727 /* an error was encountered at the very end... bail */
728 } else if (status == RF_RECON_WRITE_DONE) {
729 num_writes++;
730 } /* else it's something else, and we don't care */
731 }
732 if (recon_error ||
733 (raidPtr->reconControl->lastPSID == lastPSID)) {
734 done = 1;
735 break;
736 }
737
738 prev = raidPtr->reconControl->lastPSID;
739 raidPtr->reconControl->lastPSID += incPSID;
740
741 if (raidPtr->reconControl->lastPSID > lastPSID) {
742 pending_writes = lastPSID - prev;
743 raidPtr->reconControl->lastPSID = lastPSID;
744 }
745
746 /* back down curPSID to get ready for the next round... */
747 for (i = 0; i < raidPtr->numCol; i++) {
748 if (i != col) {
749 raidPtr->reconControl->perDiskInfo[i].curPSID--;
750 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
751 }
752 }
753 }
754
755 mapPtr = raidPtr->reconControl->reconMap;
756 if (rf_reconDebug) {
757 printf("RECON: all reads completed\n");
758 }
759 /* at this point all the reads have completed. We now wait
760 * for any pending writes to complete, and then we're done */
761
762 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
763
764 event = rf_GetNextReconEvent(reconDesc);
765 status = ProcessReconEvent(raidPtr, event);
766
767 if (status == RF_RECON_WRITE_ERROR) {
768 recon_error = 1;
769 raidPtr->reconControl->error = 1;
770 /* an error was encountered at the very end... bail */
771 } else {
772 #if RF_DEBUG_RECON
773 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
774 if (rf_prReconSched) {
775 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
776 }
777 #endif
778 }
779 }
780
781 if (recon_error) {
782 /* we've encountered an error in reconstructing. */
783 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
784
785 /* we start by blocking IO to the RAID set. */
786 rf_SuspendNewRequestsAndWait(raidPtr);
787
788 rf_lock_mutex2(raidPtr->mutex);
789 /* mark set as being degraded, rather than
790 rf_rs_reconstructing as we were before the problem.
791 After this is done we can update status of the
792 component disks without worrying about someone
793 trying to read from a failed component.
794 */
795 raidPtr->status = rf_rs_degraded;
796 rf_unlock_mutex2(raidPtr->mutex);
797
798 /* resume IO */
799 rf_ResumeNewRequests(raidPtr);
800
801 /* At this point there are two cases:
802 1) If we've experienced a read error, then we've
803 already waited for all the reads we're going to get,
804 and we just need to wait for the writes.
805
806 2) If we've experienced a write error, we've also
807 already waited for all the reads to complete,
808 but there is little point in waiting for the writes --
809 when they do complete, they will just be ignored.
810
811 So we just wait for writes to complete if we didn't have a
812 write error.
813 */
814
815 if (!write_error) {
816 /* wait for writes to complete */
817 while (raidPtr->reconControl->pending_writes > 0) {
818
819 event = rf_GetNextReconEvent(reconDesc);
820 status = ProcessReconEvent(raidPtr, event);
821
822 if (status == RF_RECON_WRITE_ERROR) {
823 raidPtr->reconControl->error = 1;
824 /* an error was encountered at the very end... bail.
825 This will be very bad news for the user, since
826 at this point there will have been a read error
827 on one component, and a write error on another!
828 */
829 break;
830 }
831 }
832 }
833
834
835 /* cleanup */
836
837 /* drain the event queue - after waiting for the writes above,
838 there shouldn't be much (if anything!) left in the queue. */
839
840 rf_DrainReconEventQueue(reconDesc);
841
842 /* XXX As much as we'd like to free the recon control structure
843 and the reconDesc, we have no way of knowing if/when those will
844 be touched by IO that has yet to occur. It is rather poor to be
845 basically causing a 'memory leak' here, but there doesn't seem to be
846 a cleaner alternative at this time. Perhaps when the reconstruct code
847 gets a makeover this problem will go away.
848 */
849 #if 0
850 rf_FreeReconControl(raidPtr);
851 #endif
852
853 #if RF_ACC_TRACE > 0
854 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
855 #endif
856 /* XXX see comment above */
857 #if 0
858 FreeReconDesc(reconDesc);
859 #endif
860
861 return (1);
862 }
863
864 /* Success: mark the dead disk as reconstructed. We quiesce
865 * the array here to assure no nasty interactions with pending
866 * user accesses when we free up the psstatus structure as
867 * part of FreeReconControl() */
868
869 rf_SuspendNewRequestsAndWait(raidPtr);
870
871 rf_lock_mutex2(raidPtr->mutex);
872 raidPtr->numFailures--;
873 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
874 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
875 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
876 rf_unlock_mutex2(raidPtr->mutex);
877 RF_GETTIME(etime);
878 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
879
880 rf_ResumeNewRequests(raidPtr);
881
882 printf("raid%d: Reconstruction of disk at col %d completed\n",
883 raidPtr->raidid, col);
884 xor_s = raidPtr->accumXorTimeUs / 1000000;
885 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
886 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
887 raidPtr->raidid,
888 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
889 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
890 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
891 raidPtr->raidid,
892 (int) raidPtr->reconControl->starttime.tv_sec,
893 (int) raidPtr->reconControl->starttime.tv_usec,
894 (int) etime.tv_sec, (int) etime.tv_usec);
895 #if RF_RECON_STATS > 0
896 printf("raid%d: Total head-sep stall count was %d\n",
897 raidPtr->raidid, (int) reconDesc->hsStallCount);
898 #endif /* RF_RECON_STATS > 0 */
899 rf_FreeReconControl(raidPtr);
900 #if RF_ACC_TRACE > 0
901 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
902 #endif
903 FreeReconDesc(reconDesc);
904
905 return (0);
906
907 }
908 /*****************************************************************************
909 * do the right thing upon each reconstruction event.
910 *****************************************************************************/
911 static int
912 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
913 {
914 int retcode = 0, submitblocked;
915 RF_ReconBuffer_t *rbuf;
916 RF_SectorCount_t sectorsPerRU;
917
918 retcode = RF_RECON_READ_STOPPED;
919
920 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
921
922 switch (event->type) {
923
924 /* a read I/O has completed */
925 case RF_REVENT_READDONE:
926 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
927 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
928 event->col, rbuf->parityStripeID);
929 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
930 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
931 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
932 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
933 if (!raidPtr->reconControl->error) {
934 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
935 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
936 if (!submitblocked)
937 retcode = IssueNextReadRequest(raidPtr, event->col);
938 else
939 retcode = 0;
940 }
941 break;
942
943 /* a write I/O has completed */
944 case RF_REVENT_WRITEDONE:
945 #if RF_DEBUG_RECON
946 if (rf_floatingRbufDebug) {
947 rf_CheckFloatingRbufCount(raidPtr, 1);
948 }
949 #endif
950 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
951 rbuf = (RF_ReconBuffer_t *) event->arg;
952 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
953 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
954 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
955 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
956 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
957 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
958
959 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
960 raidPtr->reconControl->pending_writes--;
961 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
962
963 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
964 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
965 while(raidPtr->reconControl->rb_lock) {
966 rf_wait_cond2(raidPtr->reconControl->rb_cv,
967 raidPtr->reconControl->rb_mutex);
968 }
969 raidPtr->reconControl->rb_lock = 1;
970 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
971
972 raidPtr->numFullReconBuffers--;
973 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
974
975 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
976 raidPtr->reconControl->rb_lock = 0;
977 rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
978 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
979 } else
980 if (rbuf->type == RF_RBUF_TYPE_FORCED)
981 rf_FreeReconBuffer(rbuf);
982 else
983 RF_ASSERT(0);
984 retcode = RF_RECON_WRITE_DONE;
985 break;
986
987 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
988 * cleared */
989 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
990 if (!raidPtr->reconControl->error) {
991 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
992 0, (int) (long) event->arg);
993 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
994 * BUFCLEAR event if we
995 * couldn't submit */
996 retcode = IssueNextReadRequest(raidPtr, event->col);
997 }
998 break;
999
1000 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
1001 * blockage has been cleared */
1002 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
1003 if (!raidPtr->reconControl->error) {
1004 retcode = TryToRead(raidPtr, event->col);
1005 }
1006 break;
1007
1008 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
1009 * reconstruction blockage has been
1010 * cleared */
1011 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1012 if (!raidPtr->reconControl->error) {
1013 retcode = TryToRead(raidPtr, event->col);
1014 }
1015 break;
1016
1017 /* a buffer has become ready to write */
1018 case RF_REVENT_BUFREADY:
1019 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1020 if (!raidPtr->reconControl->error) {
1021 retcode = IssueNextWriteRequest(raidPtr);
1022 #if RF_DEBUG_RECON
1023 if (rf_floatingRbufDebug) {
1024 rf_CheckFloatingRbufCount(raidPtr, 1);
1025 }
1026 #endif
1027 }
1028 break;
1029
1030 /* we need to skip the current RU entirely because it got
1031 * recon'd while we were waiting for something else to happen */
1032 case RF_REVENT_SKIP:
1033 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1034 if (!raidPtr->reconControl->error) {
1035 retcode = IssueNextReadRequest(raidPtr, event->col);
1036 }
1037 break;
1038
1039 /* a forced-reconstruction read access has completed. Just
1040 * submit the buffer */
1041 case RF_REVENT_FORCEDREADDONE:
1042 rbuf = (RF_ReconBuffer_t *) event->arg;
1043 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1044 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1045 if (!raidPtr->reconControl->error) {
1046 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1047 RF_ASSERT(!submitblocked);
1048 retcode = 0;
1049 }
1050 break;
1051
1052 /* A read I/O failed to complete */
1053 case RF_REVENT_READ_FAILED:
1054 retcode = RF_RECON_READ_ERROR;
1055 break;
1056
1057 /* A write I/O failed to complete */
1058 case RF_REVENT_WRITE_FAILED:
1059 retcode = RF_RECON_WRITE_ERROR;
1060
1061 /* This is an error, but it was a pending write.
1062 Account for it. */
1063 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1064 raidPtr->reconControl->pending_writes--;
1065 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1066
1067 rbuf = (RF_ReconBuffer_t *) event->arg;
1068
1069 /* cleanup the disk queue data */
1070 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1071
1072 /* At this point we're erroring out, badly, and floatingRbufs
1073 may not even be valid. Rather than putting this back onto
1074 the floatingRbufs list, just arrange for its immediate
1075 destruction.
1076 */
1077 rf_FreeReconBuffer(rbuf);
1078 break;
1079
1080 /* a forced read I/O failed to complete */
1081 case RF_REVENT_FORCEDREAD_FAILED:
1082 retcode = RF_RECON_READ_ERROR;
1083 break;
1084
1085 default:
1086 RF_PANIC();
1087 }
1088 rf_FreeReconEventDesc(event);
1089 return (retcode);
1090 }
1091 /*****************************************************************************
1092 *
1093 * find the next thing that's needed on the indicated disk, and issue
1094 * a read request for it. We assume that the reconstruction buffer
1095 * associated with this process is free to receive the data. If
1096 * reconstruction is blocked on the indicated RU, we issue a
1097 * blockage-release request instead of a physical disk read request.
1098 * If the current disk gets too far ahead of the others, we issue a
1099 * head-separation wait request and return.
1100 *
1101 * ctrl->{ru_count, curPSID, diskOffset} and
1102 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1103 * we're currently accessing. Note that this deviates from the
1104 * standard C idiom of having counters point to the next thing to be
1105 * accessed. This allows us to easily retry when we're blocked by
1106 * head separation or reconstruction-blockage events.
1107 *
1108 *****************************************************************************/
1109 static int
1110 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1111 {
1112 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1113 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1114 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1115 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1116 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1117 int do_new_check = 0, retcode = 0, status;
1118
1119 /* if we are currently the slowest disk, mark that we have to do a new
1120 * check */
1121 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1122 do_new_check = 1;
1123
1124 while (1) {
1125
1126 ctrl->ru_count++;
1127 if (ctrl->ru_count < RUsPerPU) {
1128 ctrl->diskOffset += sectorsPerRU;
1129 rbuf->failedDiskSectorOffset += sectorsPerRU;
1130 } else {
1131 ctrl->curPSID++;
1132 ctrl->ru_count = 0;
1133 /* code left over from when head-sep was based on
1134 * parity stripe id */
1135 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1136 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1137 return (RF_RECON_DONE_READS); /* finito! */
1138 }
1139 /* find the disk offsets of the start of the parity
1140 * stripe on both the current disk and the failed
1141 * disk. skip this entire parity stripe if either disk
1142 * does not appear in the indicated PS */
1143 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1144 &rbuf->spCol, &rbuf->spOffset);
1145 if (status) {
1146 ctrl->ru_count = RUsPerPU - 1;
1147 continue;
1148 }
1149 }
1150 rbuf->which_ru = ctrl->ru_count;
1151
1152 /* skip this RU if it's already been reconstructed */
1153 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1154 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1155 continue;
1156 }
1157 break;
1158 }
1159 ctrl->headSepCounter++;
1160 if (do_new_check)
1161 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1162
1163
1164 /* at this point, we have definitely decided what to do, and we have
1165 * only to see if we can actually do it now */
1166 rbuf->parityStripeID = ctrl->curPSID;
1167 rbuf->which_ru = ctrl->ru_count;
1168 #if RF_ACC_TRACE > 0
1169 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1170 sizeof(raidPtr->recon_tracerecs[col]));
1171 raidPtr->recon_tracerecs[col].reconacc = 1;
1172 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1173 #endif
1174 retcode = TryToRead(raidPtr, col);
1175 return (retcode);
1176 }
1177
1178 /*
1179 * tries to issue the next read on the indicated disk. We may be
1180 * blocked by (a) the heads being too far apart, or (b) recon on the
1181 * indicated RU being blocked due to a write by a user thread. In
1182 * this case, we issue a head-sep or blockage wait request, which will
1183 * cause this same routine to be invoked again later when the blockage
1184 * has cleared.
1185 */
1186
1187 static int
1188 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1189 {
1190 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1191 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1192 RF_StripeNum_t psid = ctrl->curPSID;
1193 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1194 RF_DiskQueueData_t *req;
1195 int status;
1196 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1197
1198 /* if the current disk is too far ahead of the others, issue a
1199 * head-separation wait and return */
1200 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1201 return (0);
1202
1203 /* allocate a new PSS in case we need it */
1204 newpssPtr = rf_AllocPSStatus(raidPtr);
1205
1206 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1207 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1208
1209 if (pssPtr != newpssPtr) {
1210 rf_FreePSStatus(raidPtr, newpssPtr);
1211 }
1212
1213 /* if recon is blocked on the indicated parity stripe, issue a
1214 * block-wait request and return. this also must mark the indicated RU
1215 * in the stripe as under reconstruction if not blocked. */
1216 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1217 if (status == RF_PSS_RECON_BLOCKED) {
1218 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1219 goto out;
1220 } else
1221 if (status == RF_PSS_FORCED_ON_WRITE) {
1222 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1223 goto out;
1224 }
1225 /* make one last check to be sure that the indicated RU didn't get
1226 * reconstructed while we were waiting for something else to happen.
1227 * This is unfortunate in that it causes us to make this check twice
1228 * in the normal case. Might want to make some attempt to re-work
1229 * this so that we only do this check if we've definitely blocked on
1230 * one of the above checks. When this condition is detected, we may
1231 * have just created a bogus status entry, which we need to delete. */
1232 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1233 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1234 if (pssPtr == newpssPtr)
1235 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1236 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1237 goto out;
1238 }
1239 /* found something to read. issue the I/O */
1240 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1241 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1242 #if RF_ACC_TRACE > 0
1243 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1244 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1245 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1246 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1247 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1248 #endif
1249 /* should be ok to use a NULL proc pointer here, all the bufs we use
1250 * should be in kernel space */
1251 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1252 ReconReadDoneProc, (void *) ctrl,
1253 #if RF_ACC_TRACE > 0
1254 &raidPtr->recon_tracerecs[col],
1255 #else
1256 NULL,
1257 #endif
1258 (void *) raidPtr, 0, NULL, PR_WAITOK);
1259
1260 ctrl->rbuf->arg = (void *) req;
1261 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1262 pssPtr->issued[col] = 1;
1263
1264 out:
1265 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1266 return (0);
1267 }
1268
1269
1270 /*
1271 * given a parity stripe ID, we want to find out whether both the
1272 * current disk and the failed disk exist in that parity stripe. If
1273 * not, we want to skip this whole PS. If so, we want to find the
1274 * disk offset of the start of the PS on both the current disk and the
1275 * failed disk.
1276 *
1277 * this works by getting a list of disks comprising the indicated
1278 * parity stripe, and searching the list for the current and failed
1279 * disks. Once we've decided they both exist in the parity stripe, we
1280 * need to decide whether each is data or parity, so that we'll know
1281 * which mapping function to call to get the corresponding disk
1282 * offsets.
1283 *
1284 * this is kind of unpleasant, but doing it this way allows the
1285 * reconstruction code to use parity stripe IDs rather than physical
1286 * disks address to march through the failed disk, which greatly
1287 * simplifies a lot of code, as well as eliminating the need for a
1288 * reverse-mapping function. I also think it will execute faster,
1289 * since the calls to the mapping module are kept to a minimum.
1290 *
1291 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1292 * THE STRIPE IN THE CORRECT ORDER
1293 *
1294 * raidPtr - raid descriptor
1295 * psid - parity stripe identifier
1296 * col - column of disk to find the offsets for
1297 * spCol - out: col of spare unit for failed unit
1298 * spOffset - out: offset into disk containing spare unit
1299 *
1300 */
1301
1302
1303 static int
1304 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1305 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1306 RF_SectorNum_t *outFailedDiskSectorOffset,
1307 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1308 {
1309 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1310 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1311 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1312 RF_RowCol_t *diskids;
1313 u_int i, j, k, i_offset, j_offset;
1314 RF_RowCol_t pcol;
1315 int testcol;
1316 RF_SectorNum_t poffset;
1317 char i_is_parity = 0, j_is_parity = 0;
1318 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1319
1320 /* get a listing of the disks comprising that stripe */
1321 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1322 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1323 RF_ASSERT(diskids);
1324
1325 /* reject this entire parity stripe if it does not contain the
1326 * indicated disk or it does not contain the failed disk */
1327
1328 for (i = 0; i < stripeWidth; i++) {
1329 if (col == diskids[i])
1330 break;
1331 }
1332 if (i == stripeWidth)
1333 goto skipit;
1334 for (j = 0; j < stripeWidth; j++) {
1335 if (fcol == diskids[j])
1336 break;
1337 }
1338 if (j == stripeWidth) {
1339 goto skipit;
1340 }
1341 /* find out which disk the parity is on */
1342 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1343
1344 /* find out if either the current RU or the failed RU is parity */
1345 /* also, if the parity occurs in this stripe prior to the data and/or
1346 * failed col, we need to decrement i and/or j */
1347 for (k = 0; k < stripeWidth; k++)
1348 if (diskids[k] == pcol)
1349 break;
1350 RF_ASSERT(k < stripeWidth);
1351 i_offset = i;
1352 j_offset = j;
1353 if (k < i)
1354 i_offset--;
1355 else
1356 if (k == i) {
1357 i_is_parity = 1;
1358 i_offset = 0;
1359 } /* set offsets to zero to disable multiply
1360 * below */
1361 if (k < j)
1362 j_offset--;
1363 else
1364 if (k == j) {
1365 j_is_parity = 1;
1366 j_offset = 0;
1367 }
1368 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1369 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1370 * tells us how far into the stripe the [current,failed] disk is. */
1371
1372 /* call the mapping routine to get the offset into the current disk,
1373 * repeat for failed disk. */
1374 if (i_is_parity)
1375 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1376 else
1377 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1378
1379 RF_ASSERT(col == testcol);
1380
1381 if (j_is_parity)
1382 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1383 else
1384 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1385 RF_ASSERT(fcol == testcol);
1386
1387 /* now locate the spare unit for the failed unit */
1388 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1389 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1390 if (j_is_parity)
1391 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1392 else
1393 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1394 } else {
1395 #endif
1396 *spCol = raidPtr->reconControl->spareCol;
1397 *spOffset = *outFailedDiskSectorOffset;
1398 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1399 }
1400 #endif
1401 return (0);
1402
1403 skipit:
1404 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1405 psid, col);
1406 return (1);
1407 }
1408 /* this is called when a buffer has become ready to write to the replacement disk */
1409 static int
1410 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1411 {
1412 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1413 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1414 #if RF_ACC_TRACE > 0
1415 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1416 #endif
1417 RF_ReconBuffer_t *rbuf;
1418 RF_DiskQueueData_t *req;
1419
1420 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1421 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1422 * have gotten the event that sent us here */
1423 RF_ASSERT(rbuf->pssPtr);
1424
1425 rbuf->pssPtr->writeRbuf = rbuf;
1426 rbuf->pssPtr = NULL;
1427
1428 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1429 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1430 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1431 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1432 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1433 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1434
1435 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1436 * kernel space */
1437 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1438 sectorsPerRU, rbuf->buffer,
1439 rbuf->parityStripeID, rbuf->which_ru,
1440 ReconWriteDoneProc, (void *) rbuf,
1441 #if RF_ACC_TRACE > 0
1442 &raidPtr->recon_tracerecs[fcol],
1443 #else
1444 NULL,
1445 #endif
1446 (void *) raidPtr, 0, NULL, PR_WAITOK);
1447
1448 rbuf->arg = (void *) req;
1449 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1450 raidPtr->reconControl->pending_writes++;
1451 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1452 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1453
1454 return (0);
1455 }
1456
1457 /*
1458 * this gets called upon the completion of a reconstruction read
1459 * operation the arg is a pointer to the per-disk reconstruction
1460 * control structure for the process that just finished a read.
1461 *
1462 * called at interrupt context in the kernel, so don't do anything
1463 * illegal here.
1464 */
1465 static int
1466 ReconReadDoneProc(void *arg, int status)
1467 {
1468 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1469 RF_Raid_t *raidPtr;
1470
1471 /* Detect that reconCtrl is no longer valid, and if that
1472 is the case, bail without calling rf_CauseReconEvent().
1473 There won't be anyone listening for this event anyway */
1474
1475 if (ctrl->reconCtrl == NULL)
1476 return(0);
1477
1478 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1479
1480 if (status) {
1481 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1482 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1483 return(0);
1484 }
1485 #if RF_ACC_TRACE > 0
1486 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1487 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1488 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1489 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1490 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1491 #endif
1492 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1493 return (0);
1494 }
1495 /* this gets called upon the completion of a reconstruction write operation.
1496 * the arg is a pointer to the rbuf that was just written
1497 *
1498 * called at interrupt context in the kernel, so don't do anything illegal here.
1499 */
1500 static int
1501 ReconWriteDoneProc(void *arg, int status)
1502 {
1503 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1504
1505 /* Detect that reconControl is no longer valid, and if that
1506 is the case, bail without calling rf_CauseReconEvent().
1507 There won't be anyone listening for this event anyway */
1508
1509 if (rbuf->raidPtr->reconControl == NULL)
1510 return(0);
1511
1512 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1513 if (status) {
1514 printf("raid%d: Recon write failed (status %d(0x%x)!\n", rbuf->raidPtr->raidid,status,status);
1515 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1516 return(0);
1517 }
1518 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1519 return (0);
1520 }
1521
1522
1523 /*
1524 * computes a new minimum head sep, and wakes up anyone who needs to
1525 * be woken as a result
1526 */
1527 static void
1528 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1529 {
1530 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1531 RF_HeadSepLimit_t new_min;
1532 RF_RowCol_t i;
1533 RF_CallbackDesc_t *p;
1534 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1535 * of a minimum */
1536
1537
1538 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1539 while(reconCtrlPtr->rb_lock) {
1540 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1541 }
1542 reconCtrlPtr->rb_lock = 1;
1543 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1544
1545 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1546 for (i = 0; i < raidPtr->numCol; i++)
1547 if (i != reconCtrlPtr->fcol) {
1548 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1549 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1550 }
1551 /* set the new minimum and wake up anyone who can now run again */
1552 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1553 reconCtrlPtr->minHeadSepCounter = new_min;
1554 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1555 while (reconCtrlPtr->headSepCBList) {
1556 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1557 break;
1558 p = reconCtrlPtr->headSepCBList;
1559 reconCtrlPtr->headSepCBList = p->next;
1560 p->next = NULL;
1561 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1562 rf_FreeCallbackDesc(p);
1563 }
1564
1565 }
1566 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1567 reconCtrlPtr->rb_lock = 0;
1568 rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1569 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1570 }
1571
1572 /*
1573 * checks to see that the maximum head separation will not be violated
1574 * if we initiate a reconstruction I/O on the indicated disk.
1575 * Limiting the maximum head separation between two disks eliminates
1576 * the nasty buffer-stall conditions that occur when one disk races
1577 * ahead of the others and consumes all of the floating recon buffers.
1578 * This code is complex and unpleasant but it's necessary to avoid
1579 * some very nasty, albeit fairly rare, reconstruction behavior.
1580 *
1581 * returns non-zero if and only if we have to stop working on the
1582 * indicated disk due to a head-separation delay.
1583 */
1584 static int
1585 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1586 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1587 RF_ReconUnitNum_t which_ru)
1588 {
1589 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1590 RF_CallbackDesc_t *cb, *p, *pt;
1591 int retval = 0;
1592
1593 /* if we're too far ahead of the slowest disk, stop working on this
1594 * disk until the slower ones catch up. We do this by scheduling a
1595 * wakeup callback for the time when the slowest disk has caught up.
1596 * We define "caught up" with 20% hysteresis, i.e. the head separation
1597 * must have fallen to at most 80% of the max allowable head
1598 * separation before we'll wake up.
1599 *
1600 */
1601 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1602 while(reconCtrlPtr->rb_lock) {
1603 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1604 }
1605 reconCtrlPtr->rb_lock = 1;
1606 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1607 if ((raidPtr->headSepLimit >= 0) &&
1608 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1609 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1610 raidPtr->raidid, col, ctrl->headSepCounter,
1611 reconCtrlPtr->minHeadSepCounter,
1612 raidPtr->headSepLimit);
1613 cb = rf_AllocCallbackDesc();
1614 /* the minHeadSepCounter value we have to get to before we'll
1615 * wake up. build in 20% hysteresis. */
1616 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1617 cb->col = col;
1618 cb->next = NULL;
1619
1620 /* insert this callback descriptor into the sorted list of
1621 * pending head-sep callbacks */
1622 p = reconCtrlPtr->headSepCBList;
1623 if (!p)
1624 reconCtrlPtr->headSepCBList = cb;
1625 else
1626 if (cb->callbackArg.v < p->callbackArg.v) {
1627 cb->next = reconCtrlPtr->headSepCBList;
1628 reconCtrlPtr->headSepCBList = cb;
1629 } else {
1630 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1631 cb->next = p;
1632 pt->next = cb;
1633 }
1634 retval = 1;
1635 #if RF_RECON_STATS > 0
1636 ctrl->reconCtrl->reconDesc->hsStallCount++;
1637 #endif /* RF_RECON_STATS > 0 */
1638 }
1639 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1640 reconCtrlPtr->rb_lock = 0;
1641 rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1642 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1643
1644 return (retval);
1645 }
1646 /*
1647 * checks to see if reconstruction has been either forced or blocked
1648 * by a user operation. if forced, we skip this RU entirely. else if
1649 * blocked, put ourselves on the wait list. else return 0.
1650 *
1651 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1652 */
1653 static int
1654 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1655 RF_ReconParityStripeStatus_t *pssPtr,
1656 RF_PerDiskReconCtrl_t *ctrl,
1657 RF_RowCol_t col,
1658 RF_StripeNum_t psid,
1659 RF_ReconUnitNum_t which_ru)
1660 {
1661 RF_CallbackDesc_t *cb;
1662 int retcode = 0;
1663
1664 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1665 retcode = RF_PSS_FORCED_ON_WRITE;
1666 else
1667 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1668 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1669 cb = rf_AllocCallbackDesc(); /* append ourselves to
1670 * the blockage-wait
1671 * list */
1672 cb->col = col;
1673 cb->next = pssPtr->blockWaitList;
1674 pssPtr->blockWaitList = cb;
1675 retcode = RF_PSS_RECON_BLOCKED;
1676 }
1677 if (!retcode)
1678 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1679 * reconstruction */
1680
1681 return (retcode);
1682 }
1683 /*
1684 * if reconstruction is currently ongoing for the indicated stripeID,
1685 * reconstruction is forced to completion and we return non-zero to
1686 * indicate that the caller must wait. If not, then reconstruction is
1687 * blocked on the indicated stripe and the routine returns zero. If
1688 * and only if we return non-zero, we'll cause the cbFunc to get
1689 * invoked with the cbArg when the reconstruction has completed.
1690 */
1691 int
1692 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1693 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1694 {
1695 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1696 * forcing recon on */
1697 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1698 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1699 * stripe status structure */
1700 RF_StripeNum_t psid; /* parity stripe id */
1701 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1702 * offset */
1703 RF_RowCol_t *diskids;
1704 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1705 RF_RowCol_t fcol, diskno, i;
1706 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1707 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1708 RF_CallbackDesc_t *cb;
1709 int nPromoted;
1710
1711 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1712
1713 /* allocate a new PSS in case we need it */
1714 newpssPtr = rf_AllocPSStatus(raidPtr);
1715
1716 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1717
1718 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1719
1720 if (pssPtr != newpssPtr) {
1721 rf_FreePSStatus(raidPtr, newpssPtr);
1722 }
1723
1724 /* if recon is not ongoing on this PS, just return */
1725 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1726 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1727 return (0);
1728 }
1729 /* otherwise, we have to wait for reconstruction to complete on this
1730 * RU. */
1731 /* In order to avoid waiting for a potentially large number of
1732 * low-priority accesses to complete, we force a normal-priority (i.e.
1733 * not low-priority) reconstruction on this RU. */
1734 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1735 DDprintf1("Forcing recon on psid %ld\n", psid);
1736 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1737 * forced recon */
1738 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1739 * that we just set */
1740 fcol = raidPtr->reconControl->fcol;
1741
1742 /* get a listing of the disks comprising the indicated stripe */
1743 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1744
1745 /* For previously issued reads, elevate them to normal
1746 * priority. If the I/O has already completed, it won't be
1747 * found in the queue, and hence this will be a no-op. For
1748 * unissued reads, allocate buffers and issue new reads. The
1749 * fact that we've set the FORCED bit means that the regular
1750 * recon procs will not re-issue these reqs */
1751 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1752 if ((diskno = diskids[i]) != fcol) {
1753 if (pssPtr->issued[diskno]) {
1754 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1755 if (rf_reconDebug && nPromoted)
1756 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1757 } else {
1758 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1759 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1760 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1761 * location */
1762 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1763 new_rbuf->which_ru = which_ru;
1764 new_rbuf->failedDiskSectorOffset = fd_offset;
1765 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1766
1767 /* use NULL b_proc b/c all addrs
1768 * should be in kernel space */
1769 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1770 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1771 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1772
1773 new_rbuf->arg = req;
1774 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1775 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1776 }
1777 }
1778 /* if the write is sitting in the disk queue, elevate its
1779 * priority */
1780 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1781 if (rf_reconDebug)
1782 printf("raid%d: promoted write to col %d\n",
1783 raidPtr->raidid, fcol);
1784 }
1785 /* install a callback descriptor to be invoked when recon completes on
1786 * this parity stripe. */
1787 cb = rf_AllocCallbackDesc();
1788 /* XXX the following is bogus.. These functions don't really match!!
1789 * GO */
1790 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1791 cb->callbackArg.p = (void *) cbArg;
1792 cb->next = pssPtr->procWaitList;
1793 pssPtr->procWaitList = cb;
1794 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1795 raidPtr->raidid, psid);
1796
1797 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1798 return (1);
1799 }
1800 /* called upon the completion of a forced reconstruction read.
1801 * all we do is schedule the FORCEDREADONE event.
1802 * called at interrupt context in the kernel, so don't do anything illegal here.
1803 */
1804 static void
1805 ForceReconReadDoneProc(void *arg, int status)
1806 {
1807 RF_ReconBuffer_t *rbuf = arg;
1808
1809 /* Detect that reconControl is no longer valid, and if that
1810 is the case, bail without calling rf_CauseReconEvent().
1811 There won't be anyone listening for this event anyway */
1812
1813 if (rbuf->raidPtr->reconControl == NULL)
1814 return;
1815
1816 if (status) {
1817 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1818 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1819 return;
1820 }
1821 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1822 }
1823 /* releases a block on the reconstruction of the indicated stripe */
1824 int
1825 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1826 {
1827 RF_StripeNum_t stripeID = asmap->stripeID;
1828 RF_ReconParityStripeStatus_t *pssPtr;
1829 RF_ReconUnitNum_t which_ru;
1830 RF_StripeNum_t psid;
1831 RF_CallbackDesc_t *cb;
1832
1833 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1834 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1835 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1836
1837 /* When recon is forced, the pss desc can get deleted before we get
1838 * back to unblock recon. But, this can _only_ happen when recon is
1839 * forced. It would be good to put some kind of sanity check here, but
1840 * how to decide if recon was just forced or not? */
1841 if (!pssPtr) {
1842 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1843 * RU %d\n",psid,which_ru); */
1844 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1845 if (rf_reconDebug || rf_pssDebug)
1846 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1847 #endif
1848 goto out;
1849 }
1850 pssPtr->blockCount--;
1851 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1852 raidPtr->raidid, psid, pssPtr->blockCount);
1853 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1854
1855 /* unblock recon before calling CauseReconEvent in case
1856 * CauseReconEvent causes us to try to issue a new read before
1857 * returning here. */
1858 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1859
1860
1861 while (pssPtr->blockWaitList) {
1862 /* spin through the block-wait list and
1863 release all the waiters */
1864 cb = pssPtr->blockWaitList;
1865 pssPtr->blockWaitList = cb->next;
1866 cb->next = NULL;
1867 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1868 rf_FreeCallbackDesc(cb);
1869 }
1870 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1871 /* if no recon was requested while recon was blocked */
1872 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1873 }
1874 }
1875 out:
1876 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1877 return (0);
1878 }
1879
1880 void
1881 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1882 {
1883 RF_CallbackDesc_t *p;
1884
1885 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1886 while(raidPtr->reconControl->rb_lock) {
1887 rf_wait_cond2(raidPtr->reconControl->rb_cv,
1888 raidPtr->reconControl->rb_mutex);
1889 }
1890
1891 raidPtr->reconControl->rb_lock = 1;
1892 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1893
1894 while (raidPtr->reconControl->headSepCBList) {
1895 p = raidPtr->reconControl->headSepCBList;
1896 raidPtr->reconControl->headSepCBList = p->next;
1897 p->next = NULL;
1898 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1899 rf_FreeCallbackDesc(p);
1900 }
1901 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1902 raidPtr->reconControl->rb_lock = 0;
1903 rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
1904 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1905
1906 }
1907
1908