rf_reconstruct.c revision 1.11 1 /* $NetBSD: rf_reconstruct.c,v 1.11 2000/01/09 01:12:05 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_cpuutil.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 #define Dprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h))
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81 #define DDprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
82 #define DDprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
83 #define DDprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
84 #define DDprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
85 #define DDprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
86 #define DDprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h))
87
88 static RF_FreeList_t *rf_recond_freelist;
89 #define RF_MAX_FREE_RECOND 4
90 #define RF_RECOND_INC 1
91
92 static RF_RaidReconDesc_t *
93 AllocRaidReconDesc(RF_Raid_t * raidPtr,
94 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
95 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
96 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
97 static int
98 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
99 RF_ReconEvent_t * event);
100 static int
101 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
102 RF_RowCol_t col);
103 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
104 static int
105 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
106 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
107 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
108 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
109 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
110 static int ReconReadDoneProc(void *arg, int status);
111 static int ReconWriteDoneProc(void *arg, int status);
112 static void
113 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
114 RF_HeadSepLimit_t hsCtr);
115 static int
116 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
117 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
118 RF_ReconUnitNum_t which_ru);
119 static int
120 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
121 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
122 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
123 RF_ReconUnitNum_t which_ru);
124 static void ForceReconReadDoneProc(void *arg, int status);
125
126 static void rf_ShutdownReconstruction(void *);
127
128 /* XXX these should be in a .h file somewhere */
129 int raidlookup __P((char *, struct proc *, struct vnode **));
130 int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
131 int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
132
133 struct RF_ReconDoneProc_s {
134 void (*proc) (RF_Raid_t *, void *);
135 void *arg;
136 RF_ReconDoneProc_t *next;
137 };
138
139 static RF_FreeList_t *rf_rdp_freelist;
140 #define RF_MAX_FREE_RDP 4
141 #define RF_RDP_INC 1
142
143 static void
144 SignalReconDone(RF_Raid_t * raidPtr)
145 {
146 RF_ReconDoneProc_t *p;
147
148 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
149 for (p = raidPtr->recon_done_procs; p; p = p->next) {
150 p->proc(raidPtr, p->arg);
151 }
152 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
153 }
154
155 int
156 rf_RegisterReconDoneProc(
157 RF_Raid_t * raidPtr,
158 void (*proc) (RF_Raid_t *, void *),
159 void *arg,
160 RF_ReconDoneProc_t ** handlep)
161 {
162 RF_ReconDoneProc_t *p;
163
164 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
165 if (p == NULL)
166 return (ENOMEM);
167 p->proc = proc;
168 p->arg = arg;
169 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
170 p->next = raidPtr->recon_done_procs;
171 raidPtr->recon_done_procs = p;
172 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
173 if (handlep)
174 *handlep = p;
175 return (0);
176 }
177 /*****************************************************************************************
178 *
179 * sets up the parameters that will be used by the reconstruction process
180 * currently there are none, except for those that the layout-specific
181 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
182 *
183 * in the kernel, we fire off the recon thread.
184 *
185 ****************************************************************************************/
186 static void
187 rf_ShutdownReconstruction(ignored)
188 void *ignored;
189 {
190 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
191 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
192 }
193
194 int
195 rf_ConfigureReconstruction(listp)
196 RF_ShutdownList_t **listp;
197 {
198 int rc;
199
200 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
201 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
202 if (rf_recond_freelist == NULL)
203 return (ENOMEM);
204 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
205 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
206 if (rf_rdp_freelist == NULL) {
207 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
208 return (ENOMEM);
209 }
210 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
211 if (rc) {
212 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
213 __FILE__, __LINE__, rc);
214 rf_ShutdownReconstruction(NULL);
215 return (rc);
216 }
217 return (0);
218 }
219
220 static RF_RaidReconDesc_t *
221 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
222 RF_Raid_t *raidPtr;
223 RF_RowCol_t row;
224 RF_RowCol_t col;
225 RF_RaidDisk_t *spareDiskPtr;
226 int numDisksDone;
227 RF_RowCol_t srow;
228 RF_RowCol_t scol;
229 {
230
231 RF_RaidReconDesc_t *reconDesc;
232
233 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
234
235 reconDesc->raidPtr = raidPtr;
236 reconDesc->row = row;
237 reconDesc->col = col;
238 reconDesc->spareDiskPtr = spareDiskPtr;
239 reconDesc->numDisksDone = numDisksDone;
240 reconDesc->srow = srow;
241 reconDesc->scol = scol;
242 reconDesc->state = 0;
243 reconDesc->next = NULL;
244
245 return (reconDesc);
246 }
247
248 static void
249 FreeReconDesc(reconDesc)
250 RF_RaidReconDesc_t *reconDesc;
251 {
252 #if RF_RECON_STATS > 0
253 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
254 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
255 #endif /* RF_RECON_STATS > 0 */
256 printf("RAIDframe: %lu max exec ticks\n",
257 (long) reconDesc->maxReconExecTicks);
258 #if (RF_RECON_STATS > 0) || defined(KERNEL)
259 printf("\n");
260 #endif /* (RF_RECON_STATS > 0) || KERNEL */
261 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
262 }
263
264
265 /*****************************************************************************************
266 *
267 * primary routine to reconstruct a failed disk. This should be called from
268 * within its own thread. It won't return until reconstruction completes,
269 * fails, or is aborted.
270 ****************************************************************************************/
271 int
272 rf_ReconstructFailedDisk(raidPtr, row, col)
273 RF_Raid_t *raidPtr;
274 RF_RowCol_t row;
275 RF_RowCol_t col;
276 {
277 RF_LayoutSW_t *lp;
278 int rc;
279
280 lp = raidPtr->Layout.map;
281 if (lp->SubmitReconBuffer) {
282 /*
283 * The current infrastructure only supports reconstructing one
284 * disk at a time for each array.
285 */
286 RF_LOCK_MUTEX(raidPtr->mutex);
287 while (raidPtr->reconInProgress) {
288 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
289 }
290 raidPtr->reconInProgress++;
291 RF_UNLOCK_MUTEX(raidPtr->mutex);
292 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
293 RF_LOCK_MUTEX(raidPtr->mutex);
294 raidPtr->reconInProgress--;
295 RF_UNLOCK_MUTEX(raidPtr->mutex);
296 } else {
297 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
298 lp->parityConfig);
299 rc = EIO;
300 }
301 RF_SIGNAL_COND(raidPtr->waitForReconCond);
302 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
303 * needed at some point... GO */
304 return (rc);
305 }
306
307 int
308 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
309 RF_Raid_t *raidPtr;
310 RF_RowCol_t row;
311 RF_RowCol_t col;
312 {
313 RF_ComponentLabel_t c_label;
314 RF_RaidDisk_t *spareDiskPtr = NULL;
315 RF_RaidReconDesc_t *reconDesc;
316 RF_RowCol_t srow, scol;
317 int numDisksDone = 0, rc;
318
319 /* first look for a spare drive onto which to reconstruct the data */
320 /* spare disk descriptors are stored in row 0. This may have to
321 * change eventually */
322
323 RF_LOCK_MUTEX(raidPtr->mutex);
324 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
325
326 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
327 if (raidPtr->status[row] != rf_rs_degraded) {
328 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
329 RF_UNLOCK_MUTEX(raidPtr->mutex);
330 return (EINVAL);
331 }
332 srow = row;
333 scol = (-1);
334 } else {
335 srow = 0;
336 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
337 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
338 spareDiskPtr = &raidPtr->Disks[srow][scol];
339 spareDiskPtr->status = rf_ds_used_spare;
340 break;
341 }
342 }
343 if (!spareDiskPtr) {
344 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
345 RF_UNLOCK_MUTEX(raidPtr->mutex);
346 return (ENOSPC);
347 }
348 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
349 }
350 RF_UNLOCK_MUTEX(raidPtr->mutex);
351
352 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
353 raidPtr->reconDesc = (void *) reconDesc;
354 #if RF_RECON_STATS > 0
355 reconDesc->hsStallCount = 0;
356 reconDesc->numReconExecDelays = 0;
357 reconDesc->numReconEventWaits = 0;
358 #endif /* RF_RECON_STATS > 0 */
359 reconDesc->reconExecTimerRunning = 0;
360 reconDesc->reconExecTicks = 0;
361 reconDesc->maxReconExecTicks = 0;
362 rc = rf_ContinueReconstructFailedDisk(reconDesc);
363
364 if (!rc) {
365 /* fix up the component label */
366 /* Don't actually need the read here.. */
367 raidread_component_label(
368 raidPtr->raid_cinfo[srow][scol].ci_dev,
369 raidPtr->raid_cinfo[srow][scol].ci_vp,
370 &c_label);
371
372 c_label.version = RF_COMPONENT_LABEL_VERSION;
373 c_label.mod_counter = raidPtr->mod_counter;
374 c_label.serial_number = raidPtr->serial_number;
375 c_label.row = row;
376 c_label.column = col;
377 c_label.num_rows = raidPtr->numRow;
378 c_label.num_columns = raidPtr->numCol;
379 c_label.clean = RF_RAID_DIRTY;
380 c_label.status = rf_ds_optimal;
381
382 raidwrite_component_label(
383 raidPtr->raid_cinfo[srow][scol].ci_dev,
384 raidPtr->raid_cinfo[srow][scol].ci_vp,
385 &c_label);
386
387 }
388 return (rc);
389 }
390
391 /*
392
393 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
394 and you don't get a spare until the next Monday. With this function
395 (and hot-swappable drives) you can now put your new disk containing
396 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
397 rebuild the data "on the spot".
398
399 */
400
401 int
402 rf_ReconstructInPlace(raidPtr, row, col)
403 RF_Raid_t *raidPtr;
404 RF_RowCol_t row;
405 RF_RowCol_t col;
406 {
407 RF_RaidDisk_t *spareDiskPtr = NULL;
408 RF_RaidReconDesc_t *reconDesc;
409 RF_LayoutSW_t *lp;
410 RF_RaidDisk_t *badDisk;
411 RF_ComponentLabel_t c_label;
412 int numDisksDone = 0, rc;
413 struct partinfo dpart;
414 struct vnode *vp;
415 struct vattr va;
416 struct proc *proc;
417 int retcode;
418
419 lp = raidPtr->Layout.map;
420 if (lp->SubmitReconBuffer) {
421 /*
422 * The current infrastructure only supports reconstructing one
423 * disk at a time for each array.
424 */
425 RF_LOCK_MUTEX(raidPtr->mutex);
426 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
427 (raidPtr->numFailures > 0)) {
428 /* XXX 0 above shouldn't be constant!!! */
429 /* some component other than this has failed.
430 Let's not make things worse than they already
431 are... */
432 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
433 printf(" Row: %d Col: %d Too many failures.\n",
434 row, col);
435 RF_UNLOCK_MUTEX(raidPtr->mutex);
436 return (EINVAL);
437 }
438 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
439 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
440 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
441
442 RF_UNLOCK_MUTEX(raidPtr->mutex);
443 return (EINVAL);
444 }
445
446
447 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
448 /* "It's gone..." */
449 raidPtr->numFailures++;
450 raidPtr->Disks[row][col].status = rf_ds_failed;
451 raidPtr->status[row] = rf_rs_degraded;
452 }
453
454 while (raidPtr->reconInProgress) {
455 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
456 }
457
458 raidPtr->reconInProgress++;
459
460
461 /* first look for a spare drive onto which to reconstruct
462 the data. spare disk descriptors are stored in row 0.
463 This may have to change eventually */
464
465 /* Actually, we don't care if it's failed or not...
466 On a RAID set with correct parity, this function
467 should be callable on any component without ill affects. */
468 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
469 */
470
471 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
472 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
473
474 raidPtr->reconInProgress--;
475 RF_UNLOCK_MUTEX(raidPtr->mutex);
476 return (EINVAL);
477 }
478
479 /* XXX need goop here to see if the disk is alive,
480 and, if not, make it so... */
481
482
483
484 badDisk = &raidPtr->Disks[row][col];
485
486 proc = raidPtr->engine_thread;
487
488 /* This device may have been opened successfully the
489 first time. Close it before trying to open it again.. */
490
491 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
492 printf("Closed the open device: %s\n",
493 raidPtr->Disks[row][col].devname);
494 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0);
495 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp,
496 FREAD | FWRITE, proc->p_ucred, proc);
497 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
498 }
499 printf("About to (re-)open the device for rebuilding: %s\n",
500 raidPtr->Disks[row][col].devname);
501
502 retcode = raidlookup(raidPtr->Disks[row][col].devname,
503 proc, &vp);
504
505 if (retcode) {
506 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
507 raidPtr->Disks[row][col].devname, retcode);
508
509 /* XXX the component isn't responding properly...
510 must be still dead :-( */
511 raidPtr->reconInProgress--;
512 RF_UNLOCK_MUTEX(raidPtr->mutex);
513 return(retcode);
514
515 } else {
516
517 /* Ok, so we can at least do a lookup...
518 How about actually getting a vp for it? */
519
520 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
521 proc)) != 0) {
522 raidPtr->reconInProgress--;
523 RF_UNLOCK_MUTEX(raidPtr->mutex);
524 return(retcode);
525 }
526 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
527 FREAD, proc->p_ucred, proc);
528 if (retcode) {
529 raidPtr->reconInProgress--;
530 RF_UNLOCK_MUTEX(raidPtr->mutex);
531 return(retcode);
532 }
533 raidPtr->Disks[row][col].blockSize =
534 dpart.disklab->d_secsize;
535
536 raidPtr->Disks[row][col].numBlocks =
537 dpart.part->p_size - rf_protectedSectors;
538
539 raidPtr->raid_cinfo[row][col].ci_vp = vp;
540 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
541
542 raidPtr->Disks[row][col].dev = va.va_rdev;
543
544 /* we allow the user to specify that only a
545 fraction of the disks should be used this is
546 just for debug: it speeds up
547 * the parity scan */
548 raidPtr->Disks[row][col].numBlocks =
549 raidPtr->Disks[row][col].numBlocks *
550 rf_sizePercentage / 100;
551 }
552
553
554
555 spareDiskPtr = &raidPtr->Disks[row][col];
556 spareDiskPtr->status = rf_ds_used_spare;
557
558 printf("RECON: initiating in-place reconstruction on\n");
559 printf(" row %d col %d -> spare at row %d col %d\n",
560 row, col, row, col);
561
562 RF_UNLOCK_MUTEX(raidPtr->mutex);
563
564 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
565 spareDiskPtr, numDisksDone,
566 row, col);
567 raidPtr->reconDesc = (void *) reconDesc;
568 #if RF_RECON_STATS > 0
569 reconDesc->hsStallCount = 0;
570 reconDesc->numReconExecDelays = 0;
571 reconDesc->numReconEventWaits = 0;
572 #endif /* RF_RECON_STATS > 0 */
573 reconDesc->reconExecTimerRunning = 0;
574 reconDesc->reconExecTicks = 0;
575 reconDesc->maxReconExecTicks = 0;
576 rc = rf_ContinueReconstructFailedDisk(reconDesc);
577
578 RF_LOCK_MUTEX(raidPtr->mutex);
579 raidPtr->reconInProgress--;
580 RF_UNLOCK_MUTEX(raidPtr->mutex);
581
582 } else {
583 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
584 lp->parityConfig);
585 rc = EIO;
586 }
587 RF_LOCK_MUTEX(raidPtr->mutex);
588
589 if (!rc) {
590 /* Need to set these here, as at this point it'll be claiming
591 that the disk is in rf_ds_spared! But we know better :-) */
592
593 raidPtr->Disks[row][col].status = rf_ds_optimal;
594 raidPtr->status[row] = rf_rs_optimal;
595
596 /* fix up the component label */
597 /* Don't actually need the read here.. */
598 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
599 raidPtr->raid_cinfo[row][col].ci_vp,
600 &c_label);
601
602 c_label.version = RF_COMPONENT_LABEL_VERSION;
603 c_label.mod_counter = raidPtr->mod_counter;
604 c_label.serial_number = raidPtr->serial_number;
605 c_label.row = row;
606 c_label.column = col;
607 c_label.num_rows = raidPtr->numRow;
608 c_label.num_columns = raidPtr->numCol;
609 c_label.clean = RF_RAID_DIRTY;
610 c_label.status = rf_ds_optimal;
611
612 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
613 raidPtr->raid_cinfo[row][col].ci_vp,
614 &c_label);
615
616 }
617 RF_UNLOCK_MUTEX(raidPtr->mutex);
618 RF_SIGNAL_COND(raidPtr->waitForReconCond);
619 wakeup(&raidPtr->waitForReconCond);
620 return (rc);
621 }
622
623
624 int
625 rf_ContinueReconstructFailedDisk(reconDesc)
626 RF_RaidReconDesc_t *reconDesc;
627 {
628 RF_Raid_t *raidPtr = reconDesc->raidPtr;
629 RF_RowCol_t row = reconDesc->row;
630 RF_RowCol_t col = reconDesc->col;
631 RF_RowCol_t srow = reconDesc->srow;
632 RF_RowCol_t scol = reconDesc->scol;
633 RF_ReconMap_t *mapPtr;
634
635 RF_ReconEvent_t *event;
636 struct timeval etime, elpsd;
637 unsigned long xor_s, xor_resid_us;
638 int retcode, i, ds;
639
640 switch (reconDesc->state) {
641
642
643 case 0:
644
645 raidPtr->accumXorTimeUs = 0;
646
647 /* create one trace record per physical disk */
648 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
649
650 /* quiesce the array prior to starting recon. this is needed
651 * to assure no nasty interactions with pending user writes.
652 * We need to do this before we change the disk or row status. */
653 reconDesc->state = 1;
654
655 Dprintf("RECON: begin request suspend\n");
656 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
657 Dprintf("RECON: end request suspend\n");
658 rf_StartUserStats(raidPtr); /* zero out the stats kept on
659 * user accs */
660
661 /* fall through to state 1 */
662
663 case 1:
664
665 RF_LOCK_MUTEX(raidPtr->mutex);
666
667 /* create the reconstruction control pointer and install it in
668 * the right slot */
669 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
670 mapPtr = raidPtr->reconControl[row]->reconMap;
671 raidPtr->status[row] = rf_rs_reconstructing;
672 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
673 raidPtr->Disks[row][col].spareRow = srow;
674 raidPtr->Disks[row][col].spareCol = scol;
675
676 RF_UNLOCK_MUTEX(raidPtr->mutex);
677
678 RF_GETTIME(raidPtr->reconControl[row]->starttime);
679
680 /* now start up the actual reconstruction: issue a read for
681 * each surviving disk */
682 rf_start_cpu_monitor();
683 reconDesc->numDisksDone = 0;
684 for (i = 0; i < raidPtr->numCol; i++) {
685 if (i != col) {
686 /* find and issue the next I/O on the
687 * indicated disk */
688 if (IssueNextReadRequest(raidPtr, row, i)) {
689 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
690 reconDesc->numDisksDone++;
691 }
692 }
693 }
694
695 case 2:
696 Dprintf("RECON: resume requests\n");
697 rf_ResumeNewRequests(raidPtr);
698
699
700 reconDesc->state = 3;
701
702 case 3:
703
704 /* process reconstruction events until all disks report that
705 * they've completed all work */
706 mapPtr = raidPtr->reconControl[row]->reconMap;
707
708
709
710 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
711
712 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
713 RF_ASSERT(event);
714
715 if (ProcessReconEvent(raidPtr, row, event))
716 reconDesc->numDisksDone++;
717 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
718 if (rf_prReconSched) {
719 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
720 }
721 }
722
723
724
725 reconDesc->state = 4;
726
727
728 case 4:
729 mapPtr = raidPtr->reconControl[row]->reconMap;
730 if (rf_reconDebug) {
731 printf("RECON: all reads completed\n");
732 }
733 /* at this point all the reads have completed. We now wait
734 * for any pending writes to complete, and then we're done */
735
736 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
737
738 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
739 RF_ASSERT(event);
740
741 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
742 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
743 if (rf_prReconSched) {
744 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
745 }
746 }
747 reconDesc->state = 5;
748
749 case 5:
750 rf_stop_cpu_monitor();
751
752 /* Success: mark the dead disk as reconstructed. We quiesce
753 * the array here to assure no nasty interactions with pending
754 * user accesses when we free up the psstatus structure as
755 * part of FreeReconControl() */
756
757
758
759 reconDesc->state = 6;
760
761 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
762 rf_StopUserStats(raidPtr);
763 rf_PrintUserStats(raidPtr); /* print out the stats on user
764 * accs accumulated during
765 * recon */
766
767 /* fall through to state 6 */
768 case 6:
769
770
771
772 RF_LOCK_MUTEX(raidPtr->mutex);
773 raidPtr->numFailures--;
774 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
775 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
776 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
777 RF_UNLOCK_MUTEX(raidPtr->mutex);
778 RF_GETTIME(etime);
779 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
780
781 /* XXX -- why is state 7 different from state 6 if there is no
782 * return() here? -- XXX Note that I set elpsd above & use it
783 * below, so if you put a return here you'll have to fix this.
784 * (also, FreeReconControl is called below) */
785
786 case 7:
787
788 rf_ResumeNewRequests(raidPtr);
789
790 printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col);
791 xor_s = raidPtr->accumXorTimeUs / 1000000;
792 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
793 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
794 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
795 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
796 (int) raidPtr->reconControl[row]->starttime.tv_sec,
797 (int) raidPtr->reconControl[row]->starttime.tv_usec,
798 (int) etime.tv_sec, (int) etime.tv_usec);
799 rf_print_cpu_util("reconstruction");
800 #if RF_RECON_STATS > 0
801 printf("Total head-sep stall count was %d\n",
802 (int) reconDesc->hsStallCount);
803 #endif /* RF_RECON_STATS > 0 */
804 rf_FreeReconControl(raidPtr, row);
805 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
806 FreeReconDesc(reconDesc);
807
808 }
809
810 SignalReconDone(raidPtr);
811 return (0);
812 }
813 /*****************************************************************************************
814 * do the right thing upon each reconstruction event.
815 * returns nonzero if and only if there is nothing left unread on the indicated disk
816 ****************************************************************************************/
817 static int
818 ProcessReconEvent(raidPtr, frow, event)
819 RF_Raid_t *raidPtr;
820 RF_RowCol_t frow;
821 RF_ReconEvent_t *event;
822 {
823 int retcode = 0, submitblocked;
824 RF_ReconBuffer_t *rbuf;
825 RF_SectorCount_t sectorsPerRU;
826
827 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
828 switch (event->type) {
829
830 /* a read I/O has completed */
831 case RF_REVENT_READDONE:
832 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
833 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
834 frow, event->col, rbuf->parityStripeID);
835 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
836 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
837 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
838 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
839 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
840 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
841 if (!submitblocked)
842 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
843 break;
844
845 /* a write I/O has completed */
846 case RF_REVENT_WRITEDONE:
847 if (rf_floatingRbufDebug) {
848 rf_CheckFloatingRbufCount(raidPtr, 1);
849 }
850 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
851 rbuf = (RF_ReconBuffer_t *) event->arg;
852 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
853 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
854 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
855 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
856 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
857 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
858
859 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
860 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
861 raidPtr->numFullReconBuffers--;
862 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
863 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
864 } else
865 if (rbuf->type == RF_RBUF_TYPE_FORCED)
866 rf_FreeReconBuffer(rbuf);
867 else
868 RF_ASSERT(0);
869 break;
870
871 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
872 * cleared */
873 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
874 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
875 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
876 * BUFCLEAR event if we
877 * couldn't submit */
878 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
879 break;
880
881 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
882 * blockage has been cleared */
883 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
884 retcode = TryToRead(raidPtr, frow, event->col);
885 break;
886
887 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
888 * reconstruction blockage has been
889 * cleared */
890 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
891 retcode = TryToRead(raidPtr, frow, event->col);
892 break;
893
894 /* a buffer has become ready to write */
895 case RF_REVENT_BUFREADY:
896 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
897 retcode = IssueNextWriteRequest(raidPtr, frow);
898 if (rf_floatingRbufDebug) {
899 rf_CheckFloatingRbufCount(raidPtr, 1);
900 }
901 break;
902
903 /* we need to skip the current RU entirely because it got
904 * recon'd while we were waiting for something else to happen */
905 case RF_REVENT_SKIP:
906 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
907 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
908 break;
909
910 /* a forced-reconstruction read access has completed. Just
911 * submit the buffer */
912 case RF_REVENT_FORCEDREADDONE:
913 rbuf = (RF_ReconBuffer_t *) event->arg;
914 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
915 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
916 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
917 RF_ASSERT(!submitblocked);
918 break;
919
920 default:
921 RF_PANIC();
922 }
923 rf_FreeReconEventDesc(event);
924 return (retcode);
925 }
926 /*****************************************************************************************
927 *
928 * find the next thing that's needed on the indicated disk, and issue a read
929 * request for it. We assume that the reconstruction buffer associated with this
930 * process is free to receive the data. If reconstruction is blocked on the
931 * indicated RU, we issue a blockage-release request instead of a physical disk
932 * read request. If the current disk gets too far ahead of the others, we issue
933 * a head-separation wait request and return.
934 *
935 * ctrl->{ru_count, curPSID, diskOffset} and rbuf->failedDiskSectorOffset are
936 * maintained to point the the unit we're currently accessing. Note that this deviates
937 * from the standard C idiom of having counters point to the next thing to be
938 * accessed. This allows us to easily retry when we're blocked by head separation
939 * or reconstruction-blockage events.
940 *
941 * returns nonzero if and only if there is nothing left unread on the indicated disk
942 ****************************************************************************************/
943 static int
944 IssueNextReadRequest(raidPtr, row, col)
945 RF_Raid_t *raidPtr;
946 RF_RowCol_t row;
947 RF_RowCol_t col;
948 {
949 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
950 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
951 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
952 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
953 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
954 int do_new_check = 0, retcode = 0, status;
955
956 /* if we are currently the slowest disk, mark that we have to do a new
957 * check */
958 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
959 do_new_check = 1;
960
961 while (1) {
962
963 ctrl->ru_count++;
964 if (ctrl->ru_count < RUsPerPU) {
965 ctrl->diskOffset += sectorsPerRU;
966 rbuf->failedDiskSectorOffset += sectorsPerRU;
967 } else {
968 ctrl->curPSID++;
969 ctrl->ru_count = 0;
970 /* code left over from when head-sep was based on
971 * parity stripe id */
972 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
973 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
974 return (1); /* finito! */
975 }
976 /* find the disk offsets of the start of the parity
977 * stripe on both the current disk and the failed
978 * disk. skip this entire parity stripe if either disk
979 * does not appear in the indicated PS */
980 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
981 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
982 if (status) {
983 ctrl->ru_count = RUsPerPU - 1;
984 continue;
985 }
986 }
987 rbuf->which_ru = ctrl->ru_count;
988
989 /* skip this RU if it's already been reconstructed */
990 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
991 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
992 continue;
993 }
994 break;
995 }
996 ctrl->headSepCounter++;
997 if (do_new_check)
998 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
999
1000
1001 /* at this point, we have definitely decided what to do, and we have
1002 * only to see if we can actually do it now */
1003 rbuf->parityStripeID = ctrl->curPSID;
1004 rbuf->which_ru = ctrl->ru_count;
1005 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
1006 raidPtr->recon_tracerecs[col].reconacc = 1;
1007 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1008 retcode = TryToRead(raidPtr, row, col);
1009 return (retcode);
1010 }
1011 /* tries to issue the next read on the indicated disk. We may be blocked by (a) the heads being too
1012 * far apart, or (b) recon on the indicated RU being blocked due to a write by a user thread.
1013 * In this case, we issue a head-sep or blockage wait request, which will cause this same routine
1014 * to be invoked again later when the blockage has cleared.
1015 */
1016 static int
1017 TryToRead(raidPtr, row, col)
1018 RF_Raid_t *raidPtr;
1019 RF_RowCol_t row;
1020 RF_RowCol_t col;
1021 {
1022 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1023 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1024 RF_StripeNum_t psid = ctrl->curPSID;
1025 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1026 RF_DiskQueueData_t *req;
1027 int status, created = 0;
1028 RF_ReconParityStripeStatus_t *pssPtr;
1029
1030 /* if the current disk is too far ahead of the others, issue a
1031 * head-separation wait and return */
1032 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1033 return (0);
1034 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1035 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1036
1037 /* if recon is blocked on the indicated parity stripe, issue a
1038 * block-wait request and return. this also must mark the indicated RU
1039 * in the stripe as under reconstruction if not blocked. */
1040 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1041 if (status == RF_PSS_RECON_BLOCKED) {
1042 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1043 goto out;
1044 } else
1045 if (status == RF_PSS_FORCED_ON_WRITE) {
1046 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1047 goto out;
1048 }
1049 /* make one last check to be sure that the indicated RU didn't get
1050 * reconstructed while we were waiting for something else to happen.
1051 * This is unfortunate in that it causes us to make this check twice
1052 * in the normal case. Might want to make some attempt to re-work
1053 * this so that we only do this check if we've definitely blocked on
1054 * one of the above checks. When this condition is detected, we may
1055 * have just created a bogus status entry, which we need to delete. */
1056 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1057 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1058 if (created)
1059 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1060 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1061 goto out;
1062 }
1063 /* found something to read. issue the I/O */
1064 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1065 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1066 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1067 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1068 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1069 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1070 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1071
1072 /* should be ok to use a NULL proc pointer here, all the bufs we use
1073 * should be in kernel space */
1074 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1075 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1076
1077 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1078
1079 ctrl->rbuf->arg = (void *) req;
1080 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1081 pssPtr->issued[col] = 1;
1082
1083 out:
1084 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1085 return (0);
1086 }
1087
1088
1089 /* given a parity stripe ID, we want to find out whether both the current disk and the
1090 * failed disk exist in that parity stripe. If not, we want to skip this whole PS.
1091 * If so, we want to find the disk offset of the start of the PS on both the current
1092 * disk and the failed disk.
1093 *
1094 * this works by getting a list of disks comprising the indicated parity stripe, and
1095 * searching the list for the current and failed disks. Once we've decided they both
1096 * exist in the parity stripe, we need to decide whether each is data or parity,
1097 * so that we'll know which mapping function to call to get the corresponding disk
1098 * offsets.
1099 *
1100 * this is kind of unpleasant, but doing it this way allows the reconstruction code
1101 * to use parity stripe IDs rather than physical disks address to march through the
1102 * failed disk, which greatly simplifies a lot of code, as well as eliminating the
1103 * need for a reverse-mapping function. I also think it will execute faster, since
1104 * the calls to the mapping module are kept to a minimum.
1105 *
1106 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING THE STRIPE
1107 * IN THE CORRECT ORDER
1108 */
1109 static int
1110 ComputePSDiskOffsets(
1111 RF_Raid_t * raidPtr, /* raid descriptor */
1112 RF_StripeNum_t psid, /* parity stripe identifier */
1113 RF_RowCol_t row, /* row and column of disk to find the offsets
1114 * for */
1115 RF_RowCol_t col,
1116 RF_SectorNum_t * outDiskOffset,
1117 RF_SectorNum_t * outFailedDiskSectorOffset,
1118 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1119 RF_RowCol_t * spCol,
1120 RF_SectorNum_t * spOffset)
1121 { /* OUT: offset into disk containing spare unit */
1122 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1123 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1124 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1125 RF_RowCol_t *diskids;
1126 u_int i, j, k, i_offset, j_offset;
1127 RF_RowCol_t prow, pcol;
1128 int testcol, testrow;
1129 RF_RowCol_t stripe;
1130 RF_SectorNum_t poffset;
1131 char i_is_parity = 0, j_is_parity = 0;
1132 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1133
1134 /* get a listing of the disks comprising that stripe */
1135 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1136 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1137 RF_ASSERT(diskids);
1138
1139 /* reject this entire parity stripe if it does not contain the
1140 * indicated disk or it does not contain the failed disk */
1141 if (row != stripe)
1142 goto skipit;
1143 for (i = 0; i < stripeWidth; i++) {
1144 if (col == diskids[i])
1145 break;
1146 }
1147 if (i == stripeWidth)
1148 goto skipit;
1149 for (j = 0; j < stripeWidth; j++) {
1150 if (fcol == diskids[j])
1151 break;
1152 }
1153 if (j == stripeWidth) {
1154 goto skipit;
1155 }
1156 /* find out which disk the parity is on */
1157 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1158
1159 /* find out if either the current RU or the failed RU is parity */
1160 /* also, if the parity occurs in this stripe prior to the data and/or
1161 * failed col, we need to decrement i and/or j */
1162 for (k = 0; k < stripeWidth; k++)
1163 if (diskids[k] == pcol)
1164 break;
1165 RF_ASSERT(k < stripeWidth);
1166 i_offset = i;
1167 j_offset = j;
1168 if (k < i)
1169 i_offset--;
1170 else
1171 if (k == i) {
1172 i_is_parity = 1;
1173 i_offset = 0;
1174 } /* set offsets to zero to disable multiply
1175 * below */
1176 if (k < j)
1177 j_offset--;
1178 else
1179 if (k == j) {
1180 j_is_parity = 1;
1181 j_offset = 0;
1182 }
1183 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1184 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1185 * tells us how far into the stripe the [current,failed] disk is. */
1186
1187 /* call the mapping routine to get the offset into the current disk,
1188 * repeat for failed disk. */
1189 if (i_is_parity)
1190 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1191 else
1192 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1193
1194 RF_ASSERT(row == testrow && col == testcol);
1195
1196 if (j_is_parity)
1197 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1198 else
1199 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1200 RF_ASSERT(row == testrow && fcol == testcol);
1201
1202 /* now locate the spare unit for the failed unit */
1203 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1204 if (j_is_parity)
1205 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1206 else
1207 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1208 } else {
1209 *spRow = raidPtr->reconControl[row]->spareRow;
1210 *spCol = raidPtr->reconControl[row]->spareCol;
1211 *spOffset = *outFailedDiskSectorOffset;
1212 }
1213
1214 return (0);
1215
1216 skipit:
1217 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1218 psid, row, col);
1219 return (1);
1220 }
1221 /* this is called when a buffer has become ready to write to the replacement disk */
1222 static int
1223 IssueNextWriteRequest(raidPtr, row)
1224 RF_Raid_t *raidPtr;
1225 RF_RowCol_t row;
1226 {
1227 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1228 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1229 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1230 RF_ReconBuffer_t *rbuf;
1231 RF_DiskQueueData_t *req;
1232
1233 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1234 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1235 * have gotten the event that sent us here */
1236 RF_ASSERT(rbuf->pssPtr);
1237
1238 rbuf->pssPtr->writeRbuf = rbuf;
1239 rbuf->pssPtr = NULL;
1240
1241 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1242 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1243 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1244 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1245 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1246 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1247
1248 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1249 * kernel space */
1250 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1251 sectorsPerRU, rbuf->buffer,
1252 rbuf->parityStripeID, rbuf->which_ru,
1253 ReconWriteDoneProc, (void *) rbuf, NULL,
1254 &raidPtr->recon_tracerecs[fcol],
1255 (void *) raidPtr, 0, NULL);
1256
1257 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1258
1259 rbuf->arg = (void *) req;
1260 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1261
1262 return (0);
1263 }
1264 /* this gets called upon the completion of a reconstruction read operation
1265 * the arg is a pointer to the per-disk reconstruction control structure
1266 * for the process that just finished a read.
1267 *
1268 * called at interrupt context in the kernel, so don't do anything illegal here.
1269 */
1270 static int
1271 ReconReadDoneProc(arg, status)
1272 void *arg;
1273 int status;
1274 {
1275 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1276 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1277
1278 if (status) {
1279 /*
1280 * XXX
1281 */
1282 printf("Recon read failed!\n");
1283 RF_PANIC();
1284 }
1285 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1286 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1287 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1288 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1289 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1290
1291 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1292 return (0);
1293 }
1294 /* this gets called upon the completion of a reconstruction write operation.
1295 * the arg is a pointer to the rbuf that was just written
1296 *
1297 * called at interrupt context in the kernel, so don't do anything illegal here.
1298 */
1299 static int
1300 ReconWriteDoneProc(arg, status)
1301 void *arg;
1302 int status;
1303 {
1304 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1305
1306 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1307 if (status) {
1308 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1309 * write failed!\n"); */
1310 RF_PANIC();
1311 }
1312 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1313 return (0);
1314 }
1315
1316
1317 /* computes a new minimum head sep, and wakes up anyone who needs to be woken as a result */
1318 static void
1319 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1320 RF_Raid_t *raidPtr;
1321 RF_RowCol_t row;
1322 RF_HeadSepLimit_t hsCtr;
1323 {
1324 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1325 RF_HeadSepLimit_t new_min;
1326 RF_RowCol_t i;
1327 RF_CallbackDesc_t *p;
1328 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1329 * of a minimum */
1330
1331
1332 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1333
1334 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1335 for (i = 0; i < raidPtr->numCol; i++)
1336 if (i != reconCtrlPtr->fcol) {
1337 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1338 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1339 }
1340 /* set the new minimum and wake up anyone who can now run again */
1341 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1342 reconCtrlPtr->minHeadSepCounter = new_min;
1343 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1344 while (reconCtrlPtr->headSepCBList) {
1345 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1346 break;
1347 p = reconCtrlPtr->headSepCBList;
1348 reconCtrlPtr->headSepCBList = p->next;
1349 p->next = NULL;
1350 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1351 rf_FreeCallbackDesc(p);
1352 }
1353
1354 }
1355 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1356 }
1357 /* checks to see that the maximum head separation will not be violated
1358 * if we initiate a reconstruction I/O on the indicated disk. Limiting the
1359 * maximum head separation between two disks eliminates the nasty buffer-stall
1360 * conditions that occur when one disk races ahead of the others and consumes
1361 * all of the floating recon buffers. This code is complex and unpleasant
1362 * but it's necessary to avoid some very nasty, albeit fairly rare,
1363 * reconstruction behavior.
1364 *
1365 * returns non-zero if and only if we have to stop working on the indicated disk
1366 * due to a head-separation delay.
1367 */
1368 static int
1369 CheckHeadSeparation(
1370 RF_Raid_t * raidPtr,
1371 RF_PerDiskReconCtrl_t * ctrl,
1372 RF_RowCol_t row,
1373 RF_RowCol_t col,
1374 RF_HeadSepLimit_t hsCtr,
1375 RF_ReconUnitNum_t which_ru)
1376 {
1377 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1378 RF_CallbackDesc_t *cb, *p, *pt;
1379 int retval = 0;
1380
1381 /* if we're too far ahead of the slowest disk, stop working on this
1382 * disk until the slower ones catch up. We do this by scheduling a
1383 * wakeup callback for the time when the slowest disk has caught up.
1384 * We define "caught up" with 20% hysteresis, i.e. the head separation
1385 * must have fallen to at most 80% of the max allowable head
1386 * separation before we'll wake up.
1387 *
1388 */
1389 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1390 if ((raidPtr->headSepLimit >= 0) &&
1391 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1392 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1393 raidPtr->raidid, row, col, ctrl->headSepCounter,
1394 reconCtrlPtr->minHeadSepCounter,
1395 raidPtr->headSepLimit);
1396 cb = rf_AllocCallbackDesc();
1397 /* the minHeadSepCounter value we have to get to before we'll
1398 * wake up. build in 20% hysteresis. */
1399 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1400 cb->row = row;
1401 cb->col = col;
1402 cb->next = NULL;
1403
1404 /* insert this callback descriptor into the sorted list of
1405 * pending head-sep callbacks */
1406 p = reconCtrlPtr->headSepCBList;
1407 if (!p)
1408 reconCtrlPtr->headSepCBList = cb;
1409 else
1410 if (cb->callbackArg.v < p->callbackArg.v) {
1411 cb->next = reconCtrlPtr->headSepCBList;
1412 reconCtrlPtr->headSepCBList = cb;
1413 } else {
1414 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1415 cb->next = p;
1416 pt->next = cb;
1417 }
1418 retval = 1;
1419 #if RF_RECON_STATS > 0
1420 ctrl->reconCtrl->reconDesc->hsStallCount++;
1421 #endif /* RF_RECON_STATS > 0 */
1422 }
1423 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1424
1425 return (retval);
1426 }
1427 /* checks to see if reconstruction has been either forced or blocked by a user operation.
1428 * if forced, we skip this RU entirely.
1429 * else if blocked, put ourselves on the wait list.
1430 * else return 0.
1431 *
1432 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1433 */
1434 static int
1435 CheckForcedOrBlockedReconstruction(
1436 RF_Raid_t * raidPtr,
1437 RF_ReconParityStripeStatus_t * pssPtr,
1438 RF_PerDiskReconCtrl_t * ctrl,
1439 RF_RowCol_t row,
1440 RF_RowCol_t col,
1441 RF_StripeNum_t psid,
1442 RF_ReconUnitNum_t which_ru)
1443 {
1444 RF_CallbackDesc_t *cb;
1445 int retcode = 0;
1446
1447 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1448 retcode = RF_PSS_FORCED_ON_WRITE;
1449 else
1450 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1451 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1452 cb = rf_AllocCallbackDesc(); /* append ourselves to
1453 * the blockage-wait
1454 * list */
1455 cb->row = row;
1456 cb->col = col;
1457 cb->next = pssPtr->blockWaitList;
1458 pssPtr->blockWaitList = cb;
1459 retcode = RF_PSS_RECON_BLOCKED;
1460 }
1461 if (!retcode)
1462 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1463 * reconstruction */
1464
1465 return (retcode);
1466 }
1467 /* if reconstruction is currently ongoing for the indicated stripeID, reconstruction
1468 * is forced to completion and we return non-zero to indicate that the caller must
1469 * wait. If not, then reconstruction is blocked on the indicated stripe and the
1470 * routine returns zero. If and only if we return non-zero, we'll cause the cbFunc
1471 * to get invoked with the cbArg when the reconstruction has completed.
1472 */
1473 int
1474 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1475 RF_Raid_t *raidPtr;
1476 RF_AccessStripeMap_t *asmap;
1477 void (*cbFunc) (RF_Raid_t *, void *);
1478 void *cbArg;
1479 {
1480 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1481 * we're working on */
1482 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1483 * forcing recon on */
1484 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1485 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1486 * stripe status structure */
1487 RF_StripeNum_t psid; /* parity stripe id */
1488 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1489 * offset */
1490 RF_RowCol_t *diskids;
1491 RF_RowCol_t stripe;
1492 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1493 RF_RowCol_t fcol, diskno, i;
1494 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1495 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1496 RF_CallbackDesc_t *cb;
1497 int created = 0, nPromoted;
1498
1499 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1500
1501 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1502
1503 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1504
1505 /* if recon is not ongoing on this PS, just return */
1506 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1507 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1508 return (0);
1509 }
1510 /* otherwise, we have to wait for reconstruction to complete on this
1511 * RU. */
1512 /* In order to avoid waiting for a potentially large number of
1513 * low-priority accesses to complete, we force a normal-priority (i.e.
1514 * not low-priority) reconstruction on this RU. */
1515 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1516 DDprintf1("Forcing recon on psid %ld\n", psid);
1517 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1518 * forced recon */
1519 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1520 * that we just set */
1521 fcol = raidPtr->reconControl[row]->fcol;
1522
1523 /* get a listing of the disks comprising the indicated stripe */
1524 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1525 RF_ASSERT(row == stripe);
1526
1527 /* For previously issued reads, elevate them to normal
1528 * priority. If the I/O has already completed, it won't be
1529 * found in the queue, and hence this will be a no-op. For
1530 * unissued reads, allocate buffers and issue new reads. The
1531 * fact that we've set the FORCED bit means that the regular
1532 * recon procs will not re-issue these reqs */
1533 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1534 if ((diskno = diskids[i]) != fcol) {
1535 if (pssPtr->issued[diskno]) {
1536 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1537 if (rf_reconDebug && nPromoted)
1538 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1539 } else {
1540 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1541 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1542 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1543 * location */
1544 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1545 new_rbuf->which_ru = which_ru;
1546 new_rbuf->failedDiskSectorOffset = fd_offset;
1547 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1548
1549 /* use NULL b_proc b/c all addrs
1550 * should be in kernel space */
1551 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1552 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1553 NULL, (void *) raidPtr, 0, NULL);
1554
1555 RF_ASSERT(req); /* XXX -- fix this --
1556 * XXX */
1557
1558 new_rbuf->arg = req;
1559 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1560 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1561 }
1562 }
1563 /* if the write is sitting in the disk queue, elevate its
1564 * priority */
1565 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1566 printf("raid%d: promoted write to row %d col %d\n",
1567 raidPtr->raidid, row, fcol);
1568 }
1569 /* install a callback descriptor to be invoked when recon completes on
1570 * this parity stripe. */
1571 cb = rf_AllocCallbackDesc();
1572 /* XXX the following is bogus.. These functions don't really match!!
1573 * GO */
1574 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1575 cb->callbackArg.p = (void *) cbArg;
1576 cb->next = pssPtr->procWaitList;
1577 pssPtr->procWaitList = cb;
1578 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1579 raidPtr->raidid, psid);
1580
1581 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1582 return (1);
1583 }
1584 /* called upon the completion of a forced reconstruction read.
1585 * all we do is schedule the FORCEDREADONE event.
1586 * called at interrupt context in the kernel, so don't do anything illegal here.
1587 */
1588 static void
1589 ForceReconReadDoneProc(arg, status)
1590 void *arg;
1591 int status;
1592 {
1593 RF_ReconBuffer_t *rbuf = arg;
1594
1595 if (status) {
1596 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1597 * recon read
1598 * failed!\n"); */
1599 RF_PANIC();
1600 }
1601 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1602 }
1603 /* releases a block on the reconstruction of the indicated stripe */
1604 int
1605 rf_UnblockRecon(raidPtr, asmap)
1606 RF_Raid_t *raidPtr;
1607 RF_AccessStripeMap_t *asmap;
1608 {
1609 RF_RowCol_t row = asmap->origRow;
1610 RF_StripeNum_t stripeID = asmap->stripeID;
1611 RF_ReconParityStripeStatus_t *pssPtr;
1612 RF_ReconUnitNum_t which_ru;
1613 RF_StripeNum_t psid;
1614 int created = 0;
1615 RF_CallbackDesc_t *cb;
1616
1617 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1618 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1619 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1620
1621 /* When recon is forced, the pss desc can get deleted before we get
1622 * back to unblock recon. But, this can _only_ happen when recon is
1623 * forced. It would be good to put some kind of sanity check here, but
1624 * how to decide if recon was just forced or not? */
1625 if (!pssPtr) {
1626 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1627 * RU %d\n",psid,which_ru); */
1628 if (rf_reconDebug || rf_pssDebug)
1629 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1630 goto out;
1631 }
1632 pssPtr->blockCount--;
1633 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1634 raidPtr->raidid, psid, pssPtr->blockCount);
1635 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1636
1637 /* unblock recon before calling CauseReconEvent in case
1638 * CauseReconEvent causes us to try to issue a new read before
1639 * returning here. */
1640 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1641
1642
1643 while (pssPtr->blockWaitList) { /* spin through the block-wait
1644 * list and release all the
1645 * waiters */
1646 cb = pssPtr->blockWaitList;
1647 pssPtr->blockWaitList = cb->next;
1648 cb->next = NULL;
1649 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1650 rf_FreeCallbackDesc(cb);
1651 }
1652 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { /* if no recon was
1653 * requested while recon
1654 * was blocked */
1655 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1656 }
1657 }
1658 out:
1659 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1660 return (0);
1661 }
1662