rf_reconstruct.c revision 1.110 1 /* $NetBSD: rf_reconstruct.c,v 1.110 2010/11/19 06:44:40 dholland Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.110 2010/11/19 06:44:40 dholland Exp $");
37
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <sys/namei.h> /* for pathbuf */
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97 #define RF_RECON_DONE_READS 1
98 #define RF_RECON_READ_ERROR 2
99 #define RF_RECON_WRITE_ERROR 3
100 #define RF_RECON_READ_STOPPED 4
101 #define RF_RECON_WRITE_DONE 5
102
103 #define RF_MAX_FREE_RECONBUFFER 32
104 #define RF_MIN_FREE_RECONBUFFER 16
105
106 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
107 RF_RaidDisk_t *, int, RF_RowCol_t);
108 static void FreeReconDesc(RF_RaidReconDesc_t *);
109 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
110 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
111 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
112 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
113 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
114 RF_SectorNum_t *);
115 static int IssueNextWriteRequest(RF_Raid_t *);
116 static int ReconReadDoneProc(void *, int);
117 static int ReconWriteDoneProc(void *, int);
118 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
119 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
120 RF_RowCol_t, RF_HeadSepLimit_t,
121 RF_ReconUnitNum_t);
122 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
123 RF_ReconParityStripeStatus_t *,
124 RF_PerDiskReconCtrl_t *,
125 RF_RowCol_t, RF_StripeNum_t,
126 RF_ReconUnitNum_t);
127 static void ForceReconReadDoneProc(void *, int);
128 static void rf_ShutdownReconstruction(void *);
129
130 struct RF_ReconDoneProc_s {
131 void (*proc) (RF_Raid_t *, void *);
132 void *arg;
133 RF_ReconDoneProc_t *next;
134 };
135
136 /**************************************************************************
137 *
138 * sets up the parameters that will be used by the reconstruction process
139 * currently there are none, except for those that the layout-specific
140 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
141 *
142 * in the kernel, we fire off the recon thread.
143 *
144 **************************************************************************/
145 static void
146 rf_ShutdownReconstruction(void *ignored)
147 {
148 pool_destroy(&rf_pools.reconbuffer);
149 }
150
151 int
152 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
153 {
154
155 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
156 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
157 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
158
159 return (0);
160 }
161
162 static RF_RaidReconDesc_t *
163 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
164 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
165 RF_RowCol_t scol)
166 {
167
168 RF_RaidReconDesc_t *reconDesc;
169
170 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
171 (RF_RaidReconDesc_t *));
172 reconDesc->raidPtr = raidPtr;
173 reconDesc->col = col;
174 reconDesc->spareDiskPtr = spareDiskPtr;
175 reconDesc->numDisksDone = numDisksDone;
176 reconDesc->scol = scol;
177 reconDesc->next = NULL;
178
179 return (reconDesc);
180 }
181
182 static void
183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
184 {
185 #if RF_RECON_STATS > 0
186 printf("raid%d: %lu recon event waits, %lu recon delays\n",
187 reconDesc->raidPtr->raidid,
188 (long) reconDesc->numReconEventWaits,
189 (long) reconDesc->numReconExecDelays);
190 #endif /* RF_RECON_STATS > 0 */
191 printf("raid%d: %lu max exec ticks\n",
192 reconDesc->raidPtr->raidid,
193 (long) reconDesc->maxReconExecTicks);
194 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
195 }
196
197
198 /*****************************************************************************
199 *
200 * primary routine to reconstruct a failed disk. This should be called from
201 * within its own thread. It won't return until reconstruction completes,
202 * fails, or is aborted.
203 *****************************************************************************/
204 int
205 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
206 {
207 const RF_LayoutSW_t *lp;
208 int rc;
209
210 lp = raidPtr->Layout.map;
211 if (lp->SubmitReconBuffer) {
212 /*
213 * The current infrastructure only supports reconstructing one
214 * disk at a time for each array.
215 */
216 RF_LOCK_MUTEX(raidPtr->mutex);
217 while (raidPtr->reconInProgress) {
218 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
219 }
220 raidPtr->reconInProgress++;
221 RF_UNLOCK_MUTEX(raidPtr->mutex);
222 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
223 RF_LOCK_MUTEX(raidPtr->mutex);
224 raidPtr->reconInProgress--;
225 RF_UNLOCK_MUTEX(raidPtr->mutex);
226 } else {
227 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
228 lp->parityConfig);
229 rc = EIO;
230 }
231 RF_SIGNAL_COND(raidPtr->waitForReconCond);
232 return (rc);
233 }
234
235 int
236 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
237 {
238 RF_ComponentLabel_t *c_label;
239 RF_RaidDisk_t *spareDiskPtr = NULL;
240 RF_RaidReconDesc_t *reconDesc;
241 RF_RowCol_t scol;
242 int numDisksDone = 0, rc;
243
244 /* first look for a spare drive onto which to reconstruct the data */
245 /* spare disk descriptors are stored in row 0. This may have to
246 * change eventually */
247
248 RF_LOCK_MUTEX(raidPtr->mutex);
249 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
250 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
251 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
252 if (raidPtr->status != rf_rs_degraded) {
253 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
254 RF_UNLOCK_MUTEX(raidPtr->mutex);
255 return (EINVAL);
256 }
257 scol = (-1);
258 } else {
259 #endif
260 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
261 if (raidPtr->Disks[scol].status == rf_ds_spare) {
262 spareDiskPtr = &raidPtr->Disks[scol];
263 spareDiskPtr->status = rf_ds_used_spare;
264 break;
265 }
266 }
267 if (!spareDiskPtr) {
268 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
269 RF_UNLOCK_MUTEX(raidPtr->mutex);
270 return (ENOSPC);
271 }
272 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
273 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
274 }
275 #endif
276 RF_UNLOCK_MUTEX(raidPtr->mutex);
277
278 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
279 raidPtr->reconDesc = (void *) reconDesc;
280 #if RF_RECON_STATS > 0
281 reconDesc->hsStallCount = 0;
282 reconDesc->numReconExecDelays = 0;
283 reconDesc->numReconEventWaits = 0;
284 #endif /* RF_RECON_STATS > 0 */
285 reconDesc->reconExecTimerRunning = 0;
286 reconDesc->reconExecTicks = 0;
287 reconDesc->maxReconExecTicks = 0;
288 rc = rf_ContinueReconstructFailedDisk(reconDesc);
289
290 if (!rc) {
291 /* fix up the component label */
292 /* Don't actually need the read here.. */
293 c_label = raidget_component_label(raidPtr, scol);
294
295 raid_init_component_label(raidPtr, c_label);
296 c_label->row = 0;
297 c_label->column = col;
298 c_label->clean = RF_RAID_DIRTY;
299 c_label->status = rf_ds_optimal;
300 c_label->partitionSize = raidPtr->Disks[scol].partitionSize;
301 c_label->partitionSizeHi =
302 raidPtr->Disks[scol].partitionSize >> 32;
303
304 /* We've just done a rebuild based on all the other
305 disks, so at this point the parity is known to be
306 clean, even if it wasn't before. */
307
308 /* XXX doesn't hold for RAID 6!!*/
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 raidPtr->parity_good = RF_RAID_CLEAN;
312 RF_UNLOCK_MUTEX(raidPtr->mutex);
313
314 /* XXXX MORE NEEDED HERE */
315
316 raidflush_component_label(raidPtr, scol);
317 } else {
318 /* Reconstruct failed. */
319
320 RF_LOCK_MUTEX(raidPtr->mutex);
321 /* Failed disk goes back to "failed" status */
322 raidPtr->Disks[col].status = rf_ds_failed;
323
324 /* Spare disk goes back to "spare" status. */
325 spareDiskPtr->status = rf_ds_spare;
326 RF_UNLOCK_MUTEX(raidPtr->mutex);
327
328 }
329 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
330 return (rc);
331 }
332
333 /*
334
335 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
336 and you don't get a spare until the next Monday. With this function
337 (and hot-swappable drives) you can now put your new disk containing
338 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
339 rebuild the data "on the spot".
340
341 */
342
343 int
344 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
345 {
346 RF_RaidDisk_t *spareDiskPtr = NULL;
347 RF_RaidReconDesc_t *reconDesc;
348 const RF_LayoutSW_t *lp;
349 RF_ComponentLabel_t *c_label;
350 int numDisksDone = 0, rc;
351 struct partinfo dpart;
352 struct pathbuf *pb;
353 struct vnode *vp;
354 struct vattr va;
355 int retcode;
356 int ac;
357
358 lp = raidPtr->Layout.map;
359 if (!lp->SubmitReconBuffer) {
360 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
361 lp->parityConfig);
362 /* wakeup anyone who might be waiting to do a reconstruct */
363 RF_SIGNAL_COND(raidPtr->waitForReconCond);
364 return(EIO);
365 }
366
367 /*
368 * The current infrastructure only supports reconstructing one
369 * disk at a time for each array.
370 */
371 RF_LOCK_MUTEX(raidPtr->mutex);
372
373 if (raidPtr->Disks[col].status != rf_ds_failed) {
374 /* "It's gone..." */
375 raidPtr->numFailures++;
376 raidPtr->Disks[col].status = rf_ds_failed;
377 raidPtr->status = rf_rs_degraded;
378 RF_UNLOCK_MUTEX(raidPtr->mutex);
379 rf_update_component_labels(raidPtr,
380 RF_NORMAL_COMPONENT_UPDATE);
381 RF_LOCK_MUTEX(raidPtr->mutex);
382 }
383
384 while (raidPtr->reconInProgress) {
385 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
386 }
387
388 raidPtr->reconInProgress++;
389
390 /* first look for a spare drive onto which to reconstruct the
391 data. spare disk descriptors are stored in row 0. This
392 may have to change eventually */
393
394 /* Actually, we don't care if it's failed or not... On a RAID
395 set with correct parity, this function should be callable
396 on any component without ill effects. */
397 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
398
399 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
400 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
401 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
402
403 raidPtr->reconInProgress--;
404 RF_UNLOCK_MUTEX(raidPtr->mutex);
405 RF_SIGNAL_COND(raidPtr->waitForReconCond);
406 return (EINVAL);
407 }
408 #endif
409
410 /* This device may have been opened successfully the
411 first time. Close it before trying to open it again.. */
412
413 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
414 #if 0
415 printf("Closed the open device: %s\n",
416 raidPtr->Disks[col].devname);
417 #endif
418 vp = raidPtr->raid_cinfo[col].ci_vp;
419 ac = raidPtr->Disks[col].auto_configured;
420 RF_UNLOCK_MUTEX(raidPtr->mutex);
421 rf_close_component(raidPtr, vp, ac);
422 RF_LOCK_MUTEX(raidPtr->mutex);
423 raidPtr->raid_cinfo[col].ci_vp = NULL;
424 }
425 /* note that this disk was *not* auto_configured (any longer)*/
426 raidPtr->Disks[col].auto_configured = 0;
427
428 #if 0
429 printf("About to (re-)open the device for rebuilding: %s\n",
430 raidPtr->Disks[col].devname);
431 #endif
432 RF_UNLOCK_MUTEX(raidPtr->mutex);
433 pb = pathbuf_create(raidPtr->Disks[col].devname);
434 if (pb == NULL) {
435 retcode = ENOMEM;
436 } else {
437 retcode = dk_lookup(pb, curlwp, &vp);
438 pathbuf_destroy(pb);
439 }
440
441 if (retcode) {
442 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
443 raidPtr->Disks[col].devname, retcode);
444
445 /* the component isn't responding properly...
446 must be still dead :-( */
447 RF_LOCK_MUTEX(raidPtr->mutex);
448 raidPtr->reconInProgress--;
449 RF_UNLOCK_MUTEX(raidPtr->mutex);
450 RF_SIGNAL_COND(raidPtr->waitForReconCond);
451 return(retcode);
452 }
453
454 /* Ok, so we can at least do a lookup...
455 How about actually getting a vp for it? */
456
457 if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) {
458 RF_LOCK_MUTEX(raidPtr->mutex);
459 raidPtr->reconInProgress--;
460 RF_UNLOCK_MUTEX(raidPtr->mutex);
461 RF_SIGNAL_COND(raidPtr->waitForReconCond);
462 return(retcode);
463 }
464
465 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred);
466 if (retcode) {
467 RF_LOCK_MUTEX(raidPtr->mutex);
468 raidPtr->reconInProgress--;
469 RF_UNLOCK_MUTEX(raidPtr->mutex);
470 RF_SIGNAL_COND(raidPtr->waitForReconCond);
471 return(retcode);
472 }
473 RF_LOCK_MUTEX(raidPtr->mutex);
474 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
475
476 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
477 rf_protectedSectors;
478
479 raidPtr->raid_cinfo[col].ci_vp = vp;
480 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
481
482 raidPtr->Disks[col].dev = va.va_rdev;
483
484 /* we allow the user to specify that only a fraction
485 of the disks should be used this is just for debug:
486 it speeds up * the parity scan */
487 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
488 rf_sizePercentage / 100;
489 RF_UNLOCK_MUTEX(raidPtr->mutex);
490
491 spareDiskPtr = &raidPtr->Disks[col];
492 spareDiskPtr->status = rf_ds_used_spare;
493
494 printf("raid%d: initiating in-place reconstruction on column %d\n",
495 raidPtr->raidid, col);
496
497 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
498 numDisksDone, col);
499 raidPtr->reconDesc = (void *) reconDesc;
500 #if RF_RECON_STATS > 0
501 reconDesc->hsStallCount = 0;
502 reconDesc->numReconExecDelays = 0;
503 reconDesc->numReconEventWaits = 0;
504 #endif /* RF_RECON_STATS > 0 */
505 reconDesc->reconExecTimerRunning = 0;
506 reconDesc->reconExecTicks = 0;
507 reconDesc->maxReconExecTicks = 0;
508 rc = rf_ContinueReconstructFailedDisk(reconDesc);
509
510 if (!rc) {
511 RF_LOCK_MUTEX(raidPtr->mutex);
512 /* Need to set these here, as at this point it'll be claiming
513 that the disk is in rf_ds_spared! But we know better :-) */
514
515 raidPtr->Disks[col].status = rf_ds_optimal;
516 raidPtr->status = rf_rs_optimal;
517 RF_UNLOCK_MUTEX(raidPtr->mutex);
518
519 /* fix up the component label */
520 /* Don't actually need the read here.. */
521 c_label = raidget_component_label(raidPtr, col);
522
523 RF_LOCK_MUTEX(raidPtr->mutex);
524 raid_init_component_label(raidPtr, c_label);
525
526 c_label->row = 0;
527 c_label->column = col;
528
529 /* We've just done a rebuild based on all the other
530 disks, so at this point the parity is known to be
531 clean, even if it wasn't before. */
532
533 /* XXX doesn't hold for RAID 6!!*/
534
535 raidPtr->parity_good = RF_RAID_CLEAN;
536 RF_UNLOCK_MUTEX(raidPtr->mutex);
537
538 raidflush_component_label(raidPtr, col);
539 } else {
540 /* Reconstruct-in-place failed. Disk goes back to
541 "failed" status, regardless of what it was before. */
542 RF_LOCK_MUTEX(raidPtr->mutex);
543 raidPtr->Disks[col].status = rf_ds_failed;
544 RF_UNLOCK_MUTEX(raidPtr->mutex);
545 }
546
547 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
548
549 RF_LOCK_MUTEX(raidPtr->mutex);
550 raidPtr->reconInProgress--;
551 RF_UNLOCK_MUTEX(raidPtr->mutex);
552
553 RF_SIGNAL_COND(raidPtr->waitForReconCond);
554 return (rc);
555 }
556
557
558 int
559 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
560 {
561 RF_Raid_t *raidPtr = reconDesc->raidPtr;
562 RF_RowCol_t col = reconDesc->col;
563 RF_RowCol_t scol = reconDesc->scol;
564 RF_ReconMap_t *mapPtr;
565 RF_ReconCtrl_t *tmp_reconctrl;
566 RF_ReconEvent_t *event;
567 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
568 RF_ReconUnitCount_t RUsPerPU;
569 struct timeval etime, elpsd;
570 unsigned long xor_s, xor_resid_us;
571 int i, ds;
572 int status, done;
573 int recon_error, write_error;
574
575 raidPtr->accumXorTimeUs = 0;
576 #if RF_ACC_TRACE > 0
577 /* create one trace record per physical disk */
578 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
579 #endif
580
581 /* quiesce the array prior to starting recon. this is needed
582 * to assure no nasty interactions with pending user writes.
583 * We need to do this before we change the disk or row status. */
584
585 Dprintf("RECON: begin request suspend\n");
586 rf_SuspendNewRequestsAndWait(raidPtr);
587 Dprintf("RECON: end request suspend\n");
588
589 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
590 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
591
592 RF_LOCK_MUTEX(raidPtr->mutex);
593
594 /* create the reconstruction control pointer and install it in
595 * the right slot */
596 raidPtr->reconControl = tmp_reconctrl;
597 mapPtr = raidPtr->reconControl->reconMap;
598 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
599 raidPtr->reconControl->numRUsComplete = 0;
600 raidPtr->status = rf_rs_reconstructing;
601 raidPtr->Disks[col].status = rf_ds_reconstructing;
602 raidPtr->Disks[col].spareCol = scol;
603
604 RF_UNLOCK_MUTEX(raidPtr->mutex);
605
606 RF_GETTIME(raidPtr->reconControl->starttime);
607
608 Dprintf("RECON: resume requests\n");
609 rf_ResumeNewRequests(raidPtr);
610
611
612 mapPtr = raidPtr->reconControl->reconMap;
613
614 incPSID = RF_RECONMAP_SIZE;
615 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
616 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
617 recon_error = 0;
618 write_error = 0;
619 pending_writes = incPSID;
620 raidPtr->reconControl->lastPSID = incPSID;
621
622 /* start the actual reconstruction */
623
624 done = 0;
625 while (!done) {
626
627 if (raidPtr->waitShutdown) {
628 /* someone is unconfiguring this array... bail on the reconstruct.. */
629 recon_error = 1;
630 break;
631 }
632
633 num_writes = 0;
634
635 /* issue a read for each surviving disk */
636
637 reconDesc->numDisksDone = 0;
638 for (i = 0; i < raidPtr->numCol; i++) {
639 if (i != col) {
640 /* find and issue the next I/O on the
641 * indicated disk */
642 if (IssueNextReadRequest(raidPtr, i)) {
643 Dprintf1("RECON: done issuing for c%d\n", i);
644 reconDesc->numDisksDone++;
645 }
646 }
647 }
648
649 /* process reconstruction events until all disks report that
650 * they've completed all work */
651
652 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
653
654 event = rf_GetNextReconEvent(reconDesc);
655 status = ProcessReconEvent(raidPtr, event);
656
657 /* the normal case is that a read completes, and all is well. */
658 if (status == RF_RECON_DONE_READS) {
659 reconDesc->numDisksDone++;
660 } else if ((status == RF_RECON_READ_ERROR) ||
661 (status == RF_RECON_WRITE_ERROR)) {
662 /* an error was encountered while reconstructing...
663 Pretend we've finished this disk.
664 */
665 recon_error = 1;
666 raidPtr->reconControl->error = 1;
667
668 /* bump the numDisksDone count for reads,
669 but not for writes */
670 if (status == RF_RECON_READ_ERROR)
671 reconDesc->numDisksDone++;
672
673 /* write errors are special -- when we are
674 done dealing with the reads that are
675 finished, we don't want to wait for any
676 writes */
677 if (status == RF_RECON_WRITE_ERROR) {
678 write_error = 1;
679 num_writes++;
680 }
681
682 } else if (status == RF_RECON_READ_STOPPED) {
683 /* count this component as being "done" */
684 reconDesc->numDisksDone++;
685 } else if (status == RF_RECON_WRITE_DONE) {
686 num_writes++;
687 }
688
689 if (recon_error) {
690 /* make sure any stragglers are woken up so that
691 their theads will complete, and we can get out
692 of here with all IO processed */
693
694 rf_WakeupHeadSepCBWaiters(raidPtr);
695 }
696
697 raidPtr->reconControl->numRUsTotal =
698 mapPtr->totalRUs;
699 raidPtr->reconControl->numRUsComplete =
700 mapPtr->totalRUs -
701 rf_UnitsLeftToReconstruct(mapPtr);
702
703 #if RF_DEBUG_RECON
704 raidPtr->reconControl->percentComplete =
705 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
706 if (rf_prReconSched) {
707 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
708 }
709 #endif
710 }
711
712 /* reads done, wakup any waiters, and then wait for writes */
713
714 rf_WakeupHeadSepCBWaiters(raidPtr);
715
716 while (!recon_error && (num_writes < pending_writes)) {
717 event = rf_GetNextReconEvent(reconDesc);
718 status = ProcessReconEvent(raidPtr, event);
719
720 if (status == RF_RECON_WRITE_ERROR) {
721 num_writes++;
722 recon_error = 1;
723 raidPtr->reconControl->error = 1;
724 /* an error was encountered at the very end... bail */
725 } else if (status == RF_RECON_WRITE_DONE) {
726 num_writes++;
727 } /* else it's something else, and we don't care */
728 }
729 if (recon_error ||
730 (raidPtr->reconControl->lastPSID == lastPSID)) {
731 done = 1;
732 break;
733 }
734
735 prev = raidPtr->reconControl->lastPSID;
736 raidPtr->reconControl->lastPSID += incPSID;
737
738 if (raidPtr->reconControl->lastPSID > lastPSID) {
739 pending_writes = lastPSID - prev;
740 raidPtr->reconControl->lastPSID = lastPSID;
741 }
742
743 /* back down curPSID to get ready for the next round... */
744 for (i = 0; i < raidPtr->numCol; i++) {
745 if (i != col) {
746 raidPtr->reconControl->perDiskInfo[i].curPSID--;
747 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
748 }
749 }
750 }
751
752 mapPtr = raidPtr->reconControl->reconMap;
753 if (rf_reconDebug) {
754 printf("RECON: all reads completed\n");
755 }
756 /* at this point all the reads have completed. We now wait
757 * for any pending writes to complete, and then we're done */
758
759 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
760
761 event = rf_GetNextReconEvent(reconDesc);
762 status = ProcessReconEvent(raidPtr, event);
763
764 if (status == RF_RECON_WRITE_ERROR) {
765 recon_error = 1;
766 raidPtr->reconControl->error = 1;
767 /* an error was encountered at the very end... bail */
768 } else {
769 #if RF_DEBUG_RECON
770 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
771 if (rf_prReconSched) {
772 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
773 }
774 #endif
775 }
776 }
777
778 if (recon_error) {
779 /* we've encountered an error in reconstructing. */
780 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
781
782 /* we start by blocking IO to the RAID set. */
783 rf_SuspendNewRequestsAndWait(raidPtr);
784
785 RF_LOCK_MUTEX(raidPtr->mutex);
786 /* mark set as being degraded, rather than
787 rf_rs_reconstructing as we were before the problem.
788 After this is done we can update status of the
789 component disks without worrying about someone
790 trying to read from a failed component.
791 */
792 raidPtr->status = rf_rs_degraded;
793 RF_UNLOCK_MUTEX(raidPtr->mutex);
794
795 /* resume IO */
796 rf_ResumeNewRequests(raidPtr);
797
798 /* At this point there are two cases:
799 1) If we've experienced a read error, then we've
800 already waited for all the reads we're going to get,
801 and we just need to wait for the writes.
802
803 2) If we've experienced a write error, we've also
804 already waited for all the reads to complete,
805 but there is little point in waiting for the writes --
806 when they do complete, they will just be ignored.
807
808 So we just wait for writes to complete if we didn't have a
809 write error.
810 */
811
812 if (!write_error) {
813 /* wait for writes to complete */
814 while (raidPtr->reconControl->pending_writes > 0) {
815
816 event = rf_GetNextReconEvent(reconDesc);
817 status = ProcessReconEvent(raidPtr, event);
818
819 if (status == RF_RECON_WRITE_ERROR) {
820 raidPtr->reconControl->error = 1;
821 /* an error was encountered at the very end... bail.
822 This will be very bad news for the user, since
823 at this point there will have been a read error
824 on one component, and a write error on another!
825 */
826 break;
827 }
828 }
829 }
830
831
832 /* cleanup */
833
834 /* drain the event queue - after waiting for the writes above,
835 there shouldn't be much (if anything!) left in the queue. */
836
837 rf_DrainReconEventQueue(reconDesc);
838
839 /* XXX As much as we'd like to free the recon control structure
840 and the reconDesc, we have no way of knowing if/when those will
841 be touched by IO that has yet to occur. It is rather poor to be
842 basically causing a 'memory leak' here, but there doesn't seem to be
843 a cleaner alternative at this time. Perhaps when the reconstruct code
844 gets a makeover this problem will go away.
845 */
846 #if 0
847 rf_FreeReconControl(raidPtr);
848 #endif
849
850 #if RF_ACC_TRACE > 0
851 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
852 #endif
853 /* XXX see comment above */
854 #if 0
855 FreeReconDesc(reconDesc);
856 #endif
857
858 return (1);
859 }
860
861 /* Success: mark the dead disk as reconstructed. We quiesce
862 * the array here to assure no nasty interactions with pending
863 * user accesses when we free up the psstatus structure as
864 * part of FreeReconControl() */
865
866 rf_SuspendNewRequestsAndWait(raidPtr);
867
868 RF_LOCK_MUTEX(raidPtr->mutex);
869 raidPtr->numFailures--;
870 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
871 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
872 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
873 RF_UNLOCK_MUTEX(raidPtr->mutex);
874 RF_GETTIME(etime);
875 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
876
877 rf_ResumeNewRequests(raidPtr);
878
879 printf("raid%d: Reconstruction of disk at col %d completed\n",
880 raidPtr->raidid, col);
881 xor_s = raidPtr->accumXorTimeUs / 1000000;
882 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
883 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
884 raidPtr->raidid,
885 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
886 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
887 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
888 raidPtr->raidid,
889 (int) raidPtr->reconControl->starttime.tv_sec,
890 (int) raidPtr->reconControl->starttime.tv_usec,
891 (int) etime.tv_sec, (int) etime.tv_usec);
892 #if RF_RECON_STATS > 0
893 printf("raid%d: Total head-sep stall count was %d\n",
894 raidPtr->raidid, (int) reconDesc->hsStallCount);
895 #endif /* RF_RECON_STATS > 0 */
896 rf_FreeReconControl(raidPtr);
897 #if RF_ACC_TRACE > 0
898 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
899 #endif
900 FreeReconDesc(reconDesc);
901
902 return (0);
903
904 }
905 /*****************************************************************************
906 * do the right thing upon each reconstruction event.
907 *****************************************************************************/
908 static int
909 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
910 {
911 int retcode = 0, submitblocked;
912 RF_ReconBuffer_t *rbuf;
913 RF_SectorCount_t sectorsPerRU;
914
915 retcode = RF_RECON_READ_STOPPED;
916
917 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
918
919 switch (event->type) {
920
921 /* a read I/O has completed */
922 case RF_REVENT_READDONE:
923 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
924 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
925 event->col, rbuf->parityStripeID);
926 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
927 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
928 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
929 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
930 if (!raidPtr->reconControl->error) {
931 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
932 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
933 if (!submitblocked)
934 retcode = IssueNextReadRequest(raidPtr, event->col);
935 else
936 retcode = 0;
937 }
938 break;
939
940 /* a write I/O has completed */
941 case RF_REVENT_WRITEDONE:
942 #if RF_DEBUG_RECON
943 if (rf_floatingRbufDebug) {
944 rf_CheckFloatingRbufCount(raidPtr, 1);
945 }
946 #endif
947 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
948 rbuf = (RF_ReconBuffer_t *) event->arg;
949 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
950 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
951 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
952 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
953 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
954 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
955
956 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
957 raidPtr->reconControl->pending_writes--;
958 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
959
960 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
961 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
962 while(raidPtr->reconControl->rb_lock) {
963 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
964 &raidPtr->reconControl->rb_mutex);
965 }
966 raidPtr->reconControl->rb_lock = 1;
967 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
968
969 raidPtr->numFullReconBuffers--;
970 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
971
972 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
973 raidPtr->reconControl->rb_lock = 0;
974 wakeup(&raidPtr->reconControl->rb_lock);
975 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
976 } else
977 if (rbuf->type == RF_RBUF_TYPE_FORCED)
978 rf_FreeReconBuffer(rbuf);
979 else
980 RF_ASSERT(0);
981 retcode = RF_RECON_WRITE_DONE;
982 break;
983
984 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
985 * cleared */
986 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
987 if (!raidPtr->reconControl->error) {
988 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
989 0, (int) (long) event->arg);
990 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
991 * BUFCLEAR event if we
992 * couldn't submit */
993 retcode = IssueNextReadRequest(raidPtr, event->col);
994 }
995 break;
996
997 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
998 * blockage has been cleared */
999 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
1000 if (!raidPtr->reconControl->error) {
1001 retcode = TryToRead(raidPtr, event->col);
1002 }
1003 break;
1004
1005 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
1006 * reconstruction blockage has been
1007 * cleared */
1008 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1009 if (!raidPtr->reconControl->error) {
1010 retcode = TryToRead(raidPtr, event->col);
1011 }
1012 break;
1013
1014 /* a buffer has become ready to write */
1015 case RF_REVENT_BUFREADY:
1016 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1017 if (!raidPtr->reconControl->error) {
1018 retcode = IssueNextWriteRequest(raidPtr);
1019 #if RF_DEBUG_RECON
1020 if (rf_floatingRbufDebug) {
1021 rf_CheckFloatingRbufCount(raidPtr, 1);
1022 }
1023 #endif
1024 }
1025 break;
1026
1027 /* we need to skip the current RU entirely because it got
1028 * recon'd while we were waiting for something else to happen */
1029 case RF_REVENT_SKIP:
1030 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1031 if (!raidPtr->reconControl->error) {
1032 retcode = IssueNextReadRequest(raidPtr, event->col);
1033 }
1034 break;
1035
1036 /* a forced-reconstruction read access has completed. Just
1037 * submit the buffer */
1038 case RF_REVENT_FORCEDREADDONE:
1039 rbuf = (RF_ReconBuffer_t *) event->arg;
1040 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1041 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1042 if (!raidPtr->reconControl->error) {
1043 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1044 RF_ASSERT(!submitblocked);
1045 retcode = 0;
1046 }
1047 break;
1048
1049 /* A read I/O failed to complete */
1050 case RF_REVENT_READ_FAILED:
1051 retcode = RF_RECON_READ_ERROR;
1052 break;
1053
1054 /* A write I/O failed to complete */
1055 case RF_REVENT_WRITE_FAILED:
1056 retcode = RF_RECON_WRITE_ERROR;
1057
1058 /* This is an error, but it was a pending write.
1059 Account for it. */
1060 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1061 raidPtr->reconControl->pending_writes--;
1062 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1063
1064 rbuf = (RF_ReconBuffer_t *) event->arg;
1065
1066 /* cleanup the disk queue data */
1067 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1068
1069 /* At this point we're erroring out, badly, and floatingRbufs
1070 may not even be valid. Rather than putting this back onto
1071 the floatingRbufs list, just arrange for its immediate
1072 destruction.
1073 */
1074 rf_FreeReconBuffer(rbuf);
1075 break;
1076
1077 /* a forced read I/O failed to complete */
1078 case RF_REVENT_FORCEDREAD_FAILED:
1079 retcode = RF_RECON_READ_ERROR;
1080 break;
1081
1082 default:
1083 RF_PANIC();
1084 }
1085 rf_FreeReconEventDesc(event);
1086 return (retcode);
1087 }
1088 /*****************************************************************************
1089 *
1090 * find the next thing that's needed on the indicated disk, and issue
1091 * a read request for it. We assume that the reconstruction buffer
1092 * associated with this process is free to receive the data. If
1093 * reconstruction is blocked on the indicated RU, we issue a
1094 * blockage-release request instead of a physical disk read request.
1095 * If the current disk gets too far ahead of the others, we issue a
1096 * head-separation wait request and return.
1097 *
1098 * ctrl->{ru_count, curPSID, diskOffset} and
1099 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1100 * we're currently accessing. Note that this deviates from the
1101 * standard C idiom of having counters point to the next thing to be
1102 * accessed. This allows us to easily retry when we're blocked by
1103 * head separation or reconstruction-blockage events.
1104 *
1105 *****************************************************************************/
1106 static int
1107 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1108 {
1109 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1110 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1111 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1112 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1113 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1114 int do_new_check = 0, retcode = 0, status;
1115
1116 /* if we are currently the slowest disk, mark that we have to do a new
1117 * check */
1118 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1119 do_new_check = 1;
1120
1121 while (1) {
1122
1123 ctrl->ru_count++;
1124 if (ctrl->ru_count < RUsPerPU) {
1125 ctrl->diskOffset += sectorsPerRU;
1126 rbuf->failedDiskSectorOffset += sectorsPerRU;
1127 } else {
1128 ctrl->curPSID++;
1129 ctrl->ru_count = 0;
1130 /* code left over from when head-sep was based on
1131 * parity stripe id */
1132 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1133 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1134 return (RF_RECON_DONE_READS); /* finito! */
1135 }
1136 /* find the disk offsets of the start of the parity
1137 * stripe on both the current disk and the failed
1138 * disk. skip this entire parity stripe if either disk
1139 * does not appear in the indicated PS */
1140 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1141 &rbuf->spCol, &rbuf->spOffset);
1142 if (status) {
1143 ctrl->ru_count = RUsPerPU - 1;
1144 continue;
1145 }
1146 }
1147 rbuf->which_ru = ctrl->ru_count;
1148
1149 /* skip this RU if it's already been reconstructed */
1150 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1151 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1152 continue;
1153 }
1154 break;
1155 }
1156 ctrl->headSepCounter++;
1157 if (do_new_check)
1158 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1159
1160
1161 /* at this point, we have definitely decided what to do, and we have
1162 * only to see if we can actually do it now */
1163 rbuf->parityStripeID = ctrl->curPSID;
1164 rbuf->which_ru = ctrl->ru_count;
1165 #if RF_ACC_TRACE > 0
1166 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1167 sizeof(raidPtr->recon_tracerecs[col]));
1168 raidPtr->recon_tracerecs[col].reconacc = 1;
1169 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1170 #endif
1171 retcode = TryToRead(raidPtr, col);
1172 return (retcode);
1173 }
1174
1175 /*
1176 * tries to issue the next read on the indicated disk. We may be
1177 * blocked by (a) the heads being too far apart, or (b) recon on the
1178 * indicated RU being blocked due to a write by a user thread. In
1179 * this case, we issue a head-sep or blockage wait request, which will
1180 * cause this same routine to be invoked again later when the blockage
1181 * has cleared.
1182 */
1183
1184 static int
1185 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1186 {
1187 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1188 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1189 RF_StripeNum_t psid = ctrl->curPSID;
1190 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1191 RF_DiskQueueData_t *req;
1192 int status;
1193 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1194
1195 /* if the current disk is too far ahead of the others, issue a
1196 * head-separation wait and return */
1197 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1198 return (0);
1199
1200 /* allocate a new PSS in case we need it */
1201 newpssPtr = rf_AllocPSStatus(raidPtr);
1202
1203 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1204 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1205
1206 if (pssPtr != newpssPtr) {
1207 rf_FreePSStatus(raidPtr, newpssPtr);
1208 }
1209
1210 /* if recon is blocked on the indicated parity stripe, issue a
1211 * block-wait request and return. this also must mark the indicated RU
1212 * in the stripe as under reconstruction if not blocked. */
1213 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1214 if (status == RF_PSS_RECON_BLOCKED) {
1215 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1216 goto out;
1217 } else
1218 if (status == RF_PSS_FORCED_ON_WRITE) {
1219 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1220 goto out;
1221 }
1222 /* make one last check to be sure that the indicated RU didn't get
1223 * reconstructed while we were waiting for something else to happen.
1224 * This is unfortunate in that it causes us to make this check twice
1225 * in the normal case. Might want to make some attempt to re-work
1226 * this so that we only do this check if we've definitely blocked on
1227 * one of the above checks. When this condition is detected, we may
1228 * have just created a bogus status entry, which we need to delete. */
1229 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1230 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1231 if (pssPtr == newpssPtr)
1232 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1233 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1234 goto out;
1235 }
1236 /* found something to read. issue the I/O */
1237 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1238 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1239 #if RF_ACC_TRACE > 0
1240 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1241 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1242 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1243 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1244 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1245 #endif
1246 /* should be ok to use a NULL proc pointer here, all the bufs we use
1247 * should be in kernel space */
1248 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1249 ReconReadDoneProc, (void *) ctrl,
1250 #if RF_ACC_TRACE > 0
1251 &raidPtr->recon_tracerecs[col],
1252 #else
1253 NULL,
1254 #endif
1255 (void *) raidPtr, 0, NULL, PR_WAITOK);
1256
1257 ctrl->rbuf->arg = (void *) req;
1258 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1259 pssPtr->issued[col] = 1;
1260
1261 out:
1262 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1263 return (0);
1264 }
1265
1266
1267 /*
1268 * given a parity stripe ID, we want to find out whether both the
1269 * current disk and the failed disk exist in that parity stripe. If
1270 * not, we want to skip this whole PS. If so, we want to find the
1271 * disk offset of the start of the PS on both the current disk and the
1272 * failed disk.
1273 *
1274 * this works by getting a list of disks comprising the indicated
1275 * parity stripe, and searching the list for the current and failed
1276 * disks. Once we've decided they both exist in the parity stripe, we
1277 * need to decide whether each is data or parity, so that we'll know
1278 * which mapping function to call to get the corresponding disk
1279 * offsets.
1280 *
1281 * this is kind of unpleasant, but doing it this way allows the
1282 * reconstruction code to use parity stripe IDs rather than physical
1283 * disks address to march through the failed disk, which greatly
1284 * simplifies a lot of code, as well as eliminating the need for a
1285 * reverse-mapping function. I also think it will execute faster,
1286 * since the calls to the mapping module are kept to a minimum.
1287 *
1288 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1289 * THE STRIPE IN THE CORRECT ORDER
1290 *
1291 * raidPtr - raid descriptor
1292 * psid - parity stripe identifier
1293 * col - column of disk to find the offsets for
1294 * spCol - out: col of spare unit for failed unit
1295 * spOffset - out: offset into disk containing spare unit
1296 *
1297 */
1298
1299
1300 static int
1301 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1302 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1303 RF_SectorNum_t *outFailedDiskSectorOffset,
1304 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1305 {
1306 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1307 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1308 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1309 RF_RowCol_t *diskids;
1310 u_int i, j, k, i_offset, j_offset;
1311 RF_RowCol_t pcol;
1312 int testcol;
1313 RF_SectorNum_t poffset;
1314 char i_is_parity = 0, j_is_parity = 0;
1315 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1316
1317 /* get a listing of the disks comprising that stripe */
1318 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1319 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1320 RF_ASSERT(diskids);
1321
1322 /* reject this entire parity stripe if it does not contain the
1323 * indicated disk or it does not contain the failed disk */
1324
1325 for (i = 0; i < stripeWidth; i++) {
1326 if (col == diskids[i])
1327 break;
1328 }
1329 if (i == stripeWidth)
1330 goto skipit;
1331 for (j = 0; j < stripeWidth; j++) {
1332 if (fcol == diskids[j])
1333 break;
1334 }
1335 if (j == stripeWidth) {
1336 goto skipit;
1337 }
1338 /* find out which disk the parity is on */
1339 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1340
1341 /* find out if either the current RU or the failed RU is parity */
1342 /* also, if the parity occurs in this stripe prior to the data and/or
1343 * failed col, we need to decrement i and/or j */
1344 for (k = 0; k < stripeWidth; k++)
1345 if (diskids[k] == pcol)
1346 break;
1347 RF_ASSERT(k < stripeWidth);
1348 i_offset = i;
1349 j_offset = j;
1350 if (k < i)
1351 i_offset--;
1352 else
1353 if (k == i) {
1354 i_is_parity = 1;
1355 i_offset = 0;
1356 } /* set offsets to zero to disable multiply
1357 * below */
1358 if (k < j)
1359 j_offset--;
1360 else
1361 if (k == j) {
1362 j_is_parity = 1;
1363 j_offset = 0;
1364 }
1365 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1366 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1367 * tells us how far into the stripe the [current,failed] disk is. */
1368
1369 /* call the mapping routine to get the offset into the current disk,
1370 * repeat for failed disk. */
1371 if (i_is_parity)
1372 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1373 else
1374 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1375
1376 RF_ASSERT(col == testcol);
1377
1378 if (j_is_parity)
1379 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1380 else
1381 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1382 RF_ASSERT(fcol == testcol);
1383
1384 /* now locate the spare unit for the failed unit */
1385 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1386 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1387 if (j_is_parity)
1388 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1389 else
1390 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1391 } else {
1392 #endif
1393 *spCol = raidPtr->reconControl->spareCol;
1394 *spOffset = *outFailedDiskSectorOffset;
1395 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1396 }
1397 #endif
1398 return (0);
1399
1400 skipit:
1401 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1402 psid, col);
1403 return (1);
1404 }
1405 /* this is called when a buffer has become ready to write to the replacement disk */
1406 static int
1407 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1408 {
1409 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1410 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1411 #if RF_ACC_TRACE > 0
1412 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1413 #endif
1414 RF_ReconBuffer_t *rbuf;
1415 RF_DiskQueueData_t *req;
1416
1417 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1418 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1419 * have gotten the event that sent us here */
1420 RF_ASSERT(rbuf->pssPtr);
1421
1422 rbuf->pssPtr->writeRbuf = rbuf;
1423 rbuf->pssPtr = NULL;
1424
1425 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1426 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1427 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1428 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1429 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1430 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1431
1432 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1433 * kernel space */
1434 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1435 sectorsPerRU, rbuf->buffer,
1436 rbuf->parityStripeID, rbuf->which_ru,
1437 ReconWriteDoneProc, (void *) rbuf,
1438 #if RF_ACC_TRACE > 0
1439 &raidPtr->recon_tracerecs[fcol],
1440 #else
1441 NULL,
1442 #endif
1443 (void *) raidPtr, 0, NULL, PR_WAITOK);
1444
1445 rbuf->arg = (void *) req;
1446 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1447 raidPtr->reconControl->pending_writes++;
1448 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1449 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1450
1451 return (0);
1452 }
1453
1454 /*
1455 * this gets called upon the completion of a reconstruction read
1456 * operation the arg is a pointer to the per-disk reconstruction
1457 * control structure for the process that just finished a read.
1458 *
1459 * called at interrupt context in the kernel, so don't do anything
1460 * illegal here.
1461 */
1462 static int
1463 ReconReadDoneProc(void *arg, int status)
1464 {
1465 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1466 RF_Raid_t *raidPtr;
1467
1468 /* Detect that reconCtrl is no longer valid, and if that
1469 is the case, bail without calling rf_CauseReconEvent().
1470 There won't be anyone listening for this event anyway */
1471
1472 if (ctrl->reconCtrl == NULL)
1473 return(0);
1474
1475 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1476
1477 if (status) {
1478 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1479 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1480 return(0);
1481 }
1482 #if RF_ACC_TRACE > 0
1483 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1484 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1485 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1486 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1487 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1488 #endif
1489 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1490 return (0);
1491 }
1492 /* this gets called upon the completion of a reconstruction write operation.
1493 * the arg is a pointer to the rbuf that was just written
1494 *
1495 * called at interrupt context in the kernel, so don't do anything illegal here.
1496 */
1497 static int
1498 ReconWriteDoneProc(void *arg, int status)
1499 {
1500 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1501
1502 /* Detect that reconControl is no longer valid, and if that
1503 is the case, bail without calling rf_CauseReconEvent().
1504 There won't be anyone listening for this event anyway */
1505
1506 if (rbuf->raidPtr->reconControl == NULL)
1507 return(0);
1508
1509 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1510 if (status) {
1511 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1512 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1513 return(0);
1514 }
1515 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1516 return (0);
1517 }
1518
1519
1520 /*
1521 * computes a new minimum head sep, and wakes up anyone who needs to
1522 * be woken as a result
1523 */
1524 static void
1525 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1526 {
1527 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1528 RF_HeadSepLimit_t new_min;
1529 RF_RowCol_t i;
1530 RF_CallbackDesc_t *p;
1531 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1532 * of a minimum */
1533
1534
1535 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1536 while(reconCtrlPtr->rb_lock) {
1537 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1538 }
1539 reconCtrlPtr->rb_lock = 1;
1540 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1541
1542 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1543 for (i = 0; i < raidPtr->numCol; i++)
1544 if (i != reconCtrlPtr->fcol) {
1545 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1546 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1547 }
1548 /* set the new minimum and wake up anyone who can now run again */
1549 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1550 reconCtrlPtr->minHeadSepCounter = new_min;
1551 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1552 while (reconCtrlPtr->headSepCBList) {
1553 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1554 break;
1555 p = reconCtrlPtr->headSepCBList;
1556 reconCtrlPtr->headSepCBList = p->next;
1557 p->next = NULL;
1558 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1559 rf_FreeCallbackDesc(p);
1560 }
1561
1562 }
1563 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1564 reconCtrlPtr->rb_lock = 0;
1565 wakeup(&reconCtrlPtr->rb_lock);
1566 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1567 }
1568
1569 /*
1570 * checks to see that the maximum head separation will not be violated
1571 * if we initiate a reconstruction I/O on the indicated disk.
1572 * Limiting the maximum head separation between two disks eliminates
1573 * the nasty buffer-stall conditions that occur when one disk races
1574 * ahead of the others and consumes all of the floating recon buffers.
1575 * This code is complex and unpleasant but it's necessary to avoid
1576 * some very nasty, albeit fairly rare, reconstruction behavior.
1577 *
1578 * returns non-zero if and only if we have to stop working on the
1579 * indicated disk due to a head-separation delay.
1580 */
1581 static int
1582 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1583 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1584 RF_ReconUnitNum_t which_ru)
1585 {
1586 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1587 RF_CallbackDesc_t *cb, *p, *pt;
1588 int retval = 0;
1589
1590 /* if we're too far ahead of the slowest disk, stop working on this
1591 * disk until the slower ones catch up. We do this by scheduling a
1592 * wakeup callback for the time when the slowest disk has caught up.
1593 * We define "caught up" with 20% hysteresis, i.e. the head separation
1594 * must have fallen to at most 80% of the max allowable head
1595 * separation before we'll wake up.
1596 *
1597 */
1598 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1599 while(reconCtrlPtr->rb_lock) {
1600 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1601 }
1602 reconCtrlPtr->rb_lock = 1;
1603 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1604 if ((raidPtr->headSepLimit >= 0) &&
1605 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1606 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1607 raidPtr->raidid, col, ctrl->headSepCounter,
1608 reconCtrlPtr->minHeadSepCounter,
1609 raidPtr->headSepLimit);
1610 cb = rf_AllocCallbackDesc();
1611 /* the minHeadSepCounter value we have to get to before we'll
1612 * wake up. build in 20% hysteresis. */
1613 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1614 cb->col = col;
1615 cb->next = NULL;
1616
1617 /* insert this callback descriptor into the sorted list of
1618 * pending head-sep callbacks */
1619 p = reconCtrlPtr->headSepCBList;
1620 if (!p)
1621 reconCtrlPtr->headSepCBList = cb;
1622 else
1623 if (cb->callbackArg.v < p->callbackArg.v) {
1624 cb->next = reconCtrlPtr->headSepCBList;
1625 reconCtrlPtr->headSepCBList = cb;
1626 } else {
1627 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1628 cb->next = p;
1629 pt->next = cb;
1630 }
1631 retval = 1;
1632 #if RF_RECON_STATS > 0
1633 ctrl->reconCtrl->reconDesc->hsStallCount++;
1634 #endif /* RF_RECON_STATS > 0 */
1635 }
1636 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1637 reconCtrlPtr->rb_lock = 0;
1638 wakeup(&reconCtrlPtr->rb_lock);
1639 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1640
1641 return (retval);
1642 }
1643 /*
1644 * checks to see if reconstruction has been either forced or blocked
1645 * by a user operation. if forced, we skip this RU entirely. else if
1646 * blocked, put ourselves on the wait list. else return 0.
1647 *
1648 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1649 */
1650 static int
1651 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1652 RF_ReconParityStripeStatus_t *pssPtr,
1653 RF_PerDiskReconCtrl_t *ctrl,
1654 RF_RowCol_t col,
1655 RF_StripeNum_t psid,
1656 RF_ReconUnitNum_t which_ru)
1657 {
1658 RF_CallbackDesc_t *cb;
1659 int retcode = 0;
1660
1661 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1662 retcode = RF_PSS_FORCED_ON_WRITE;
1663 else
1664 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1665 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1666 cb = rf_AllocCallbackDesc(); /* append ourselves to
1667 * the blockage-wait
1668 * list */
1669 cb->col = col;
1670 cb->next = pssPtr->blockWaitList;
1671 pssPtr->blockWaitList = cb;
1672 retcode = RF_PSS_RECON_BLOCKED;
1673 }
1674 if (!retcode)
1675 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1676 * reconstruction */
1677
1678 return (retcode);
1679 }
1680 /*
1681 * if reconstruction is currently ongoing for the indicated stripeID,
1682 * reconstruction is forced to completion and we return non-zero to
1683 * indicate that the caller must wait. If not, then reconstruction is
1684 * blocked on the indicated stripe and the routine returns zero. If
1685 * and only if we return non-zero, we'll cause the cbFunc to get
1686 * invoked with the cbArg when the reconstruction has completed.
1687 */
1688 int
1689 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1690 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1691 {
1692 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1693 * forcing recon on */
1694 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1695 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1696 * stripe status structure */
1697 RF_StripeNum_t psid; /* parity stripe id */
1698 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1699 * offset */
1700 RF_RowCol_t *diskids;
1701 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1702 RF_RowCol_t fcol, diskno, i;
1703 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1704 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1705 RF_CallbackDesc_t *cb;
1706 int nPromoted;
1707
1708 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1709
1710 /* allocate a new PSS in case we need it */
1711 newpssPtr = rf_AllocPSStatus(raidPtr);
1712
1713 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1714
1715 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1716
1717 if (pssPtr != newpssPtr) {
1718 rf_FreePSStatus(raidPtr, newpssPtr);
1719 }
1720
1721 /* if recon is not ongoing on this PS, just return */
1722 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1723 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1724 return (0);
1725 }
1726 /* otherwise, we have to wait for reconstruction to complete on this
1727 * RU. */
1728 /* In order to avoid waiting for a potentially large number of
1729 * low-priority accesses to complete, we force a normal-priority (i.e.
1730 * not low-priority) reconstruction on this RU. */
1731 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1732 DDprintf1("Forcing recon on psid %ld\n", psid);
1733 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1734 * forced recon */
1735 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1736 * that we just set */
1737 fcol = raidPtr->reconControl->fcol;
1738
1739 /* get a listing of the disks comprising the indicated stripe */
1740 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1741
1742 /* For previously issued reads, elevate them to normal
1743 * priority. If the I/O has already completed, it won't be
1744 * found in the queue, and hence this will be a no-op. For
1745 * unissued reads, allocate buffers and issue new reads. The
1746 * fact that we've set the FORCED bit means that the regular
1747 * recon procs will not re-issue these reqs */
1748 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1749 if ((diskno = diskids[i]) != fcol) {
1750 if (pssPtr->issued[diskno]) {
1751 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1752 if (rf_reconDebug && nPromoted)
1753 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1754 } else {
1755 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1756 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1757 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1758 * location */
1759 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1760 new_rbuf->which_ru = which_ru;
1761 new_rbuf->failedDiskSectorOffset = fd_offset;
1762 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1763
1764 /* use NULL b_proc b/c all addrs
1765 * should be in kernel space */
1766 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1767 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1768 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1769
1770 new_rbuf->arg = req;
1771 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1772 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1773 }
1774 }
1775 /* if the write is sitting in the disk queue, elevate its
1776 * priority */
1777 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1778 if (rf_reconDebug)
1779 printf("raid%d: promoted write to col %d\n",
1780 raidPtr->raidid, fcol);
1781 }
1782 /* install a callback descriptor to be invoked when recon completes on
1783 * this parity stripe. */
1784 cb = rf_AllocCallbackDesc();
1785 /* XXX the following is bogus.. These functions don't really match!!
1786 * GO */
1787 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1788 cb->callbackArg.p = (void *) cbArg;
1789 cb->next = pssPtr->procWaitList;
1790 pssPtr->procWaitList = cb;
1791 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1792 raidPtr->raidid, psid);
1793
1794 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1795 return (1);
1796 }
1797 /* called upon the completion of a forced reconstruction read.
1798 * all we do is schedule the FORCEDREADONE event.
1799 * called at interrupt context in the kernel, so don't do anything illegal here.
1800 */
1801 static void
1802 ForceReconReadDoneProc(void *arg, int status)
1803 {
1804 RF_ReconBuffer_t *rbuf = arg;
1805
1806 /* Detect that reconControl is no longer valid, and if that
1807 is the case, bail without calling rf_CauseReconEvent().
1808 There won't be anyone listening for this event anyway */
1809
1810 if (rbuf->raidPtr->reconControl == NULL)
1811 return;
1812
1813 if (status) {
1814 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1815 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1816 return;
1817 }
1818 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1819 }
1820 /* releases a block on the reconstruction of the indicated stripe */
1821 int
1822 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1823 {
1824 RF_StripeNum_t stripeID = asmap->stripeID;
1825 RF_ReconParityStripeStatus_t *pssPtr;
1826 RF_ReconUnitNum_t which_ru;
1827 RF_StripeNum_t psid;
1828 RF_CallbackDesc_t *cb;
1829
1830 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1831 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1832 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1833
1834 /* When recon is forced, the pss desc can get deleted before we get
1835 * back to unblock recon. But, this can _only_ happen when recon is
1836 * forced. It would be good to put some kind of sanity check here, but
1837 * how to decide if recon was just forced or not? */
1838 if (!pssPtr) {
1839 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1840 * RU %d\n",psid,which_ru); */
1841 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1842 if (rf_reconDebug || rf_pssDebug)
1843 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1844 #endif
1845 goto out;
1846 }
1847 pssPtr->blockCount--;
1848 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1849 raidPtr->raidid, psid, pssPtr->blockCount);
1850 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1851
1852 /* unblock recon before calling CauseReconEvent in case
1853 * CauseReconEvent causes us to try to issue a new read before
1854 * returning here. */
1855 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1856
1857
1858 while (pssPtr->blockWaitList) {
1859 /* spin through the block-wait list and
1860 release all the waiters */
1861 cb = pssPtr->blockWaitList;
1862 pssPtr->blockWaitList = cb->next;
1863 cb->next = NULL;
1864 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1865 rf_FreeCallbackDesc(cb);
1866 }
1867 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1868 /* if no recon was requested while recon was blocked */
1869 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1870 }
1871 }
1872 out:
1873 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1874 return (0);
1875 }
1876
1877 void
1878 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1879 {
1880 RF_CallbackDesc_t *p;
1881
1882 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1883 while(raidPtr->reconControl->rb_lock) {
1884 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO,
1885 "rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex);
1886 }
1887
1888 raidPtr->reconControl->rb_lock = 1;
1889 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1890
1891 while (raidPtr->reconControl->headSepCBList) {
1892 p = raidPtr->reconControl->headSepCBList;
1893 raidPtr->reconControl->headSepCBList = p->next;
1894 p->next = NULL;
1895 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1896 rf_FreeCallbackDesc(p);
1897 }
1898 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1899 raidPtr->reconControl->rb_lock = 0;
1900 wakeup(&raidPtr->reconControl->rb_lock);
1901 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1902
1903 }
1904
1905