rf_reconstruct.c revision 1.117.8.1.4.1 1 /* $NetBSD: rf_reconstruct.c,v 1.117.8.1.4.1 2014/12/02 22:06:58 snj Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.117.8.1.4.1 2014/12/02 22:06:58 snj Exp $");
37
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <sys/namei.h> /* for pathbuf */
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97 #define RF_RECON_DONE_READS 1
98 #define RF_RECON_READ_ERROR 2
99 #define RF_RECON_WRITE_ERROR 3
100 #define RF_RECON_READ_STOPPED 4
101 #define RF_RECON_WRITE_DONE 5
102
103 #define RF_MAX_FREE_RECONBUFFER 32
104 #define RF_MIN_FREE_RECONBUFFER 16
105
106 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
107 RF_RaidDisk_t *, int, RF_RowCol_t);
108 static void FreeReconDesc(RF_RaidReconDesc_t *);
109 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
110 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
111 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
112 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
113 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
114 RF_SectorNum_t *);
115 static int IssueNextWriteRequest(RF_Raid_t *);
116 static int ReconReadDoneProc(void *, int);
117 static int ReconWriteDoneProc(void *, int);
118 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
119 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
120 RF_RowCol_t, RF_HeadSepLimit_t,
121 RF_ReconUnitNum_t);
122 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
123 RF_ReconParityStripeStatus_t *,
124 RF_PerDiskReconCtrl_t *,
125 RF_RowCol_t, RF_StripeNum_t,
126 RF_ReconUnitNum_t);
127 static void ForceReconReadDoneProc(void *, int);
128 static void rf_ShutdownReconstruction(void *);
129
130 struct RF_ReconDoneProc_s {
131 void (*proc) (RF_Raid_t *, void *);
132 void *arg;
133 RF_ReconDoneProc_t *next;
134 };
135
136 /**************************************************************************
137 *
138 * sets up the parameters that will be used by the reconstruction process
139 * currently there are none, except for those that the layout-specific
140 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
141 *
142 * in the kernel, we fire off the recon thread.
143 *
144 **************************************************************************/
145 static void
146 rf_ShutdownReconstruction(void *ignored)
147 {
148 pool_destroy(&rf_pools.reconbuffer);
149 }
150
151 int
152 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
153 {
154
155 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
156 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
157 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
158
159 return (0);
160 }
161
162 static RF_RaidReconDesc_t *
163 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
164 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
165 RF_RowCol_t scol)
166 {
167
168 RF_RaidReconDesc_t *reconDesc;
169
170 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
171 (RF_RaidReconDesc_t *));
172 reconDesc->raidPtr = raidPtr;
173 reconDesc->col = col;
174 reconDesc->spareDiskPtr = spareDiskPtr;
175 reconDesc->numDisksDone = numDisksDone;
176 reconDesc->scol = scol;
177 reconDesc->next = NULL;
178
179 return (reconDesc);
180 }
181
182 static void
183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
184 {
185 #if RF_RECON_STATS > 0
186 printf("raid%d: %lu recon event waits, %lu recon delays\n",
187 reconDesc->raidPtr->raidid,
188 (long) reconDesc->numReconEventWaits,
189 (long) reconDesc->numReconExecDelays);
190 #endif /* RF_RECON_STATS > 0 */
191 printf("raid%d: %lu max exec ticks\n",
192 reconDesc->raidPtr->raidid,
193 (long) reconDesc->maxReconExecTicks);
194 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
195 }
196
197
198 /*****************************************************************************
199 *
200 * primary routine to reconstruct a failed disk. This should be called from
201 * within its own thread. It won't return until reconstruction completes,
202 * fails, or is aborted.
203 *****************************************************************************/
204 int
205 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
206 {
207 const RF_LayoutSW_t *lp;
208 int rc;
209
210 lp = raidPtr->Layout.map;
211 if (lp->SubmitReconBuffer) {
212 /*
213 * The current infrastructure only supports reconstructing one
214 * disk at a time for each array.
215 */
216 rf_lock_mutex2(raidPtr->mutex);
217 while (raidPtr->reconInProgress) {
218 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
219 }
220 raidPtr->reconInProgress++;
221 rf_unlock_mutex2(raidPtr->mutex);
222 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
223 rf_lock_mutex2(raidPtr->mutex);
224 raidPtr->reconInProgress--;
225 } else {
226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
227 lp->parityConfig);
228 rc = EIO;
229 rf_lock_mutex2(raidPtr->mutex);
230 }
231 rf_signal_cond2(raidPtr->waitForReconCond);
232 rf_unlock_mutex2(raidPtr->mutex);
233 return (rc);
234 }
235
236 int
237 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
238 {
239 RF_ComponentLabel_t *c_label;
240 RF_RaidDisk_t *spareDiskPtr = NULL;
241 RF_RaidReconDesc_t *reconDesc;
242 RF_RowCol_t scol;
243 int numDisksDone = 0, rc;
244
245 /* first look for a spare drive onto which to reconstruct the data */
246 /* spare disk descriptors are stored in row 0. This may have to
247 * change eventually */
248
249 rf_lock_mutex2(raidPtr->mutex);
250 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
251 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
252 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
253 if (raidPtr->status != rf_rs_degraded) {
254 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
255 rf_unlock_mutex2(raidPtr->mutex);
256 return (EINVAL);
257 }
258 scol = (-1);
259 } else {
260 #endif
261 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
262 if (raidPtr->Disks[scol].status == rf_ds_spare) {
263 spareDiskPtr = &raidPtr->Disks[scol];
264 spareDiskPtr->status = rf_ds_rebuilding_spare;
265 break;
266 }
267 }
268 if (!spareDiskPtr) {
269 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
270 rf_unlock_mutex2(raidPtr->mutex);
271 return (ENOSPC);
272 }
273 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
274 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
275 }
276 #endif
277 rf_unlock_mutex2(raidPtr->mutex);
278
279 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
280 raidPtr->reconDesc = (void *) reconDesc;
281 #if RF_RECON_STATS > 0
282 reconDesc->hsStallCount = 0;
283 reconDesc->numReconExecDelays = 0;
284 reconDesc->numReconEventWaits = 0;
285 #endif /* RF_RECON_STATS > 0 */
286 reconDesc->reconExecTimerRunning = 0;
287 reconDesc->reconExecTicks = 0;
288 reconDesc->maxReconExecTicks = 0;
289 rc = rf_ContinueReconstructFailedDisk(reconDesc);
290
291 if (!rc) {
292 /* fix up the component label */
293 /* Don't actually need the read here.. */
294 c_label = raidget_component_label(raidPtr, scol);
295
296 raid_init_component_label(raidPtr, c_label);
297 c_label->row = 0;
298 c_label->column = col;
299 c_label->clean = RF_RAID_DIRTY;
300 c_label->status = rf_ds_optimal;
301 rf_component_label_set_partitionsize(c_label,
302 raidPtr->Disks[scol].partitionSize);
303
304 /* We've just done a rebuild based on all the other
305 disks, so at this point the parity is known to be
306 clean, even if it wasn't before. */
307
308 /* XXX doesn't hold for RAID 6!!*/
309
310 rf_lock_mutex2(raidPtr->mutex);
311 /* The failed disk has already been marked as rf_ds_spared
312 (or rf_ds_dist_spared) in
313 rf_ContinueReconstructFailedDisk()
314 so we just update the spare disk as being a used spare
315 */
316
317 spareDiskPtr->status = rf_ds_used_spare;
318 raidPtr->parity_good = RF_RAID_CLEAN;
319 rf_unlock_mutex2(raidPtr->mutex);
320
321 /* XXXX MORE NEEDED HERE */
322
323 raidflush_component_label(raidPtr, scol);
324 } else {
325 /* Reconstruct failed. */
326
327 rf_lock_mutex2(raidPtr->mutex);
328 /* Failed disk goes back to "failed" status */
329 raidPtr->Disks[col].status = rf_ds_failed;
330
331 /* Spare disk goes back to "spare" status. */
332 spareDiskPtr->status = rf_ds_spare;
333 rf_unlock_mutex2(raidPtr->mutex);
334
335 }
336 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
337 return (rc);
338 }
339
340 /*
341
342 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
343 and you don't get a spare until the next Monday. With this function
344 (and hot-swappable drives) you can now put your new disk containing
345 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
346 rebuild the data "on the spot".
347
348 */
349
350 int
351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
352 {
353 RF_RaidDisk_t *spareDiskPtr = NULL;
354 RF_RaidReconDesc_t *reconDesc;
355 const RF_LayoutSW_t *lp;
356 RF_ComponentLabel_t *c_label;
357 int numDisksDone = 0, rc;
358 uint64_t numsec;
359 unsigned int secsize;
360 struct pathbuf *pb;
361 struct vnode *vp;
362 struct vattr va;
363 int retcode;
364 int ac;
365
366 rf_lock_mutex2(raidPtr->mutex);
367 lp = raidPtr->Layout.map;
368 if (!lp->SubmitReconBuffer) {
369 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
370 lp->parityConfig);
371 /* wakeup anyone who might be waiting to do a reconstruct */
372 rf_signal_cond2(raidPtr->waitForReconCond);
373 rf_unlock_mutex2(raidPtr->mutex);
374 return(EIO);
375 }
376
377 /*
378 * The current infrastructure only supports reconstructing one
379 * disk at a time for each array.
380 */
381
382 if (raidPtr->Disks[col].status != rf_ds_failed) {
383 /* "It's gone..." */
384 raidPtr->numFailures++;
385 raidPtr->Disks[col].status = rf_ds_failed;
386 raidPtr->status = rf_rs_degraded;
387 rf_unlock_mutex2(raidPtr->mutex);
388 rf_update_component_labels(raidPtr,
389 RF_NORMAL_COMPONENT_UPDATE);
390 rf_lock_mutex2(raidPtr->mutex);
391 }
392
393 while (raidPtr->reconInProgress) {
394 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
395 }
396
397 raidPtr->reconInProgress++;
398
399 /* first look for a spare drive onto which to reconstruct the
400 data. spare disk descriptors are stored in row 0. This
401 may have to change eventually */
402
403 /* Actually, we don't care if it's failed or not... On a RAID
404 set with correct parity, this function should be callable
405 on any component without ill effects. */
406 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
407
408 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
409 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
410 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
411
412 raidPtr->reconInProgress--;
413 rf_signal_cond2(raidPtr->waitForReconCond);
414 rf_unlock_mutex2(raidPtr->mutex);
415 return (EINVAL);
416 }
417 #endif
418
419 /* This device may have been opened successfully the
420 first time. Close it before trying to open it again.. */
421
422 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
423 #if 0
424 printf("Closed the open device: %s\n",
425 raidPtr->Disks[col].devname);
426 #endif
427 vp = raidPtr->raid_cinfo[col].ci_vp;
428 ac = raidPtr->Disks[col].auto_configured;
429 rf_unlock_mutex2(raidPtr->mutex);
430 rf_close_component(raidPtr, vp, ac);
431 rf_lock_mutex2(raidPtr->mutex);
432 raidPtr->raid_cinfo[col].ci_vp = NULL;
433 }
434 /* note that this disk was *not* auto_configured (any longer)*/
435 raidPtr->Disks[col].auto_configured = 0;
436
437 #if 0
438 printf("About to (re-)open the device for rebuilding: %s\n",
439 raidPtr->Disks[col].devname);
440 #endif
441 rf_unlock_mutex2(raidPtr->mutex);
442 pb = pathbuf_create(raidPtr->Disks[col].devname);
443 if (pb == NULL) {
444 retcode = ENOMEM;
445 } else {
446 retcode = dk_lookup(pb, curlwp, &vp);
447 pathbuf_destroy(pb);
448 }
449
450 if (retcode) {
451 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
452 raidPtr->Disks[col].devname, retcode);
453
454 /* the component isn't responding properly...
455 must be still dead :-( */
456 rf_lock_mutex2(raidPtr->mutex);
457 raidPtr->reconInProgress--;
458 rf_signal_cond2(raidPtr->waitForReconCond);
459 rf_unlock_mutex2(raidPtr->mutex);
460 return(retcode);
461 }
462
463 /* Ok, so we can at least do a lookup...
464 How about actually getting a vp for it? */
465
466 vn_lock(vp, LK_SHARED | LK_RETRY);
467 retcode = VOP_GETATTR(vp, &va, curlwp->l_cred);
468 VOP_UNLOCK(vp);
469 if (retcode != 0) {
470 vn_close(vp, FREAD | FWRITE, kauth_cred_get());
471 rf_lock_mutex2(raidPtr->mutex);
472 raidPtr->reconInProgress--;
473 rf_signal_cond2(raidPtr->waitForReconCond);
474 rf_unlock_mutex2(raidPtr->mutex);
475 return(retcode);
476 }
477
478 retcode = getdisksize(vp, &numsec, &secsize);
479 if (retcode) {
480 vn_close(vp, FREAD | FWRITE, kauth_cred_get());
481 rf_lock_mutex2(raidPtr->mutex);
482 raidPtr->reconInProgress--;
483 rf_signal_cond2(raidPtr->waitForReconCond);
484 rf_unlock_mutex2(raidPtr->mutex);
485 return(retcode);
486 }
487 rf_lock_mutex2(raidPtr->mutex);
488 raidPtr->Disks[col].blockSize = secsize;
489 raidPtr->Disks[col].numBlocks = numsec - rf_protectedSectors;
490
491 raidPtr->raid_cinfo[col].ci_vp = vp;
492 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
493
494 raidPtr->Disks[col].dev = va.va_rdev;
495
496 /* we allow the user to specify that only a fraction
497 of the disks should be used this is just for debug:
498 it speeds up * the parity scan */
499 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
500 rf_sizePercentage / 100;
501 rf_unlock_mutex2(raidPtr->mutex);
502
503 spareDiskPtr = &raidPtr->Disks[col];
504 spareDiskPtr->status = rf_ds_rebuilding_spare;
505
506 printf("raid%d: initiating in-place reconstruction on column %d\n",
507 raidPtr->raidid, col);
508
509 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
510 numDisksDone, col);
511 raidPtr->reconDesc = (void *) reconDesc;
512 #if RF_RECON_STATS > 0
513 reconDesc->hsStallCount = 0;
514 reconDesc->numReconExecDelays = 0;
515 reconDesc->numReconEventWaits = 0;
516 #endif /* RF_RECON_STATS > 0 */
517 reconDesc->reconExecTimerRunning = 0;
518 reconDesc->reconExecTicks = 0;
519 reconDesc->maxReconExecTicks = 0;
520 rc = rf_ContinueReconstructFailedDisk(reconDesc);
521
522 if (!rc) {
523 rf_lock_mutex2(raidPtr->mutex);
524 /* Need to set these here, as at this point it'll be claiming
525 that the disk is in rf_ds_spared! But we know better :-) */
526
527 raidPtr->Disks[col].status = rf_ds_optimal;
528 raidPtr->status = rf_rs_optimal;
529 rf_unlock_mutex2(raidPtr->mutex);
530
531 /* fix up the component label */
532 /* Don't actually need the read here.. */
533 c_label = raidget_component_label(raidPtr, col);
534
535 rf_lock_mutex2(raidPtr->mutex);
536 raid_init_component_label(raidPtr, c_label);
537
538 c_label->row = 0;
539 c_label->column = col;
540
541 /* We've just done a rebuild based on all the other
542 disks, so at this point the parity is known to be
543 clean, even if it wasn't before. */
544
545 /* XXX doesn't hold for RAID 6!!*/
546
547 raidPtr->parity_good = RF_RAID_CLEAN;
548 rf_unlock_mutex2(raidPtr->mutex);
549
550 raidflush_component_label(raidPtr, col);
551 } else {
552 /* Reconstruct-in-place failed. Disk goes back to
553 "failed" status, regardless of what it was before. */
554 rf_lock_mutex2(raidPtr->mutex);
555 raidPtr->Disks[col].status = rf_ds_failed;
556 rf_unlock_mutex2(raidPtr->mutex);
557 }
558
559 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
560
561 rf_lock_mutex2(raidPtr->mutex);
562 raidPtr->reconInProgress--;
563 rf_signal_cond2(raidPtr->waitForReconCond);
564 rf_unlock_mutex2(raidPtr->mutex);
565
566 return (rc);
567 }
568
569
570 int
571 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
572 {
573 RF_Raid_t *raidPtr = reconDesc->raidPtr;
574 RF_RowCol_t col = reconDesc->col;
575 RF_RowCol_t scol = reconDesc->scol;
576 RF_ReconMap_t *mapPtr;
577 RF_ReconCtrl_t *tmp_reconctrl;
578 RF_ReconEvent_t *event;
579 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
580 #if RF_INCLUDE_RAID5_RS > 0
581 RF_StripeCount_t startPSID,endPSID,aPSID,bPSID,offPSID;
582 #endif
583 RF_ReconUnitCount_t RUsPerPU;
584 struct timeval etime, elpsd;
585 unsigned long xor_s, xor_resid_us;
586 int i, ds;
587 int status, done;
588 int recon_error, write_error;
589
590 raidPtr->accumXorTimeUs = 0;
591 #if RF_ACC_TRACE > 0
592 /* create one trace record per physical disk */
593 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
594 #endif
595
596 /* quiesce the array prior to starting recon. this is needed
597 * to assure no nasty interactions with pending user writes.
598 * We need to do this before we change the disk or row status. */
599
600 Dprintf("RECON: begin request suspend\n");
601 rf_SuspendNewRequestsAndWait(raidPtr);
602 Dprintf("RECON: end request suspend\n");
603
604 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
605 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
606
607 rf_lock_mutex2(raidPtr->mutex);
608
609 /* create the reconstruction control pointer and install it in
610 * the right slot */
611 raidPtr->reconControl = tmp_reconctrl;
612 mapPtr = raidPtr->reconControl->reconMap;
613 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
614 raidPtr->reconControl->numRUsComplete = 0;
615 raidPtr->status = rf_rs_reconstructing;
616 raidPtr->Disks[col].status = rf_ds_reconstructing;
617 raidPtr->Disks[col].spareCol = scol;
618
619 rf_unlock_mutex2(raidPtr->mutex);
620
621 RF_GETTIME(raidPtr->reconControl->starttime);
622
623 Dprintf("RECON: resume requests\n");
624 rf_ResumeNewRequests(raidPtr);
625
626
627 mapPtr = raidPtr->reconControl->reconMap;
628
629 incPSID = RF_RECONMAP_SIZE;
630 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
631 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
632 recon_error = 0;
633 write_error = 0;
634 pending_writes = incPSID;
635 raidPtr->reconControl->lastPSID = incPSID - 1;
636
637 /* bounds check raidPtr->reconControl->lastPSID and
638 pending_writes so that we don't attempt to wait for more IO
639 than can possibly happen */
640
641 if (raidPtr->reconControl->lastPSID > lastPSID)
642 raidPtr->reconControl->lastPSID = lastPSID;
643
644 if (pending_writes > lastPSID)
645 pending_writes = lastPSID;
646
647 /* start the actual reconstruction */
648
649 done = 0;
650 while (!done) {
651
652 if (raidPtr->waitShutdown) {
653 /* someone is unconfiguring this array... bail on the reconstruct.. */
654 recon_error = 1;
655 break;
656 }
657
658 num_writes = 0;
659
660 #if RF_INCLUDE_RAID5_RS > 0
661 /* For RAID5 with Rotated Spares we will be 'short'
662 some number of writes since no writes will get
663 issued for stripes where the spare is on the
664 component being rebuilt. Account for the shortage
665 here so that we don't hang indefinitely below
666 waiting for writes to complete that were never
667 scheduled.
668
669 XXX: Should be fixed for PARITY_DECLUSTERING and
670 others too!
671
672 */
673
674 if (raidPtr->Layout.numDataCol <
675 raidPtr->numCol - raidPtr->Layout.numParityCol) {
676 /* numDataCol is at least 2 less than numCol, so
677 should be RAID 5 with Rotated Spares */
678
679 /* XXX need to update for RAID 6 */
680
681 startPSID = raidPtr->reconControl->lastPSID - pending_writes + 1;
682 endPSID = raidPtr->reconControl->lastPSID;
683
684 offPSID = raidPtr->numCol - col - 1;
685
686 aPSID = startPSID - startPSID % raidPtr->numCol + offPSID;
687 if (aPSID < startPSID) {
688 aPSID += raidPtr->numCol;
689 }
690
691 bPSID = endPSID - ((endPSID - offPSID) % raidPtr->numCol);
692
693 if (aPSID < endPSID) {
694 num_writes = ((bPSID - aPSID) / raidPtr->numCol) + 1;
695 }
696
697 if ((aPSID == endPSID) && (bPSID == endPSID)) {
698 num_writes++;
699 }
700 }
701 #endif
702
703 /* issue a read for each surviving disk */
704
705 reconDesc->numDisksDone = 0;
706 for (i = 0; i < raidPtr->numCol; i++) {
707 if (i != col) {
708 /* find and issue the next I/O on the
709 * indicated disk */
710 if (IssueNextReadRequest(raidPtr, i)) {
711 Dprintf1("RECON: done issuing for c%d\n", i);
712 reconDesc->numDisksDone++;
713 }
714 }
715 }
716
717 /* process reconstruction events until all disks report that
718 * they've completed all work */
719
720 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
721
722 event = rf_GetNextReconEvent(reconDesc);
723 status = ProcessReconEvent(raidPtr, event);
724
725 /* the normal case is that a read completes, and all is well. */
726 if (status == RF_RECON_DONE_READS) {
727 reconDesc->numDisksDone++;
728 } else if ((status == RF_RECON_READ_ERROR) ||
729 (status == RF_RECON_WRITE_ERROR)) {
730 /* an error was encountered while reconstructing...
731 Pretend we've finished this disk.
732 */
733 recon_error = 1;
734 raidPtr->reconControl->error = 1;
735
736 /* bump the numDisksDone count for reads,
737 but not for writes */
738 if (status == RF_RECON_READ_ERROR)
739 reconDesc->numDisksDone++;
740
741 /* write errors are special -- when we are
742 done dealing with the reads that are
743 finished, we don't want to wait for any
744 writes */
745 if (status == RF_RECON_WRITE_ERROR) {
746 write_error = 1;
747 num_writes++;
748 }
749
750 } else if (status == RF_RECON_READ_STOPPED) {
751 /* count this component as being "done" */
752 reconDesc->numDisksDone++;
753 } else if (status == RF_RECON_WRITE_DONE) {
754 num_writes++;
755 }
756
757 if (recon_error) {
758 /* make sure any stragglers are woken up so that
759 their theads will complete, and we can get out
760 of here with all IO processed */
761
762 rf_WakeupHeadSepCBWaiters(raidPtr);
763 }
764
765 raidPtr->reconControl->numRUsTotal =
766 mapPtr->totalRUs;
767 raidPtr->reconControl->numRUsComplete =
768 mapPtr->totalRUs -
769 rf_UnitsLeftToReconstruct(mapPtr);
770
771 #if RF_DEBUG_RECON
772 raidPtr->reconControl->percentComplete =
773 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
774 if (rf_prReconSched) {
775 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
776 }
777 #endif
778 }
779
780 /* reads done, wakeup any waiters, and then wait for writes */
781
782 rf_WakeupHeadSepCBWaiters(raidPtr);
783
784 while (!recon_error && (num_writes < pending_writes)) {
785 event = rf_GetNextReconEvent(reconDesc);
786 status = ProcessReconEvent(raidPtr, event);
787
788 if (status == RF_RECON_WRITE_ERROR) {
789 num_writes++;
790 recon_error = 1;
791 raidPtr->reconControl->error = 1;
792 /* an error was encountered at the very end... bail */
793 } else if (status == RF_RECON_WRITE_DONE) {
794 num_writes++;
795 } /* else it's something else, and we don't care */
796 }
797 if (recon_error ||
798 (raidPtr->reconControl->lastPSID == lastPSID)) {
799 done = 1;
800 break;
801 }
802
803 prev = raidPtr->reconControl->lastPSID;
804 raidPtr->reconControl->lastPSID += incPSID;
805
806 if (raidPtr->reconControl->lastPSID > lastPSID) {
807 pending_writes = lastPSID - prev;
808 raidPtr->reconControl->lastPSID = lastPSID;
809 }
810
811 /* back down curPSID to get ready for the next round... */
812 for (i = 0; i < raidPtr->numCol; i++) {
813 if (i != col) {
814 raidPtr->reconControl->perDiskInfo[i].curPSID--;
815 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
816 }
817 }
818 }
819
820 mapPtr = raidPtr->reconControl->reconMap;
821 if (rf_reconDebug) {
822 printf("RECON: all reads completed\n");
823 }
824 /* at this point all the reads have completed. We now wait
825 * for any pending writes to complete, and then we're done */
826
827 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
828
829 event = rf_GetNextReconEvent(reconDesc);
830 status = ProcessReconEvent(raidPtr, event);
831
832 if (status == RF_RECON_WRITE_ERROR) {
833 recon_error = 1;
834 raidPtr->reconControl->error = 1;
835 /* an error was encountered at the very end... bail */
836 } else {
837 #if RF_DEBUG_RECON
838 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
839 if (rf_prReconSched) {
840 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
841 }
842 #endif
843 }
844 }
845
846 if (recon_error) {
847 /* we've encountered an error in reconstructing. */
848 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
849
850 /* we start by blocking IO to the RAID set. */
851 rf_SuspendNewRequestsAndWait(raidPtr);
852
853 rf_lock_mutex2(raidPtr->mutex);
854 /* mark set as being degraded, rather than
855 rf_rs_reconstructing as we were before the problem.
856 After this is done we can update status of the
857 component disks without worrying about someone
858 trying to read from a failed component.
859 */
860 raidPtr->status = rf_rs_degraded;
861 rf_unlock_mutex2(raidPtr->mutex);
862
863 /* resume IO */
864 rf_ResumeNewRequests(raidPtr);
865
866 /* At this point there are two cases:
867 1) If we've experienced a read error, then we've
868 already waited for all the reads we're going to get,
869 and we just need to wait for the writes.
870
871 2) If we've experienced a write error, we've also
872 already waited for all the reads to complete,
873 but there is little point in waiting for the writes --
874 when they do complete, they will just be ignored.
875
876 So we just wait for writes to complete if we didn't have a
877 write error.
878 */
879
880 if (!write_error) {
881 /* wait for writes to complete */
882 while (raidPtr->reconControl->pending_writes > 0) {
883
884 event = rf_GetNextReconEvent(reconDesc);
885 status = ProcessReconEvent(raidPtr, event);
886
887 if (status == RF_RECON_WRITE_ERROR) {
888 raidPtr->reconControl->error = 1;
889 /* an error was encountered at the very end... bail.
890 This will be very bad news for the user, since
891 at this point there will have been a read error
892 on one component, and a write error on another!
893 */
894 break;
895 }
896 }
897 }
898
899
900 /* cleanup */
901
902 /* drain the event queue - after waiting for the writes above,
903 there shouldn't be much (if anything!) left in the queue. */
904
905 rf_DrainReconEventQueue(reconDesc);
906
907 /* XXX As much as we'd like to free the recon control structure
908 and the reconDesc, we have no way of knowing if/when those will
909 be touched by IO that has yet to occur. It is rather poor to be
910 basically causing a 'memory leak' here, but there doesn't seem to be
911 a cleaner alternative at this time. Perhaps when the reconstruct code
912 gets a makeover this problem will go away.
913 */
914 #if 0
915 rf_FreeReconControl(raidPtr);
916 #endif
917
918 #if RF_ACC_TRACE > 0
919 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
920 #endif
921 /* XXX see comment above */
922 #if 0
923 FreeReconDesc(reconDesc);
924 #endif
925
926 return (1);
927 }
928
929 /* Success: mark the dead disk as reconstructed. We quiesce
930 * the array here to assure no nasty interactions with pending
931 * user accesses when we free up the psstatus structure as
932 * part of FreeReconControl() */
933
934 rf_SuspendNewRequestsAndWait(raidPtr);
935
936 rf_lock_mutex2(raidPtr->mutex);
937 raidPtr->numFailures--;
938 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
939 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
940 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
941 rf_unlock_mutex2(raidPtr->mutex);
942 RF_GETTIME(etime);
943 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
944
945 rf_ResumeNewRequests(raidPtr);
946
947 printf("raid%d: Reconstruction of disk at col %d completed\n",
948 raidPtr->raidid, col);
949 xor_s = raidPtr->accumXorTimeUs / 1000000;
950 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
951 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
952 raidPtr->raidid,
953 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
954 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
955 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
956 raidPtr->raidid,
957 (int) raidPtr->reconControl->starttime.tv_sec,
958 (int) raidPtr->reconControl->starttime.tv_usec,
959 (int) etime.tv_sec, (int) etime.tv_usec);
960 #if RF_RECON_STATS > 0
961 printf("raid%d: Total head-sep stall count was %d\n",
962 raidPtr->raidid, (int) reconDesc->hsStallCount);
963 #endif /* RF_RECON_STATS > 0 */
964 rf_FreeReconControl(raidPtr);
965 #if RF_ACC_TRACE > 0
966 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
967 #endif
968 FreeReconDesc(reconDesc);
969
970 return (0);
971
972 }
973 /*****************************************************************************
974 * do the right thing upon each reconstruction event.
975 *****************************************************************************/
976 static int
977 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
978 {
979 int retcode = 0, submitblocked;
980 RF_ReconBuffer_t *rbuf;
981 RF_SectorCount_t sectorsPerRU;
982
983 retcode = RF_RECON_READ_STOPPED;
984
985 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
986
987 switch (event->type) {
988
989 /* a read I/O has completed */
990 case RF_REVENT_READDONE:
991 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
992 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
993 event->col, rbuf->parityStripeID);
994 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
995 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
996 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
997 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
998 if (!raidPtr->reconControl->error) {
999 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
1000 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
1001 if (!submitblocked)
1002 retcode = IssueNextReadRequest(raidPtr, event->col);
1003 else
1004 retcode = 0;
1005 }
1006 break;
1007
1008 /* a write I/O has completed */
1009 case RF_REVENT_WRITEDONE:
1010 #if RF_DEBUG_RECON
1011 if (rf_floatingRbufDebug) {
1012 rf_CheckFloatingRbufCount(raidPtr, 1);
1013 }
1014 #endif
1015 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1016 rbuf = (RF_ReconBuffer_t *) event->arg;
1017 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1018 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
1019 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
1020 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
1021 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
1022 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
1023
1024 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1025 raidPtr->reconControl->pending_writes--;
1026 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1027
1028 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
1029 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1030 while(raidPtr->reconControl->rb_lock) {
1031 rf_wait_cond2(raidPtr->reconControl->rb_cv,
1032 raidPtr->reconControl->rb_mutex);
1033 }
1034 raidPtr->reconControl->rb_lock = 1;
1035 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1036
1037 raidPtr->numFullReconBuffers--;
1038 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
1039
1040 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1041 raidPtr->reconControl->rb_lock = 0;
1042 rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
1043 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1044 } else
1045 if (rbuf->type == RF_RBUF_TYPE_FORCED)
1046 rf_FreeReconBuffer(rbuf);
1047 else
1048 RF_ASSERT(0);
1049 retcode = RF_RECON_WRITE_DONE;
1050 break;
1051
1052 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
1053 * cleared */
1054 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
1055 if (!raidPtr->reconControl->error) {
1056 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
1057 0, (int) (long) event->arg);
1058 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
1059 * BUFCLEAR event if we
1060 * couldn't submit */
1061 retcode = IssueNextReadRequest(raidPtr, event->col);
1062 }
1063 break;
1064
1065 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
1066 * blockage has been cleared */
1067 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
1068 if (!raidPtr->reconControl->error) {
1069 retcode = TryToRead(raidPtr, event->col);
1070 }
1071 break;
1072
1073 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
1074 * reconstruction blockage has been
1075 * cleared */
1076 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1077 if (!raidPtr->reconControl->error) {
1078 retcode = TryToRead(raidPtr, event->col);
1079 }
1080 break;
1081
1082 /* a buffer has become ready to write */
1083 case RF_REVENT_BUFREADY:
1084 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1085 if (!raidPtr->reconControl->error) {
1086 retcode = IssueNextWriteRequest(raidPtr);
1087 #if RF_DEBUG_RECON
1088 if (rf_floatingRbufDebug) {
1089 rf_CheckFloatingRbufCount(raidPtr, 1);
1090 }
1091 #endif
1092 }
1093 break;
1094
1095 /* we need to skip the current RU entirely because it got
1096 * recon'd while we were waiting for something else to happen */
1097 case RF_REVENT_SKIP:
1098 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1099 if (!raidPtr->reconControl->error) {
1100 retcode = IssueNextReadRequest(raidPtr, event->col);
1101 }
1102 break;
1103
1104 /* a forced-reconstruction read access has completed. Just
1105 * submit the buffer */
1106 case RF_REVENT_FORCEDREADDONE:
1107 rbuf = (RF_ReconBuffer_t *) event->arg;
1108 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1109 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1110 if (!raidPtr->reconControl->error) {
1111 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1112 RF_ASSERT(!submitblocked);
1113 retcode = 0;
1114 }
1115 break;
1116
1117 /* A read I/O failed to complete */
1118 case RF_REVENT_READ_FAILED:
1119 retcode = RF_RECON_READ_ERROR;
1120 break;
1121
1122 /* A write I/O failed to complete */
1123 case RF_REVENT_WRITE_FAILED:
1124 retcode = RF_RECON_WRITE_ERROR;
1125
1126 /* This is an error, but it was a pending write.
1127 Account for it. */
1128 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1129 raidPtr->reconControl->pending_writes--;
1130 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1131
1132 rbuf = (RF_ReconBuffer_t *) event->arg;
1133
1134 /* cleanup the disk queue data */
1135 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1136
1137 /* At this point we're erroring out, badly, and floatingRbufs
1138 may not even be valid. Rather than putting this back onto
1139 the floatingRbufs list, just arrange for its immediate
1140 destruction.
1141 */
1142 rf_FreeReconBuffer(rbuf);
1143 break;
1144
1145 /* a forced read I/O failed to complete */
1146 case RF_REVENT_FORCEDREAD_FAILED:
1147 retcode = RF_RECON_READ_ERROR;
1148 break;
1149
1150 default:
1151 RF_PANIC();
1152 }
1153 rf_FreeReconEventDesc(event);
1154 return (retcode);
1155 }
1156 /*****************************************************************************
1157 *
1158 * find the next thing that's needed on the indicated disk, and issue
1159 * a read request for it. We assume that the reconstruction buffer
1160 * associated with this process is free to receive the data. If
1161 * reconstruction is blocked on the indicated RU, we issue a
1162 * blockage-release request instead of a physical disk read request.
1163 * If the current disk gets too far ahead of the others, we issue a
1164 * head-separation wait request and return.
1165 *
1166 * ctrl->{ru_count, curPSID, diskOffset} and
1167 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1168 * we're currently accessing. Note that this deviates from the
1169 * standard C idiom of having counters point to the next thing to be
1170 * accessed. This allows us to easily retry when we're blocked by
1171 * head separation or reconstruction-blockage events.
1172 *
1173 *****************************************************************************/
1174 static int
1175 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1176 {
1177 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1178 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1179 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1180 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1181 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1182 int do_new_check = 0, retcode = 0, status;
1183
1184 /* if we are currently the slowest disk, mark that we have to do a new
1185 * check */
1186 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1187 do_new_check = 1;
1188
1189 while (1) {
1190
1191 ctrl->ru_count++;
1192 if (ctrl->ru_count < RUsPerPU) {
1193 ctrl->diskOffset += sectorsPerRU;
1194 rbuf->failedDiskSectorOffset += sectorsPerRU;
1195 } else {
1196 ctrl->curPSID++;
1197 ctrl->ru_count = 0;
1198 /* code left over from when head-sep was based on
1199 * parity stripe id */
1200 if (ctrl->curPSID > raidPtr->reconControl->lastPSID) {
1201 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1202 return (RF_RECON_DONE_READS); /* finito! */
1203 }
1204 /* find the disk offsets of the start of the parity
1205 * stripe on both the current disk and the failed
1206 * disk. skip this entire parity stripe if either disk
1207 * does not appear in the indicated PS */
1208 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1209 &rbuf->spCol, &rbuf->spOffset);
1210 if (status) {
1211 ctrl->ru_count = RUsPerPU - 1;
1212 continue;
1213 }
1214 }
1215 rbuf->which_ru = ctrl->ru_count;
1216
1217 /* skip this RU if it's already been reconstructed */
1218 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1219 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1220 continue;
1221 }
1222 break;
1223 }
1224 ctrl->headSepCounter++;
1225 if (do_new_check)
1226 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1227
1228
1229 /* at this point, we have definitely decided what to do, and we have
1230 * only to see if we can actually do it now */
1231 rbuf->parityStripeID = ctrl->curPSID;
1232 rbuf->which_ru = ctrl->ru_count;
1233 #if RF_ACC_TRACE > 0
1234 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1235 sizeof(raidPtr->recon_tracerecs[col]));
1236 raidPtr->recon_tracerecs[col].reconacc = 1;
1237 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1238 #endif
1239 retcode = TryToRead(raidPtr, col);
1240 return (retcode);
1241 }
1242
1243 /*
1244 * tries to issue the next read on the indicated disk. We may be
1245 * blocked by (a) the heads being too far apart, or (b) recon on the
1246 * indicated RU being blocked due to a write by a user thread. In
1247 * this case, we issue a head-sep or blockage wait request, which will
1248 * cause this same routine to be invoked again later when the blockage
1249 * has cleared.
1250 */
1251
1252 static int
1253 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1254 {
1255 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1256 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1257 RF_StripeNum_t psid = ctrl->curPSID;
1258 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1259 RF_DiskQueueData_t *req;
1260 int status;
1261 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1262
1263 /* if the current disk is too far ahead of the others, issue a
1264 * head-separation wait and return */
1265 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1266 return (0);
1267
1268 /* allocate a new PSS in case we need it */
1269 newpssPtr = rf_AllocPSStatus(raidPtr);
1270
1271 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1272 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1273
1274 if (pssPtr != newpssPtr) {
1275 rf_FreePSStatus(raidPtr, newpssPtr);
1276 }
1277
1278 /* if recon is blocked on the indicated parity stripe, issue a
1279 * block-wait request and return. this also must mark the indicated RU
1280 * in the stripe as under reconstruction if not blocked. */
1281 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1282 if (status == RF_PSS_RECON_BLOCKED) {
1283 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1284 goto out;
1285 } else
1286 if (status == RF_PSS_FORCED_ON_WRITE) {
1287 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1288 goto out;
1289 }
1290 /* make one last check to be sure that the indicated RU didn't get
1291 * reconstructed while we were waiting for something else to happen.
1292 * This is unfortunate in that it causes us to make this check twice
1293 * in the normal case. Might want to make some attempt to re-work
1294 * this so that we only do this check if we've definitely blocked on
1295 * one of the above checks. When this condition is detected, we may
1296 * have just created a bogus status entry, which we need to delete. */
1297 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1298 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1299 if (pssPtr == newpssPtr)
1300 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1301 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1302 goto out;
1303 }
1304 /* found something to read. issue the I/O */
1305 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1306 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1307 #if RF_ACC_TRACE > 0
1308 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1309 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1310 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1311 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1312 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1313 #endif
1314 /* should be ok to use a NULL proc pointer here, all the bufs we use
1315 * should be in kernel space */
1316 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1317 ReconReadDoneProc, (void *) ctrl,
1318 #if RF_ACC_TRACE > 0
1319 &raidPtr->recon_tracerecs[col],
1320 #else
1321 NULL,
1322 #endif
1323 (void *) raidPtr, 0, NULL, PR_WAITOK);
1324
1325 ctrl->rbuf->arg = (void *) req;
1326 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1327 pssPtr->issued[col] = 1;
1328
1329 out:
1330 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1331 return (0);
1332 }
1333
1334
1335 /*
1336 * given a parity stripe ID, we want to find out whether both the
1337 * current disk and the failed disk exist in that parity stripe. If
1338 * not, we want to skip this whole PS. If so, we want to find the
1339 * disk offset of the start of the PS on both the current disk and the
1340 * failed disk.
1341 *
1342 * this works by getting a list of disks comprising the indicated
1343 * parity stripe, and searching the list for the current and failed
1344 * disks. Once we've decided they both exist in the parity stripe, we
1345 * need to decide whether each is data or parity, so that we'll know
1346 * which mapping function to call to get the corresponding disk
1347 * offsets.
1348 *
1349 * this is kind of unpleasant, but doing it this way allows the
1350 * reconstruction code to use parity stripe IDs rather than physical
1351 * disks address to march through the failed disk, which greatly
1352 * simplifies a lot of code, as well as eliminating the need for a
1353 * reverse-mapping function. I also think it will execute faster,
1354 * since the calls to the mapping module are kept to a minimum.
1355 *
1356 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1357 * THE STRIPE IN THE CORRECT ORDER
1358 *
1359 * raidPtr - raid descriptor
1360 * psid - parity stripe identifier
1361 * col - column of disk to find the offsets for
1362 * spCol - out: col of spare unit for failed unit
1363 * spOffset - out: offset into disk containing spare unit
1364 *
1365 */
1366
1367
1368 static int
1369 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1370 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1371 RF_SectorNum_t *outFailedDiskSectorOffset,
1372 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1373 {
1374 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1375 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1376 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1377 RF_RowCol_t *diskids;
1378 u_int i, j, k, i_offset, j_offset;
1379 RF_RowCol_t pcol;
1380 int testcol;
1381 RF_SectorNum_t poffset;
1382 char i_is_parity = 0, j_is_parity = 0;
1383 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1384
1385 /* get a listing of the disks comprising that stripe */
1386 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1387 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1388 RF_ASSERT(diskids);
1389
1390 /* reject this entire parity stripe if it does not contain the
1391 * indicated disk or it does not contain the failed disk */
1392
1393 for (i = 0; i < stripeWidth; i++) {
1394 if (col == diskids[i])
1395 break;
1396 }
1397 if (i == stripeWidth)
1398 goto skipit;
1399 for (j = 0; j < stripeWidth; j++) {
1400 if (fcol == diskids[j])
1401 break;
1402 }
1403 if (j == stripeWidth) {
1404 goto skipit;
1405 }
1406 /* find out which disk the parity is on */
1407 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1408
1409 /* find out if either the current RU or the failed RU is parity */
1410 /* also, if the parity occurs in this stripe prior to the data and/or
1411 * failed col, we need to decrement i and/or j */
1412 for (k = 0; k < stripeWidth; k++)
1413 if (diskids[k] == pcol)
1414 break;
1415 RF_ASSERT(k < stripeWidth);
1416 i_offset = i;
1417 j_offset = j;
1418 if (k < i)
1419 i_offset--;
1420 else
1421 if (k == i) {
1422 i_is_parity = 1;
1423 i_offset = 0;
1424 } /* set offsets to zero to disable multiply
1425 * below */
1426 if (k < j)
1427 j_offset--;
1428 else
1429 if (k == j) {
1430 j_is_parity = 1;
1431 j_offset = 0;
1432 }
1433 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1434 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1435 * tells us how far into the stripe the [current,failed] disk is. */
1436
1437 /* call the mapping routine to get the offset into the current disk,
1438 * repeat for failed disk. */
1439 if (i_is_parity)
1440 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1441 else
1442 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1443
1444 RF_ASSERT(col == testcol);
1445
1446 if (j_is_parity)
1447 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1448 else
1449 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1450 RF_ASSERT(fcol == testcol);
1451
1452 /* now locate the spare unit for the failed unit */
1453 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1454 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1455 if (j_is_parity)
1456 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1457 else
1458 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1459 } else {
1460 #endif
1461 *spCol = raidPtr->reconControl->spareCol;
1462 *spOffset = *outFailedDiskSectorOffset;
1463 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1464 }
1465 #endif
1466 return (0);
1467
1468 skipit:
1469 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1470 psid, col);
1471 return (1);
1472 }
1473 /* this is called when a buffer has become ready to write to the replacement disk */
1474 static int
1475 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1476 {
1477 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1478 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1479 #if RF_ACC_TRACE > 0
1480 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1481 #endif
1482 RF_ReconBuffer_t *rbuf;
1483 RF_DiskQueueData_t *req;
1484
1485 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1486 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1487 * have gotten the event that sent us here */
1488 RF_ASSERT(rbuf->pssPtr);
1489
1490 rbuf->pssPtr->writeRbuf = rbuf;
1491 rbuf->pssPtr = NULL;
1492
1493 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1494 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1495 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1496 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1497 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1498 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1499
1500 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1501 * kernel space */
1502 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1503 sectorsPerRU, rbuf->buffer,
1504 rbuf->parityStripeID, rbuf->which_ru,
1505 ReconWriteDoneProc, (void *) rbuf,
1506 #if RF_ACC_TRACE > 0
1507 &raidPtr->recon_tracerecs[fcol],
1508 #else
1509 NULL,
1510 #endif
1511 (void *) raidPtr, 0, NULL, PR_WAITOK);
1512
1513 rbuf->arg = (void *) req;
1514 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1515 raidPtr->reconControl->pending_writes++;
1516 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1517 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1518
1519 return (0);
1520 }
1521
1522 /*
1523 * this gets called upon the completion of a reconstruction read
1524 * operation the arg is a pointer to the per-disk reconstruction
1525 * control structure for the process that just finished a read.
1526 *
1527 * called at interrupt context in the kernel, so don't do anything
1528 * illegal here.
1529 */
1530 static int
1531 ReconReadDoneProc(void *arg, int status)
1532 {
1533 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1534 RF_Raid_t *raidPtr;
1535
1536 /* Detect that reconCtrl is no longer valid, and if that
1537 is the case, bail without calling rf_CauseReconEvent().
1538 There won't be anyone listening for this event anyway */
1539
1540 if (ctrl->reconCtrl == NULL)
1541 return(0);
1542
1543 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1544
1545 if (status) {
1546 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1547 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1548 return(0);
1549 }
1550 #if RF_ACC_TRACE > 0
1551 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1552 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1553 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1554 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1555 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1556 #endif
1557 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1558 return (0);
1559 }
1560 /* this gets called upon the completion of a reconstruction write operation.
1561 * the arg is a pointer to the rbuf that was just written
1562 *
1563 * called at interrupt context in the kernel, so don't do anything illegal here.
1564 */
1565 static int
1566 ReconWriteDoneProc(void *arg, int status)
1567 {
1568 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1569
1570 /* Detect that reconControl is no longer valid, and if that
1571 is the case, bail without calling rf_CauseReconEvent().
1572 There won't be anyone listening for this event anyway */
1573
1574 if (rbuf->raidPtr->reconControl == NULL)
1575 return(0);
1576
1577 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1578 if (status) {
1579 printf("raid%d: Recon write failed (status %d(0x%x)!\n", rbuf->raidPtr->raidid,status,status);
1580 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1581 return(0);
1582 }
1583 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1584 return (0);
1585 }
1586
1587
1588 /*
1589 * computes a new minimum head sep, and wakes up anyone who needs to
1590 * be woken as a result
1591 */
1592 static void
1593 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1594 {
1595 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1596 RF_HeadSepLimit_t new_min;
1597 RF_RowCol_t i;
1598 RF_CallbackDesc_t *p;
1599 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1600 * of a minimum */
1601
1602
1603 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1604 while(reconCtrlPtr->rb_lock) {
1605 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1606 }
1607 reconCtrlPtr->rb_lock = 1;
1608 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1609
1610 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1611 for (i = 0; i < raidPtr->numCol; i++)
1612 if (i != reconCtrlPtr->fcol) {
1613 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1614 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1615 }
1616 /* set the new minimum and wake up anyone who can now run again */
1617 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1618 reconCtrlPtr->minHeadSepCounter = new_min;
1619 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1620 while (reconCtrlPtr->headSepCBList) {
1621 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1622 break;
1623 p = reconCtrlPtr->headSepCBList;
1624 reconCtrlPtr->headSepCBList = p->next;
1625 p->next = NULL;
1626 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1627 rf_FreeCallbackDesc(p);
1628 }
1629
1630 }
1631 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1632 reconCtrlPtr->rb_lock = 0;
1633 rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1634 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1635 }
1636
1637 /*
1638 * checks to see that the maximum head separation will not be violated
1639 * if we initiate a reconstruction I/O on the indicated disk.
1640 * Limiting the maximum head separation between two disks eliminates
1641 * the nasty buffer-stall conditions that occur when one disk races
1642 * ahead of the others and consumes all of the floating recon buffers.
1643 * This code is complex and unpleasant but it's necessary to avoid
1644 * some very nasty, albeit fairly rare, reconstruction behavior.
1645 *
1646 * returns non-zero if and only if we have to stop working on the
1647 * indicated disk due to a head-separation delay.
1648 */
1649 static int
1650 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1651 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1652 RF_ReconUnitNum_t which_ru)
1653 {
1654 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1655 RF_CallbackDesc_t *cb, *p, *pt;
1656 int retval = 0;
1657
1658 /* if we're too far ahead of the slowest disk, stop working on this
1659 * disk until the slower ones catch up. We do this by scheduling a
1660 * wakeup callback for the time when the slowest disk has caught up.
1661 * We define "caught up" with 20% hysteresis, i.e. the head separation
1662 * must have fallen to at most 80% of the max allowable head
1663 * separation before we'll wake up.
1664 *
1665 */
1666 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1667 while(reconCtrlPtr->rb_lock) {
1668 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1669 }
1670 reconCtrlPtr->rb_lock = 1;
1671 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1672 if ((raidPtr->headSepLimit >= 0) &&
1673 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1674 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1675 raidPtr->raidid, col, ctrl->headSepCounter,
1676 reconCtrlPtr->minHeadSepCounter,
1677 raidPtr->headSepLimit);
1678 cb = rf_AllocCallbackDesc();
1679 /* the minHeadSepCounter value we have to get to before we'll
1680 * wake up. build in 20% hysteresis. */
1681 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1682 cb->col = col;
1683 cb->next = NULL;
1684
1685 /* insert this callback descriptor into the sorted list of
1686 * pending head-sep callbacks */
1687 p = reconCtrlPtr->headSepCBList;
1688 if (!p)
1689 reconCtrlPtr->headSepCBList = cb;
1690 else
1691 if (cb->callbackArg.v < p->callbackArg.v) {
1692 cb->next = reconCtrlPtr->headSepCBList;
1693 reconCtrlPtr->headSepCBList = cb;
1694 } else {
1695 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1696 cb->next = p;
1697 pt->next = cb;
1698 }
1699 retval = 1;
1700 #if RF_RECON_STATS > 0
1701 ctrl->reconCtrl->reconDesc->hsStallCount++;
1702 #endif /* RF_RECON_STATS > 0 */
1703 }
1704 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1705 reconCtrlPtr->rb_lock = 0;
1706 rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1707 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1708
1709 return (retval);
1710 }
1711 /*
1712 * checks to see if reconstruction has been either forced or blocked
1713 * by a user operation. if forced, we skip this RU entirely. else if
1714 * blocked, put ourselves on the wait list. else return 0.
1715 *
1716 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1717 */
1718 static int
1719 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1720 RF_ReconParityStripeStatus_t *pssPtr,
1721 RF_PerDiskReconCtrl_t *ctrl,
1722 RF_RowCol_t col,
1723 RF_StripeNum_t psid,
1724 RF_ReconUnitNum_t which_ru)
1725 {
1726 RF_CallbackDesc_t *cb;
1727 int retcode = 0;
1728
1729 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1730 retcode = RF_PSS_FORCED_ON_WRITE;
1731 else
1732 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1733 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1734 cb = rf_AllocCallbackDesc(); /* append ourselves to
1735 * the blockage-wait
1736 * list */
1737 cb->col = col;
1738 cb->next = pssPtr->blockWaitList;
1739 pssPtr->blockWaitList = cb;
1740 retcode = RF_PSS_RECON_BLOCKED;
1741 }
1742 if (!retcode)
1743 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1744 * reconstruction */
1745
1746 return (retcode);
1747 }
1748 /*
1749 * if reconstruction is currently ongoing for the indicated stripeID,
1750 * reconstruction is forced to completion and we return non-zero to
1751 * indicate that the caller must wait. If not, then reconstruction is
1752 * blocked on the indicated stripe and the routine returns zero. If
1753 * and only if we return non-zero, we'll cause the cbFunc to get
1754 * invoked with the cbArg when the reconstruction has completed.
1755 */
1756 int
1757 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1758 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1759 {
1760 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1761 * forcing recon on */
1762 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1763 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1764 * stripe status structure */
1765 RF_StripeNum_t psid; /* parity stripe id */
1766 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1767 * offset */
1768 RF_RowCol_t *diskids;
1769 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1770 RF_RowCol_t fcol, diskno, i;
1771 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1772 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1773 RF_CallbackDesc_t *cb;
1774 int nPromoted;
1775
1776 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1777
1778 /* allocate a new PSS in case we need it */
1779 newpssPtr = rf_AllocPSStatus(raidPtr);
1780
1781 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1782
1783 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1784
1785 if (pssPtr != newpssPtr) {
1786 rf_FreePSStatus(raidPtr, newpssPtr);
1787 }
1788
1789 /* if recon is not ongoing on this PS, just return */
1790 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1791 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1792 return (0);
1793 }
1794 /* otherwise, we have to wait for reconstruction to complete on this
1795 * RU. */
1796 /* In order to avoid waiting for a potentially large number of
1797 * low-priority accesses to complete, we force a normal-priority (i.e.
1798 * not low-priority) reconstruction on this RU. */
1799 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1800 DDprintf1("Forcing recon on psid %ld\n", psid);
1801 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1802 * forced recon */
1803 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1804 * that we just set */
1805 fcol = raidPtr->reconControl->fcol;
1806
1807 /* get a listing of the disks comprising the indicated stripe */
1808 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1809
1810 /* For previously issued reads, elevate them to normal
1811 * priority. If the I/O has already completed, it won't be
1812 * found in the queue, and hence this will be a no-op. For
1813 * unissued reads, allocate buffers and issue new reads. The
1814 * fact that we've set the FORCED bit means that the regular
1815 * recon procs will not re-issue these reqs */
1816 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1817 if ((diskno = diskids[i]) != fcol) {
1818 if (pssPtr->issued[diskno]) {
1819 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1820 if (rf_reconDebug && nPromoted)
1821 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1822 } else {
1823 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1824 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1825 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1826 * location */
1827 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1828 new_rbuf->which_ru = which_ru;
1829 new_rbuf->failedDiskSectorOffset = fd_offset;
1830 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1831
1832 /* use NULL b_proc b/c all addrs
1833 * should be in kernel space */
1834 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1835 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1836 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1837
1838 new_rbuf->arg = req;
1839 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1840 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1841 }
1842 }
1843 /* if the write is sitting in the disk queue, elevate its
1844 * priority */
1845 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1846 if (rf_reconDebug)
1847 printf("raid%d: promoted write to col %d\n",
1848 raidPtr->raidid, fcol);
1849 }
1850 /* install a callback descriptor to be invoked when recon completes on
1851 * this parity stripe. */
1852 cb = rf_AllocCallbackDesc();
1853 /* XXX the following is bogus.. These functions don't really match!!
1854 * GO */
1855 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1856 cb->callbackArg.p = (void *) cbArg;
1857 cb->next = pssPtr->procWaitList;
1858 pssPtr->procWaitList = cb;
1859 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1860 raidPtr->raidid, psid);
1861
1862 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1863 return (1);
1864 }
1865 /* called upon the completion of a forced reconstruction read.
1866 * all we do is schedule the FORCEDREADONE event.
1867 * called at interrupt context in the kernel, so don't do anything illegal here.
1868 */
1869 static void
1870 ForceReconReadDoneProc(void *arg, int status)
1871 {
1872 RF_ReconBuffer_t *rbuf = arg;
1873
1874 /* Detect that reconControl is no longer valid, and if that
1875 is the case, bail without calling rf_CauseReconEvent().
1876 There won't be anyone listening for this event anyway */
1877
1878 if (rbuf->raidPtr->reconControl == NULL)
1879 return;
1880
1881 if (status) {
1882 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1883 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1884 return;
1885 }
1886 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1887 }
1888 /* releases a block on the reconstruction of the indicated stripe */
1889 int
1890 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1891 {
1892 RF_StripeNum_t stripeID = asmap->stripeID;
1893 RF_ReconParityStripeStatus_t *pssPtr;
1894 RF_ReconUnitNum_t which_ru;
1895 RF_StripeNum_t psid;
1896 RF_CallbackDesc_t *cb;
1897
1898 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1899 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1900 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1901
1902 /* When recon is forced, the pss desc can get deleted before we get
1903 * back to unblock recon. But, this can _only_ happen when recon is
1904 * forced. It would be good to put some kind of sanity check here, but
1905 * how to decide if recon was just forced or not? */
1906 if (!pssPtr) {
1907 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1908 * RU %d\n",psid,which_ru); */
1909 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1910 if (rf_reconDebug || rf_pssDebug)
1911 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1912 #endif
1913 goto out;
1914 }
1915 pssPtr->blockCount--;
1916 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1917 raidPtr->raidid, psid, pssPtr->blockCount);
1918 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1919
1920 /* unblock recon before calling CauseReconEvent in case
1921 * CauseReconEvent causes us to try to issue a new read before
1922 * returning here. */
1923 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1924
1925
1926 while (pssPtr->blockWaitList) {
1927 /* spin through the block-wait list and
1928 release all the waiters */
1929 cb = pssPtr->blockWaitList;
1930 pssPtr->blockWaitList = cb->next;
1931 cb->next = NULL;
1932 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1933 rf_FreeCallbackDesc(cb);
1934 }
1935 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1936 /* if no recon was requested while recon was blocked */
1937 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1938 }
1939 }
1940 out:
1941 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1942 return (0);
1943 }
1944
1945 void
1946 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1947 {
1948 RF_CallbackDesc_t *p;
1949
1950 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1951 while(raidPtr->reconControl->rb_lock) {
1952 rf_wait_cond2(raidPtr->reconControl->rb_cv,
1953 raidPtr->reconControl->rb_mutex);
1954 }
1955
1956 raidPtr->reconControl->rb_lock = 1;
1957 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1958
1959 while (raidPtr->reconControl->headSepCBList) {
1960 p = raidPtr->reconControl->headSepCBList;
1961 raidPtr->reconControl->headSepCBList = p->next;
1962 p->next = NULL;
1963 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1964 rf_FreeCallbackDesc(p);
1965 }
1966 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1967 raidPtr->reconControl->rb_lock = 0;
1968 rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
1969 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1970
1971 }
1972
1973