rf_reconstruct.c revision 1.118.2.1 1 /* $NetBSD: rf_reconstruct.c,v 1.118.2.1 2013/06/23 06:20:21 tls Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.118.2.1 2013/06/23 06:20:21 tls Exp $");
37
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <sys/namei.h> /* for pathbuf */
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97 #define RF_RECON_DONE_READS 1
98 #define RF_RECON_READ_ERROR 2
99 #define RF_RECON_WRITE_ERROR 3
100 #define RF_RECON_READ_STOPPED 4
101 #define RF_RECON_WRITE_DONE 5
102
103 #define RF_MAX_FREE_RECONBUFFER 32
104 #define RF_MIN_FREE_RECONBUFFER 16
105
106 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
107 RF_RaidDisk_t *, int, RF_RowCol_t);
108 static void FreeReconDesc(RF_RaidReconDesc_t *);
109 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
110 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
111 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
112 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
113 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
114 RF_SectorNum_t *);
115 static int IssueNextWriteRequest(RF_Raid_t *);
116 static int ReconReadDoneProc(void *, int);
117 static int ReconWriteDoneProc(void *, int);
118 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
119 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
120 RF_RowCol_t, RF_HeadSepLimit_t,
121 RF_ReconUnitNum_t);
122 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
123 RF_ReconParityStripeStatus_t *,
124 RF_PerDiskReconCtrl_t *,
125 RF_RowCol_t, RF_StripeNum_t,
126 RF_ReconUnitNum_t);
127 static void ForceReconReadDoneProc(void *, int);
128 static void rf_ShutdownReconstruction(void *);
129
130 struct RF_ReconDoneProc_s {
131 void (*proc) (RF_Raid_t *, void *);
132 void *arg;
133 RF_ReconDoneProc_t *next;
134 };
135
136 /**************************************************************************
137 *
138 * sets up the parameters that will be used by the reconstruction process
139 * currently there are none, except for those that the layout-specific
140 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
141 *
142 * in the kernel, we fire off the recon thread.
143 *
144 **************************************************************************/
145 static void
146 rf_ShutdownReconstruction(void *ignored)
147 {
148 pool_destroy(&rf_pools.reconbuffer);
149 }
150
151 int
152 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
153 {
154
155 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
156 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
157 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
158
159 return (0);
160 }
161
162 static RF_RaidReconDesc_t *
163 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
164 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
165 RF_RowCol_t scol)
166 {
167
168 RF_RaidReconDesc_t *reconDesc;
169
170 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
171 (RF_RaidReconDesc_t *));
172 reconDesc->raidPtr = raidPtr;
173 reconDesc->col = col;
174 reconDesc->spareDiskPtr = spareDiskPtr;
175 reconDesc->numDisksDone = numDisksDone;
176 reconDesc->scol = scol;
177 reconDesc->next = NULL;
178
179 return (reconDesc);
180 }
181
182 static void
183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
184 {
185 #if RF_RECON_STATS > 0
186 printf("raid%d: %lu recon event waits, %lu recon delays\n",
187 reconDesc->raidPtr->raidid,
188 (long) reconDesc->numReconEventWaits,
189 (long) reconDesc->numReconExecDelays);
190 #endif /* RF_RECON_STATS > 0 */
191 printf("raid%d: %lu max exec ticks\n",
192 reconDesc->raidPtr->raidid,
193 (long) reconDesc->maxReconExecTicks);
194 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
195 }
196
197
198 /*****************************************************************************
199 *
200 * primary routine to reconstruct a failed disk. This should be called from
201 * within its own thread. It won't return until reconstruction completes,
202 * fails, or is aborted.
203 *****************************************************************************/
204 int
205 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
206 {
207 const RF_LayoutSW_t *lp;
208 int rc;
209
210 lp = raidPtr->Layout.map;
211 if (lp->SubmitReconBuffer) {
212 /*
213 * The current infrastructure only supports reconstructing one
214 * disk at a time for each array.
215 */
216 rf_lock_mutex2(raidPtr->mutex);
217 while (raidPtr->reconInProgress) {
218 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
219 }
220 raidPtr->reconInProgress++;
221 rf_unlock_mutex2(raidPtr->mutex);
222 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
223 rf_lock_mutex2(raidPtr->mutex);
224 raidPtr->reconInProgress--;
225 } else {
226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
227 lp->parityConfig);
228 rc = EIO;
229 rf_lock_mutex2(raidPtr->mutex);
230 }
231 rf_signal_cond2(raidPtr->waitForReconCond);
232 rf_unlock_mutex2(raidPtr->mutex);
233 return (rc);
234 }
235
236 int
237 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
238 {
239 RF_ComponentLabel_t *c_label;
240 RF_RaidDisk_t *spareDiskPtr = NULL;
241 RF_RaidReconDesc_t *reconDesc;
242 RF_RowCol_t scol;
243 int numDisksDone = 0, rc;
244
245 /* first look for a spare drive onto which to reconstruct the data */
246 /* spare disk descriptors are stored in row 0. This may have to
247 * change eventually */
248
249 rf_lock_mutex2(raidPtr->mutex);
250 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
251 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
252 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
253 if (raidPtr->status != rf_rs_degraded) {
254 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
255 rf_unlock_mutex2(raidPtr->mutex);
256 return (EINVAL);
257 }
258 scol = (-1);
259 } else {
260 #endif
261 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
262 if (raidPtr->Disks[scol].status == rf_ds_spare) {
263 spareDiskPtr = &raidPtr->Disks[scol];
264 spareDiskPtr->status = rf_ds_used_spare;
265 break;
266 }
267 }
268 if (!spareDiskPtr) {
269 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
270 rf_unlock_mutex2(raidPtr->mutex);
271 return (ENOSPC);
272 }
273 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
274 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
275 }
276 #endif
277 rf_unlock_mutex2(raidPtr->mutex);
278
279 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
280 raidPtr->reconDesc = (void *) reconDesc;
281 #if RF_RECON_STATS > 0
282 reconDesc->hsStallCount = 0;
283 reconDesc->numReconExecDelays = 0;
284 reconDesc->numReconEventWaits = 0;
285 #endif /* RF_RECON_STATS > 0 */
286 reconDesc->reconExecTimerRunning = 0;
287 reconDesc->reconExecTicks = 0;
288 reconDesc->maxReconExecTicks = 0;
289 rc = rf_ContinueReconstructFailedDisk(reconDesc);
290
291 if (!rc) {
292 /* fix up the component label */
293 /* Don't actually need the read here.. */
294 c_label = raidget_component_label(raidPtr, scol);
295
296 raid_init_component_label(raidPtr, c_label);
297 c_label->row = 0;
298 c_label->column = col;
299 c_label->clean = RF_RAID_DIRTY;
300 c_label->status = rf_ds_optimal;
301 rf_component_label_set_partitionsize(c_label,
302 raidPtr->Disks[scol].partitionSize);
303
304 /* We've just done a rebuild based on all the other
305 disks, so at this point the parity is known to be
306 clean, even if it wasn't before. */
307
308 /* XXX doesn't hold for RAID 6!!*/
309
310 rf_lock_mutex2(raidPtr->mutex);
311 raidPtr->parity_good = RF_RAID_CLEAN;
312 rf_unlock_mutex2(raidPtr->mutex);
313
314 /* XXXX MORE NEEDED HERE */
315
316 raidflush_component_label(raidPtr, scol);
317 } else {
318 /* Reconstruct failed. */
319
320 rf_lock_mutex2(raidPtr->mutex);
321 /* Failed disk goes back to "failed" status */
322 raidPtr->Disks[col].status = rf_ds_failed;
323
324 /* Spare disk goes back to "spare" status. */
325 spareDiskPtr->status = rf_ds_spare;
326 rf_unlock_mutex2(raidPtr->mutex);
327
328 }
329 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
330 return (rc);
331 }
332
333 /*
334
335 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
336 and you don't get a spare until the next Monday. With this function
337 (and hot-swappable drives) you can now put your new disk containing
338 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
339 rebuild the data "on the spot".
340
341 */
342
343 int
344 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
345 {
346 RF_RaidDisk_t *spareDiskPtr = NULL;
347 RF_RaidReconDesc_t *reconDesc;
348 const RF_LayoutSW_t *lp;
349 RF_ComponentLabel_t *c_label;
350 int numDisksDone = 0, rc;
351 uint64_t numsec;
352 unsigned int secsize;
353 struct pathbuf *pb;
354 struct vnode *vp;
355 struct vattr va;
356 int retcode;
357 int ac;
358
359 rf_lock_mutex2(raidPtr->mutex);
360 lp = raidPtr->Layout.map;
361 if (!lp->SubmitReconBuffer) {
362 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
363 lp->parityConfig);
364 /* wakeup anyone who might be waiting to do a reconstruct */
365 rf_signal_cond2(raidPtr->waitForReconCond);
366 rf_unlock_mutex2(raidPtr->mutex);
367 return(EIO);
368 }
369
370 /*
371 * The current infrastructure only supports reconstructing one
372 * disk at a time for each array.
373 */
374
375 if (raidPtr->Disks[col].status != rf_ds_failed) {
376 /* "It's gone..." */
377 raidPtr->numFailures++;
378 raidPtr->Disks[col].status = rf_ds_failed;
379 raidPtr->status = rf_rs_degraded;
380 rf_unlock_mutex2(raidPtr->mutex);
381 rf_update_component_labels(raidPtr,
382 RF_NORMAL_COMPONENT_UPDATE);
383 rf_lock_mutex2(raidPtr->mutex);
384 }
385
386 while (raidPtr->reconInProgress) {
387 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
388 }
389
390 raidPtr->reconInProgress++;
391
392 /* first look for a spare drive onto which to reconstruct the
393 data. spare disk descriptors are stored in row 0. This
394 may have to change eventually */
395
396 /* Actually, we don't care if it's failed or not... On a RAID
397 set with correct parity, this function should be callable
398 on any component without ill effects. */
399 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
400
401 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
402 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
403 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
404
405 raidPtr->reconInProgress--;
406 rf_signal_cond2(raidPtr->waitForReconCond);
407 rf_unlock_mutex2(raidPtr->mutex);
408 return (EINVAL);
409 }
410 #endif
411
412 /* This device may have been opened successfully the
413 first time. Close it before trying to open it again.. */
414
415 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
416 #if 0
417 printf("Closed the open device: %s\n",
418 raidPtr->Disks[col].devname);
419 #endif
420 vp = raidPtr->raid_cinfo[col].ci_vp;
421 ac = raidPtr->Disks[col].auto_configured;
422 rf_unlock_mutex2(raidPtr->mutex);
423 rf_close_component(raidPtr, vp, ac);
424 rf_lock_mutex2(raidPtr->mutex);
425 raidPtr->raid_cinfo[col].ci_vp = NULL;
426 }
427 /* note that this disk was *not* auto_configured (any longer)*/
428 raidPtr->Disks[col].auto_configured = 0;
429
430 #if 0
431 printf("About to (re-)open the device for rebuilding: %s\n",
432 raidPtr->Disks[col].devname);
433 #endif
434 rf_unlock_mutex2(raidPtr->mutex);
435 pb = pathbuf_create(raidPtr->Disks[col].devname);
436 if (pb == NULL) {
437 retcode = ENOMEM;
438 } else {
439 retcode = dk_lookup(pb, curlwp, &vp);
440 pathbuf_destroy(pb);
441 }
442
443 if (retcode) {
444 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
445 raidPtr->Disks[col].devname, retcode);
446
447 /* the component isn't responding properly...
448 must be still dead :-( */
449 rf_lock_mutex2(raidPtr->mutex);
450 raidPtr->reconInProgress--;
451 rf_signal_cond2(raidPtr->waitForReconCond);
452 rf_unlock_mutex2(raidPtr->mutex);
453 return(retcode);
454 }
455
456 /* Ok, so we can at least do a lookup...
457 How about actually getting a vp for it? */
458
459 vn_lock(vp, LK_SHARED | LK_RETRY);
460 retcode = VOP_GETATTR(vp, &va, curlwp->l_cred);
461 VOP_UNLOCK(vp);
462 if (retcode != 0) {
463 vn_close(vp, FREAD | FWRITE, kauth_cred_get());
464 rf_lock_mutex2(raidPtr->mutex);
465 raidPtr->reconInProgress--;
466 rf_signal_cond2(raidPtr->waitForReconCond);
467 rf_unlock_mutex2(raidPtr->mutex);
468 return(retcode);
469 }
470
471 retcode = getdisksize(vp, &numsec, &secsize);
472 if (retcode) {
473 vn_close(vp, FREAD | FWRITE, kauth_cred_get());
474 rf_lock_mutex2(raidPtr->mutex);
475 raidPtr->reconInProgress--;
476 rf_signal_cond2(raidPtr->waitForReconCond);
477 rf_unlock_mutex2(raidPtr->mutex);
478 return(retcode);
479 }
480 rf_lock_mutex2(raidPtr->mutex);
481 raidPtr->Disks[col].blockSize = secsize;
482 raidPtr->Disks[col].numBlocks = numsec - rf_protectedSectors;
483
484 raidPtr->raid_cinfo[col].ci_vp = vp;
485 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
486
487 raidPtr->Disks[col].dev = va.va_rdev;
488
489 /* we allow the user to specify that only a fraction
490 of the disks should be used this is just for debug:
491 it speeds up * the parity scan */
492 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
493 rf_sizePercentage / 100;
494 rf_unlock_mutex2(raidPtr->mutex);
495
496 spareDiskPtr = &raidPtr->Disks[col];
497 spareDiskPtr->status = rf_ds_used_spare;
498
499 printf("raid%d: initiating in-place reconstruction on column %d\n",
500 raidPtr->raidid, col);
501
502 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
503 numDisksDone, col);
504 raidPtr->reconDesc = (void *) reconDesc;
505 #if RF_RECON_STATS > 0
506 reconDesc->hsStallCount = 0;
507 reconDesc->numReconExecDelays = 0;
508 reconDesc->numReconEventWaits = 0;
509 #endif /* RF_RECON_STATS > 0 */
510 reconDesc->reconExecTimerRunning = 0;
511 reconDesc->reconExecTicks = 0;
512 reconDesc->maxReconExecTicks = 0;
513 rc = rf_ContinueReconstructFailedDisk(reconDesc);
514
515 if (!rc) {
516 rf_lock_mutex2(raidPtr->mutex);
517 /* Need to set these here, as at this point it'll be claiming
518 that the disk is in rf_ds_spared! But we know better :-) */
519
520 raidPtr->Disks[col].status = rf_ds_optimal;
521 raidPtr->status = rf_rs_optimal;
522 rf_unlock_mutex2(raidPtr->mutex);
523
524 /* fix up the component label */
525 /* Don't actually need the read here.. */
526 c_label = raidget_component_label(raidPtr, col);
527
528 rf_lock_mutex2(raidPtr->mutex);
529 raid_init_component_label(raidPtr, c_label);
530
531 c_label->row = 0;
532 c_label->column = col;
533
534 /* We've just done a rebuild based on all the other
535 disks, so at this point the parity is known to be
536 clean, even if it wasn't before. */
537
538 /* XXX doesn't hold for RAID 6!!*/
539
540 raidPtr->parity_good = RF_RAID_CLEAN;
541 rf_unlock_mutex2(raidPtr->mutex);
542
543 raidflush_component_label(raidPtr, col);
544 } else {
545 /* Reconstruct-in-place failed. Disk goes back to
546 "failed" status, regardless of what it was before. */
547 rf_lock_mutex2(raidPtr->mutex);
548 raidPtr->Disks[col].status = rf_ds_failed;
549 rf_unlock_mutex2(raidPtr->mutex);
550 }
551
552 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
553
554 rf_lock_mutex2(raidPtr->mutex);
555 raidPtr->reconInProgress--;
556 rf_signal_cond2(raidPtr->waitForReconCond);
557 rf_unlock_mutex2(raidPtr->mutex);
558
559 return (rc);
560 }
561
562
563 int
564 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
565 {
566 RF_Raid_t *raidPtr = reconDesc->raidPtr;
567 RF_RowCol_t col = reconDesc->col;
568 RF_RowCol_t scol = reconDesc->scol;
569 RF_ReconMap_t *mapPtr;
570 RF_ReconCtrl_t *tmp_reconctrl;
571 RF_ReconEvent_t *event;
572 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
573 #if RF_INCLUDE_RAID5_RS > 0
574 RF_StripeCount_t startPSID,endPSID,aPSID,bPSID,offPSID;
575 #endif
576 RF_ReconUnitCount_t RUsPerPU;
577 struct timeval etime, elpsd;
578 unsigned long xor_s, xor_resid_us;
579 int i, ds;
580 int status, done;
581 int recon_error, write_error;
582
583 raidPtr->accumXorTimeUs = 0;
584 #if RF_ACC_TRACE > 0
585 /* create one trace record per physical disk */
586 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
587 #endif
588
589 /* quiesce the array prior to starting recon. this is needed
590 * to assure no nasty interactions with pending user writes.
591 * We need to do this before we change the disk or row status. */
592
593 Dprintf("RECON: begin request suspend\n");
594 rf_SuspendNewRequestsAndWait(raidPtr);
595 Dprintf("RECON: end request suspend\n");
596
597 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
598 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
599
600 rf_lock_mutex2(raidPtr->mutex);
601
602 /* create the reconstruction control pointer and install it in
603 * the right slot */
604 raidPtr->reconControl = tmp_reconctrl;
605 mapPtr = raidPtr->reconControl->reconMap;
606 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
607 raidPtr->reconControl->numRUsComplete = 0;
608 raidPtr->status = rf_rs_reconstructing;
609 raidPtr->Disks[col].status = rf_ds_reconstructing;
610 raidPtr->Disks[col].spareCol = scol;
611
612 rf_unlock_mutex2(raidPtr->mutex);
613
614 RF_GETTIME(raidPtr->reconControl->starttime);
615
616 Dprintf("RECON: resume requests\n");
617 rf_ResumeNewRequests(raidPtr);
618
619
620 mapPtr = raidPtr->reconControl->reconMap;
621
622 incPSID = RF_RECONMAP_SIZE;
623 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
624 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
625 recon_error = 0;
626 write_error = 0;
627 pending_writes = incPSID;
628 raidPtr->reconControl->lastPSID = incPSID - 1;
629
630 /* bounds check raidPtr->reconControl->lastPSID and
631 pending_writes so that we don't attempt to wait for more IO
632 than can possibly happen */
633
634 if (raidPtr->reconControl->lastPSID > lastPSID)
635 raidPtr->reconControl->lastPSID = lastPSID;
636
637 if (pending_writes > lastPSID)
638 pending_writes = lastPSID;
639
640 /* start the actual reconstruction */
641
642 done = 0;
643 while (!done) {
644
645 if (raidPtr->waitShutdown) {
646 /* someone is unconfiguring this array... bail on the reconstruct.. */
647 recon_error = 1;
648 break;
649 }
650
651 num_writes = 0;
652
653 #if RF_INCLUDE_RAID5_RS > 0
654 /* For RAID5 with Rotated Spares we will be 'short'
655 some number of writes since no writes will get
656 issued for stripes where the spare is on the
657 component being rebuilt. Account for the shortage
658 here so that we don't hang indefinitely below
659 waiting for writes to complete that were never
660 scheduled.
661
662 XXX: Should be fixed for PARITY_DECLUSTERING and
663 others too!
664
665 */
666
667 if (raidPtr->Layout.numDataCol <
668 raidPtr->numCol - raidPtr->Layout.numParityCol) {
669 /* numDataCol is at least 2 less than numCol, so
670 should be RAID 5 with Rotated Spares */
671
672 /* XXX need to update for RAID 6 */
673
674 startPSID = raidPtr->reconControl->lastPSID - pending_writes + 1;
675 endPSID = raidPtr->reconControl->lastPSID;
676
677 offPSID = raidPtr->numCol - col - 1;
678
679 aPSID = startPSID - startPSID % raidPtr->numCol + offPSID;
680 if (aPSID < startPSID) {
681 aPSID += raidPtr->numCol;
682 }
683
684 bPSID = endPSID - ((endPSID - offPSID) % raidPtr->numCol);
685
686 if (aPSID < endPSID) {
687 num_writes = ((bPSID - aPSID) / raidPtr->numCol) + 1;
688 }
689
690 if ((aPSID == endPSID) && (bPSID == endPSID)) {
691 num_writes++;
692 }
693 }
694 #endif
695
696 /* issue a read for each surviving disk */
697
698 reconDesc->numDisksDone = 0;
699 for (i = 0; i < raidPtr->numCol; i++) {
700 if (i != col) {
701 /* find and issue the next I/O on the
702 * indicated disk */
703 if (IssueNextReadRequest(raidPtr, i)) {
704 Dprintf1("RECON: done issuing for c%d\n", i);
705 reconDesc->numDisksDone++;
706 }
707 }
708 }
709
710 /* process reconstruction events until all disks report that
711 * they've completed all work */
712
713 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
714
715 event = rf_GetNextReconEvent(reconDesc);
716 status = ProcessReconEvent(raidPtr, event);
717
718 /* the normal case is that a read completes, and all is well. */
719 if (status == RF_RECON_DONE_READS) {
720 reconDesc->numDisksDone++;
721 } else if ((status == RF_RECON_READ_ERROR) ||
722 (status == RF_RECON_WRITE_ERROR)) {
723 /* an error was encountered while reconstructing...
724 Pretend we've finished this disk.
725 */
726 recon_error = 1;
727 raidPtr->reconControl->error = 1;
728
729 /* bump the numDisksDone count for reads,
730 but not for writes */
731 if (status == RF_RECON_READ_ERROR)
732 reconDesc->numDisksDone++;
733
734 /* write errors are special -- when we are
735 done dealing with the reads that are
736 finished, we don't want to wait for any
737 writes */
738 if (status == RF_RECON_WRITE_ERROR) {
739 write_error = 1;
740 num_writes++;
741 }
742
743 } else if (status == RF_RECON_READ_STOPPED) {
744 /* count this component as being "done" */
745 reconDesc->numDisksDone++;
746 } else if (status == RF_RECON_WRITE_DONE) {
747 num_writes++;
748 }
749
750 if (recon_error) {
751 /* make sure any stragglers are woken up so that
752 their theads will complete, and we can get out
753 of here with all IO processed */
754
755 rf_WakeupHeadSepCBWaiters(raidPtr);
756 }
757
758 raidPtr->reconControl->numRUsTotal =
759 mapPtr->totalRUs;
760 raidPtr->reconControl->numRUsComplete =
761 mapPtr->totalRUs -
762 rf_UnitsLeftToReconstruct(mapPtr);
763
764 #if RF_DEBUG_RECON
765 raidPtr->reconControl->percentComplete =
766 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
767 if (rf_prReconSched) {
768 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
769 }
770 #endif
771 }
772
773 /* reads done, wakeup any waiters, and then wait for writes */
774
775 rf_WakeupHeadSepCBWaiters(raidPtr);
776
777 while (!recon_error && (num_writes < pending_writes)) {
778 event = rf_GetNextReconEvent(reconDesc);
779 status = ProcessReconEvent(raidPtr, event);
780
781 if (status == RF_RECON_WRITE_ERROR) {
782 num_writes++;
783 recon_error = 1;
784 raidPtr->reconControl->error = 1;
785 /* an error was encountered at the very end... bail */
786 } else if (status == RF_RECON_WRITE_DONE) {
787 num_writes++;
788 } /* else it's something else, and we don't care */
789 }
790 if (recon_error ||
791 (raidPtr->reconControl->lastPSID == lastPSID)) {
792 done = 1;
793 break;
794 }
795
796 prev = raidPtr->reconControl->lastPSID;
797 raidPtr->reconControl->lastPSID += incPSID;
798
799 if (raidPtr->reconControl->lastPSID > lastPSID) {
800 pending_writes = lastPSID - prev;
801 raidPtr->reconControl->lastPSID = lastPSID;
802 }
803
804 /* back down curPSID to get ready for the next round... */
805 for (i = 0; i < raidPtr->numCol; i++) {
806 if (i != col) {
807 raidPtr->reconControl->perDiskInfo[i].curPSID--;
808 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
809 }
810 }
811 }
812
813 mapPtr = raidPtr->reconControl->reconMap;
814 if (rf_reconDebug) {
815 printf("RECON: all reads completed\n");
816 }
817 /* at this point all the reads have completed. We now wait
818 * for any pending writes to complete, and then we're done */
819
820 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
821
822 event = rf_GetNextReconEvent(reconDesc);
823 status = ProcessReconEvent(raidPtr, event);
824
825 if (status == RF_RECON_WRITE_ERROR) {
826 recon_error = 1;
827 raidPtr->reconControl->error = 1;
828 /* an error was encountered at the very end... bail */
829 } else {
830 #if RF_DEBUG_RECON
831 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
832 if (rf_prReconSched) {
833 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
834 }
835 #endif
836 }
837 }
838
839 if (recon_error) {
840 /* we've encountered an error in reconstructing. */
841 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
842
843 /* we start by blocking IO to the RAID set. */
844 rf_SuspendNewRequestsAndWait(raidPtr);
845
846 rf_lock_mutex2(raidPtr->mutex);
847 /* mark set as being degraded, rather than
848 rf_rs_reconstructing as we were before the problem.
849 After this is done we can update status of the
850 component disks without worrying about someone
851 trying to read from a failed component.
852 */
853 raidPtr->status = rf_rs_degraded;
854 rf_unlock_mutex2(raidPtr->mutex);
855
856 /* resume IO */
857 rf_ResumeNewRequests(raidPtr);
858
859 /* At this point there are two cases:
860 1) If we've experienced a read error, then we've
861 already waited for all the reads we're going to get,
862 and we just need to wait for the writes.
863
864 2) If we've experienced a write error, we've also
865 already waited for all the reads to complete,
866 but there is little point in waiting for the writes --
867 when they do complete, they will just be ignored.
868
869 So we just wait for writes to complete if we didn't have a
870 write error.
871 */
872
873 if (!write_error) {
874 /* wait for writes to complete */
875 while (raidPtr->reconControl->pending_writes > 0) {
876
877 event = rf_GetNextReconEvent(reconDesc);
878 status = ProcessReconEvent(raidPtr, event);
879
880 if (status == RF_RECON_WRITE_ERROR) {
881 raidPtr->reconControl->error = 1;
882 /* an error was encountered at the very end... bail.
883 This will be very bad news for the user, since
884 at this point there will have been a read error
885 on one component, and a write error on another!
886 */
887 break;
888 }
889 }
890 }
891
892
893 /* cleanup */
894
895 /* drain the event queue - after waiting for the writes above,
896 there shouldn't be much (if anything!) left in the queue. */
897
898 rf_DrainReconEventQueue(reconDesc);
899
900 /* XXX As much as we'd like to free the recon control structure
901 and the reconDesc, we have no way of knowing if/when those will
902 be touched by IO that has yet to occur. It is rather poor to be
903 basically causing a 'memory leak' here, but there doesn't seem to be
904 a cleaner alternative at this time. Perhaps when the reconstruct code
905 gets a makeover this problem will go away.
906 */
907 #if 0
908 rf_FreeReconControl(raidPtr);
909 #endif
910
911 #if RF_ACC_TRACE > 0
912 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
913 #endif
914 /* XXX see comment above */
915 #if 0
916 FreeReconDesc(reconDesc);
917 #endif
918
919 return (1);
920 }
921
922 /* Success: mark the dead disk as reconstructed. We quiesce
923 * the array here to assure no nasty interactions with pending
924 * user accesses when we free up the psstatus structure as
925 * part of FreeReconControl() */
926
927 rf_SuspendNewRequestsAndWait(raidPtr);
928
929 rf_lock_mutex2(raidPtr->mutex);
930 raidPtr->numFailures--;
931 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
932 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
933 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
934 rf_unlock_mutex2(raidPtr->mutex);
935 RF_GETTIME(etime);
936 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
937
938 rf_ResumeNewRequests(raidPtr);
939
940 printf("raid%d: Reconstruction of disk at col %d completed\n",
941 raidPtr->raidid, col);
942 xor_s = raidPtr->accumXorTimeUs / 1000000;
943 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
944 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
945 raidPtr->raidid,
946 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
947 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
948 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
949 raidPtr->raidid,
950 (int) raidPtr->reconControl->starttime.tv_sec,
951 (int) raidPtr->reconControl->starttime.tv_usec,
952 (int) etime.tv_sec, (int) etime.tv_usec);
953 #if RF_RECON_STATS > 0
954 printf("raid%d: Total head-sep stall count was %d\n",
955 raidPtr->raidid, (int) reconDesc->hsStallCount);
956 #endif /* RF_RECON_STATS > 0 */
957 rf_FreeReconControl(raidPtr);
958 #if RF_ACC_TRACE > 0
959 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
960 #endif
961 FreeReconDesc(reconDesc);
962
963 return (0);
964
965 }
966 /*****************************************************************************
967 * do the right thing upon each reconstruction event.
968 *****************************************************************************/
969 static int
970 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
971 {
972 int retcode = 0, submitblocked;
973 RF_ReconBuffer_t *rbuf;
974 RF_SectorCount_t sectorsPerRU;
975
976 retcode = RF_RECON_READ_STOPPED;
977
978 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
979
980 switch (event->type) {
981
982 /* a read I/O has completed */
983 case RF_REVENT_READDONE:
984 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
985 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
986 event->col, rbuf->parityStripeID);
987 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
988 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
989 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
990 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
991 if (!raidPtr->reconControl->error) {
992 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
993 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
994 if (!submitblocked)
995 retcode = IssueNextReadRequest(raidPtr, event->col);
996 else
997 retcode = 0;
998 }
999 break;
1000
1001 /* a write I/O has completed */
1002 case RF_REVENT_WRITEDONE:
1003 #if RF_DEBUG_RECON
1004 if (rf_floatingRbufDebug) {
1005 rf_CheckFloatingRbufCount(raidPtr, 1);
1006 }
1007 #endif
1008 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1009 rbuf = (RF_ReconBuffer_t *) event->arg;
1010 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1011 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
1012 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
1013 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
1014 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
1015 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
1016
1017 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1018 raidPtr->reconControl->pending_writes--;
1019 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1020
1021 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
1022 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1023 while(raidPtr->reconControl->rb_lock) {
1024 rf_wait_cond2(raidPtr->reconControl->rb_cv,
1025 raidPtr->reconControl->rb_mutex);
1026 }
1027 raidPtr->reconControl->rb_lock = 1;
1028 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1029
1030 raidPtr->numFullReconBuffers--;
1031 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
1032
1033 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1034 raidPtr->reconControl->rb_lock = 0;
1035 rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
1036 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1037 } else
1038 if (rbuf->type == RF_RBUF_TYPE_FORCED)
1039 rf_FreeReconBuffer(rbuf);
1040 else
1041 RF_ASSERT(0);
1042 retcode = RF_RECON_WRITE_DONE;
1043 break;
1044
1045 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
1046 * cleared */
1047 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
1048 if (!raidPtr->reconControl->error) {
1049 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
1050 0, (int) (long) event->arg);
1051 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
1052 * BUFCLEAR event if we
1053 * couldn't submit */
1054 retcode = IssueNextReadRequest(raidPtr, event->col);
1055 }
1056 break;
1057
1058 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
1059 * blockage has been cleared */
1060 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
1061 if (!raidPtr->reconControl->error) {
1062 retcode = TryToRead(raidPtr, event->col);
1063 }
1064 break;
1065
1066 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
1067 * reconstruction blockage has been
1068 * cleared */
1069 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1070 if (!raidPtr->reconControl->error) {
1071 retcode = TryToRead(raidPtr, event->col);
1072 }
1073 break;
1074
1075 /* a buffer has become ready to write */
1076 case RF_REVENT_BUFREADY:
1077 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1078 if (!raidPtr->reconControl->error) {
1079 retcode = IssueNextWriteRequest(raidPtr);
1080 #if RF_DEBUG_RECON
1081 if (rf_floatingRbufDebug) {
1082 rf_CheckFloatingRbufCount(raidPtr, 1);
1083 }
1084 #endif
1085 }
1086 break;
1087
1088 /* we need to skip the current RU entirely because it got
1089 * recon'd while we were waiting for something else to happen */
1090 case RF_REVENT_SKIP:
1091 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1092 if (!raidPtr->reconControl->error) {
1093 retcode = IssueNextReadRequest(raidPtr, event->col);
1094 }
1095 break;
1096
1097 /* a forced-reconstruction read access has completed. Just
1098 * submit the buffer */
1099 case RF_REVENT_FORCEDREADDONE:
1100 rbuf = (RF_ReconBuffer_t *) event->arg;
1101 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1102 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1103 if (!raidPtr->reconControl->error) {
1104 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1105 RF_ASSERT(!submitblocked);
1106 retcode = 0;
1107 }
1108 break;
1109
1110 /* A read I/O failed to complete */
1111 case RF_REVENT_READ_FAILED:
1112 retcode = RF_RECON_READ_ERROR;
1113 break;
1114
1115 /* A write I/O failed to complete */
1116 case RF_REVENT_WRITE_FAILED:
1117 retcode = RF_RECON_WRITE_ERROR;
1118
1119 /* This is an error, but it was a pending write.
1120 Account for it. */
1121 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1122 raidPtr->reconControl->pending_writes--;
1123 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1124
1125 rbuf = (RF_ReconBuffer_t *) event->arg;
1126
1127 /* cleanup the disk queue data */
1128 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1129
1130 /* At this point we're erroring out, badly, and floatingRbufs
1131 may not even be valid. Rather than putting this back onto
1132 the floatingRbufs list, just arrange for its immediate
1133 destruction.
1134 */
1135 rf_FreeReconBuffer(rbuf);
1136 break;
1137
1138 /* a forced read I/O failed to complete */
1139 case RF_REVENT_FORCEDREAD_FAILED:
1140 retcode = RF_RECON_READ_ERROR;
1141 break;
1142
1143 default:
1144 RF_PANIC();
1145 }
1146 rf_FreeReconEventDesc(event);
1147 return (retcode);
1148 }
1149 /*****************************************************************************
1150 *
1151 * find the next thing that's needed on the indicated disk, and issue
1152 * a read request for it. We assume that the reconstruction buffer
1153 * associated with this process is free to receive the data. If
1154 * reconstruction is blocked on the indicated RU, we issue a
1155 * blockage-release request instead of a physical disk read request.
1156 * If the current disk gets too far ahead of the others, we issue a
1157 * head-separation wait request and return.
1158 *
1159 * ctrl->{ru_count, curPSID, diskOffset} and
1160 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1161 * we're currently accessing. Note that this deviates from the
1162 * standard C idiom of having counters point to the next thing to be
1163 * accessed. This allows us to easily retry when we're blocked by
1164 * head separation or reconstruction-blockage events.
1165 *
1166 *****************************************************************************/
1167 static int
1168 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1169 {
1170 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1171 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1172 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1173 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1174 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1175 int do_new_check = 0, retcode = 0, status;
1176
1177 /* if we are currently the slowest disk, mark that we have to do a new
1178 * check */
1179 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1180 do_new_check = 1;
1181
1182 while (1) {
1183
1184 ctrl->ru_count++;
1185 if (ctrl->ru_count < RUsPerPU) {
1186 ctrl->diskOffset += sectorsPerRU;
1187 rbuf->failedDiskSectorOffset += sectorsPerRU;
1188 } else {
1189 ctrl->curPSID++;
1190 ctrl->ru_count = 0;
1191 /* code left over from when head-sep was based on
1192 * parity stripe id */
1193 if (ctrl->curPSID > raidPtr->reconControl->lastPSID) {
1194 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1195 return (RF_RECON_DONE_READS); /* finito! */
1196 }
1197 /* find the disk offsets of the start of the parity
1198 * stripe on both the current disk and the failed
1199 * disk. skip this entire parity stripe if either disk
1200 * does not appear in the indicated PS */
1201 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1202 &rbuf->spCol, &rbuf->spOffset);
1203 if (status) {
1204 ctrl->ru_count = RUsPerPU - 1;
1205 continue;
1206 }
1207 }
1208 rbuf->which_ru = ctrl->ru_count;
1209
1210 /* skip this RU if it's already been reconstructed */
1211 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1212 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1213 continue;
1214 }
1215 break;
1216 }
1217 ctrl->headSepCounter++;
1218 if (do_new_check)
1219 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1220
1221
1222 /* at this point, we have definitely decided what to do, and we have
1223 * only to see if we can actually do it now */
1224 rbuf->parityStripeID = ctrl->curPSID;
1225 rbuf->which_ru = ctrl->ru_count;
1226 #if RF_ACC_TRACE > 0
1227 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1228 sizeof(raidPtr->recon_tracerecs[col]));
1229 raidPtr->recon_tracerecs[col].reconacc = 1;
1230 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1231 #endif
1232 retcode = TryToRead(raidPtr, col);
1233 return (retcode);
1234 }
1235
1236 /*
1237 * tries to issue the next read on the indicated disk. We may be
1238 * blocked by (a) the heads being too far apart, or (b) recon on the
1239 * indicated RU being blocked due to a write by a user thread. In
1240 * this case, we issue a head-sep or blockage wait request, which will
1241 * cause this same routine to be invoked again later when the blockage
1242 * has cleared.
1243 */
1244
1245 static int
1246 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1247 {
1248 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1249 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1250 RF_StripeNum_t psid = ctrl->curPSID;
1251 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1252 RF_DiskQueueData_t *req;
1253 int status;
1254 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1255
1256 /* if the current disk is too far ahead of the others, issue a
1257 * head-separation wait and return */
1258 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1259 return (0);
1260
1261 /* allocate a new PSS in case we need it */
1262 newpssPtr = rf_AllocPSStatus(raidPtr);
1263
1264 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1265 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1266
1267 if (pssPtr != newpssPtr) {
1268 rf_FreePSStatus(raidPtr, newpssPtr);
1269 }
1270
1271 /* if recon is blocked on the indicated parity stripe, issue a
1272 * block-wait request and return. this also must mark the indicated RU
1273 * in the stripe as under reconstruction if not blocked. */
1274 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1275 if (status == RF_PSS_RECON_BLOCKED) {
1276 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1277 goto out;
1278 } else
1279 if (status == RF_PSS_FORCED_ON_WRITE) {
1280 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1281 goto out;
1282 }
1283 /* make one last check to be sure that the indicated RU didn't get
1284 * reconstructed while we were waiting for something else to happen.
1285 * This is unfortunate in that it causes us to make this check twice
1286 * in the normal case. Might want to make some attempt to re-work
1287 * this so that we only do this check if we've definitely blocked on
1288 * one of the above checks. When this condition is detected, we may
1289 * have just created a bogus status entry, which we need to delete. */
1290 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1291 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1292 if (pssPtr == newpssPtr)
1293 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1294 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1295 goto out;
1296 }
1297 /* found something to read. issue the I/O */
1298 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1299 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1300 #if RF_ACC_TRACE > 0
1301 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1302 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1303 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1304 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1305 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1306 #endif
1307 /* should be ok to use a NULL proc pointer here, all the bufs we use
1308 * should be in kernel space */
1309 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1310 ReconReadDoneProc, (void *) ctrl,
1311 #if RF_ACC_TRACE > 0
1312 &raidPtr->recon_tracerecs[col],
1313 #else
1314 NULL,
1315 #endif
1316 (void *) raidPtr, 0, NULL, PR_WAITOK);
1317
1318 ctrl->rbuf->arg = (void *) req;
1319 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1320 pssPtr->issued[col] = 1;
1321
1322 out:
1323 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1324 return (0);
1325 }
1326
1327
1328 /*
1329 * given a parity stripe ID, we want to find out whether both the
1330 * current disk and the failed disk exist in that parity stripe. If
1331 * not, we want to skip this whole PS. If so, we want to find the
1332 * disk offset of the start of the PS on both the current disk and the
1333 * failed disk.
1334 *
1335 * this works by getting a list of disks comprising the indicated
1336 * parity stripe, and searching the list for the current and failed
1337 * disks. Once we've decided they both exist in the parity stripe, we
1338 * need to decide whether each is data or parity, so that we'll know
1339 * which mapping function to call to get the corresponding disk
1340 * offsets.
1341 *
1342 * this is kind of unpleasant, but doing it this way allows the
1343 * reconstruction code to use parity stripe IDs rather than physical
1344 * disks address to march through the failed disk, which greatly
1345 * simplifies a lot of code, as well as eliminating the need for a
1346 * reverse-mapping function. I also think it will execute faster,
1347 * since the calls to the mapping module are kept to a minimum.
1348 *
1349 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1350 * THE STRIPE IN THE CORRECT ORDER
1351 *
1352 * raidPtr - raid descriptor
1353 * psid - parity stripe identifier
1354 * col - column of disk to find the offsets for
1355 * spCol - out: col of spare unit for failed unit
1356 * spOffset - out: offset into disk containing spare unit
1357 *
1358 */
1359
1360
1361 static int
1362 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1363 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1364 RF_SectorNum_t *outFailedDiskSectorOffset,
1365 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1366 {
1367 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1368 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1369 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1370 RF_RowCol_t *diskids;
1371 u_int i, j, k, i_offset, j_offset;
1372 RF_RowCol_t pcol;
1373 int testcol;
1374 RF_SectorNum_t poffset;
1375 char i_is_parity = 0, j_is_parity = 0;
1376 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1377
1378 /* get a listing of the disks comprising that stripe */
1379 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1380 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1381 RF_ASSERT(diskids);
1382
1383 /* reject this entire parity stripe if it does not contain the
1384 * indicated disk or it does not contain the failed disk */
1385
1386 for (i = 0; i < stripeWidth; i++) {
1387 if (col == diskids[i])
1388 break;
1389 }
1390 if (i == stripeWidth)
1391 goto skipit;
1392 for (j = 0; j < stripeWidth; j++) {
1393 if (fcol == diskids[j])
1394 break;
1395 }
1396 if (j == stripeWidth) {
1397 goto skipit;
1398 }
1399 /* find out which disk the parity is on */
1400 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1401
1402 /* find out if either the current RU or the failed RU is parity */
1403 /* also, if the parity occurs in this stripe prior to the data and/or
1404 * failed col, we need to decrement i and/or j */
1405 for (k = 0; k < stripeWidth; k++)
1406 if (diskids[k] == pcol)
1407 break;
1408 RF_ASSERT(k < stripeWidth);
1409 i_offset = i;
1410 j_offset = j;
1411 if (k < i)
1412 i_offset--;
1413 else
1414 if (k == i) {
1415 i_is_parity = 1;
1416 i_offset = 0;
1417 } /* set offsets to zero to disable multiply
1418 * below */
1419 if (k < j)
1420 j_offset--;
1421 else
1422 if (k == j) {
1423 j_is_parity = 1;
1424 j_offset = 0;
1425 }
1426 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1427 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1428 * tells us how far into the stripe the [current,failed] disk is. */
1429
1430 /* call the mapping routine to get the offset into the current disk,
1431 * repeat for failed disk. */
1432 if (i_is_parity)
1433 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1434 else
1435 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1436
1437 RF_ASSERT(col == testcol);
1438
1439 if (j_is_parity)
1440 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1441 else
1442 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1443 RF_ASSERT(fcol == testcol);
1444
1445 /* now locate the spare unit for the failed unit */
1446 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1447 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1448 if (j_is_parity)
1449 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1450 else
1451 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1452 } else {
1453 #endif
1454 *spCol = raidPtr->reconControl->spareCol;
1455 *spOffset = *outFailedDiskSectorOffset;
1456 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1457 }
1458 #endif
1459 return (0);
1460
1461 skipit:
1462 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1463 psid, col);
1464 return (1);
1465 }
1466 /* this is called when a buffer has become ready to write to the replacement disk */
1467 static int
1468 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1469 {
1470 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1471 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1472 #if RF_ACC_TRACE > 0
1473 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1474 #endif
1475 RF_ReconBuffer_t *rbuf;
1476 RF_DiskQueueData_t *req;
1477
1478 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1479 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1480 * have gotten the event that sent us here */
1481 RF_ASSERT(rbuf->pssPtr);
1482
1483 rbuf->pssPtr->writeRbuf = rbuf;
1484 rbuf->pssPtr = NULL;
1485
1486 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1487 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1488 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1489 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1490 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1491 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1492
1493 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1494 * kernel space */
1495 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1496 sectorsPerRU, rbuf->buffer,
1497 rbuf->parityStripeID, rbuf->which_ru,
1498 ReconWriteDoneProc, (void *) rbuf,
1499 #if RF_ACC_TRACE > 0
1500 &raidPtr->recon_tracerecs[fcol],
1501 #else
1502 NULL,
1503 #endif
1504 (void *) raidPtr, 0, NULL, PR_WAITOK);
1505
1506 rbuf->arg = (void *) req;
1507 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1508 raidPtr->reconControl->pending_writes++;
1509 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1510 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1511
1512 return (0);
1513 }
1514
1515 /*
1516 * this gets called upon the completion of a reconstruction read
1517 * operation the arg is a pointer to the per-disk reconstruction
1518 * control structure for the process that just finished a read.
1519 *
1520 * called at interrupt context in the kernel, so don't do anything
1521 * illegal here.
1522 */
1523 static int
1524 ReconReadDoneProc(void *arg, int status)
1525 {
1526 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1527 RF_Raid_t *raidPtr;
1528
1529 /* Detect that reconCtrl is no longer valid, and if that
1530 is the case, bail without calling rf_CauseReconEvent().
1531 There won't be anyone listening for this event anyway */
1532
1533 if (ctrl->reconCtrl == NULL)
1534 return(0);
1535
1536 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1537
1538 if (status) {
1539 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1540 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1541 return(0);
1542 }
1543 #if RF_ACC_TRACE > 0
1544 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1545 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1546 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1547 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1548 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1549 #endif
1550 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1551 return (0);
1552 }
1553 /* this gets called upon the completion of a reconstruction write operation.
1554 * the arg is a pointer to the rbuf that was just written
1555 *
1556 * called at interrupt context in the kernel, so don't do anything illegal here.
1557 */
1558 static int
1559 ReconWriteDoneProc(void *arg, int status)
1560 {
1561 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1562
1563 /* Detect that reconControl is no longer valid, and if that
1564 is the case, bail without calling rf_CauseReconEvent().
1565 There won't be anyone listening for this event anyway */
1566
1567 if (rbuf->raidPtr->reconControl == NULL)
1568 return(0);
1569
1570 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1571 if (status) {
1572 printf("raid%d: Recon write failed (status %d(0x%x))!\n", rbuf->raidPtr->raidid,status,status);
1573 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1574 return(0);
1575 }
1576 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1577 return (0);
1578 }
1579
1580
1581 /*
1582 * computes a new minimum head sep, and wakes up anyone who needs to
1583 * be woken as a result
1584 */
1585 static void
1586 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1587 {
1588 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1589 RF_HeadSepLimit_t new_min;
1590 RF_RowCol_t i;
1591 RF_CallbackDesc_t *p;
1592 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1593 * of a minimum */
1594
1595
1596 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1597 while(reconCtrlPtr->rb_lock) {
1598 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1599 }
1600 reconCtrlPtr->rb_lock = 1;
1601 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1602
1603 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1604 for (i = 0; i < raidPtr->numCol; i++)
1605 if (i != reconCtrlPtr->fcol) {
1606 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1607 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1608 }
1609 /* set the new minimum and wake up anyone who can now run again */
1610 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1611 reconCtrlPtr->minHeadSepCounter = new_min;
1612 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1613 while (reconCtrlPtr->headSepCBList) {
1614 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1615 break;
1616 p = reconCtrlPtr->headSepCBList;
1617 reconCtrlPtr->headSepCBList = p->next;
1618 p->next = NULL;
1619 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1620 rf_FreeCallbackDesc(p);
1621 }
1622
1623 }
1624 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1625 reconCtrlPtr->rb_lock = 0;
1626 rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1627 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1628 }
1629
1630 /*
1631 * checks to see that the maximum head separation will not be violated
1632 * if we initiate a reconstruction I/O on the indicated disk.
1633 * Limiting the maximum head separation between two disks eliminates
1634 * the nasty buffer-stall conditions that occur when one disk races
1635 * ahead of the others and consumes all of the floating recon buffers.
1636 * This code is complex and unpleasant but it's necessary to avoid
1637 * some very nasty, albeit fairly rare, reconstruction behavior.
1638 *
1639 * returns non-zero if and only if we have to stop working on the
1640 * indicated disk due to a head-separation delay.
1641 */
1642 static int
1643 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1644 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1645 RF_ReconUnitNum_t which_ru)
1646 {
1647 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1648 RF_CallbackDesc_t *cb, *p, *pt;
1649 int retval = 0;
1650
1651 /* if we're too far ahead of the slowest disk, stop working on this
1652 * disk until the slower ones catch up. We do this by scheduling a
1653 * wakeup callback for the time when the slowest disk has caught up.
1654 * We define "caught up" with 20% hysteresis, i.e. the head separation
1655 * must have fallen to at most 80% of the max allowable head
1656 * separation before we'll wake up.
1657 *
1658 */
1659 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1660 while(reconCtrlPtr->rb_lock) {
1661 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1662 }
1663 reconCtrlPtr->rb_lock = 1;
1664 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1665 if ((raidPtr->headSepLimit >= 0) &&
1666 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1667 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1668 raidPtr->raidid, col, ctrl->headSepCounter,
1669 reconCtrlPtr->minHeadSepCounter,
1670 raidPtr->headSepLimit);
1671 cb = rf_AllocCallbackDesc();
1672 /* the minHeadSepCounter value we have to get to before we'll
1673 * wake up. build in 20% hysteresis. */
1674 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1675 cb->col = col;
1676 cb->next = NULL;
1677
1678 /* insert this callback descriptor into the sorted list of
1679 * pending head-sep callbacks */
1680 p = reconCtrlPtr->headSepCBList;
1681 if (!p)
1682 reconCtrlPtr->headSepCBList = cb;
1683 else
1684 if (cb->callbackArg.v < p->callbackArg.v) {
1685 cb->next = reconCtrlPtr->headSepCBList;
1686 reconCtrlPtr->headSepCBList = cb;
1687 } else {
1688 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1689 cb->next = p;
1690 pt->next = cb;
1691 }
1692 retval = 1;
1693 #if RF_RECON_STATS > 0
1694 ctrl->reconCtrl->reconDesc->hsStallCount++;
1695 #endif /* RF_RECON_STATS > 0 */
1696 }
1697 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1698 reconCtrlPtr->rb_lock = 0;
1699 rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1700 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1701
1702 return (retval);
1703 }
1704 /*
1705 * checks to see if reconstruction has been either forced or blocked
1706 * by a user operation. if forced, we skip this RU entirely. else if
1707 * blocked, put ourselves on the wait list. else return 0.
1708 *
1709 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1710 */
1711 static int
1712 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1713 RF_ReconParityStripeStatus_t *pssPtr,
1714 RF_PerDiskReconCtrl_t *ctrl,
1715 RF_RowCol_t col,
1716 RF_StripeNum_t psid,
1717 RF_ReconUnitNum_t which_ru)
1718 {
1719 RF_CallbackDesc_t *cb;
1720 int retcode = 0;
1721
1722 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1723 retcode = RF_PSS_FORCED_ON_WRITE;
1724 else
1725 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1726 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1727 cb = rf_AllocCallbackDesc(); /* append ourselves to
1728 * the blockage-wait
1729 * list */
1730 cb->col = col;
1731 cb->next = pssPtr->blockWaitList;
1732 pssPtr->blockWaitList = cb;
1733 retcode = RF_PSS_RECON_BLOCKED;
1734 }
1735 if (!retcode)
1736 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1737 * reconstruction */
1738
1739 return (retcode);
1740 }
1741 /*
1742 * if reconstruction is currently ongoing for the indicated stripeID,
1743 * reconstruction is forced to completion and we return non-zero to
1744 * indicate that the caller must wait. If not, then reconstruction is
1745 * blocked on the indicated stripe and the routine returns zero. If
1746 * and only if we return non-zero, we'll cause the cbFunc to get
1747 * invoked with the cbArg when the reconstruction has completed.
1748 */
1749 int
1750 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1751 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1752 {
1753 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1754 * forcing recon on */
1755 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1756 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1757 * stripe status structure */
1758 RF_StripeNum_t psid; /* parity stripe id */
1759 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1760 * offset */
1761 RF_RowCol_t *diskids;
1762 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1763 RF_RowCol_t fcol, diskno, i;
1764 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1765 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1766 RF_CallbackDesc_t *cb;
1767 int nPromoted;
1768
1769 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1770
1771 /* allocate a new PSS in case we need it */
1772 newpssPtr = rf_AllocPSStatus(raidPtr);
1773
1774 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1775
1776 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1777
1778 if (pssPtr != newpssPtr) {
1779 rf_FreePSStatus(raidPtr, newpssPtr);
1780 }
1781
1782 /* if recon is not ongoing on this PS, just return */
1783 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1784 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1785 return (0);
1786 }
1787 /* otherwise, we have to wait for reconstruction to complete on this
1788 * RU. */
1789 /* In order to avoid waiting for a potentially large number of
1790 * low-priority accesses to complete, we force a normal-priority (i.e.
1791 * not low-priority) reconstruction on this RU. */
1792 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1793 DDprintf1("Forcing recon on psid %ld\n", psid);
1794 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1795 * forced recon */
1796 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1797 * that we just set */
1798 fcol = raidPtr->reconControl->fcol;
1799
1800 /* get a listing of the disks comprising the indicated stripe */
1801 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1802
1803 /* For previously issued reads, elevate them to normal
1804 * priority. If the I/O has already completed, it won't be
1805 * found in the queue, and hence this will be a no-op. For
1806 * unissued reads, allocate buffers and issue new reads. The
1807 * fact that we've set the FORCED bit means that the regular
1808 * recon procs will not re-issue these reqs */
1809 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1810 if ((diskno = diskids[i]) != fcol) {
1811 if (pssPtr->issued[diskno]) {
1812 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1813 if (rf_reconDebug && nPromoted)
1814 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1815 } else {
1816 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1817 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1818 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1819 * location */
1820 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1821 new_rbuf->which_ru = which_ru;
1822 new_rbuf->failedDiskSectorOffset = fd_offset;
1823 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1824
1825 /* use NULL b_proc b/c all addrs
1826 * should be in kernel space */
1827 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1828 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1829 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1830
1831 new_rbuf->arg = req;
1832 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1833 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1834 }
1835 }
1836 /* if the write is sitting in the disk queue, elevate its
1837 * priority */
1838 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1839 if (rf_reconDebug)
1840 printf("raid%d: promoted write to col %d\n",
1841 raidPtr->raidid, fcol);
1842 }
1843 /* install a callback descriptor to be invoked when recon completes on
1844 * this parity stripe. */
1845 cb = rf_AllocCallbackDesc();
1846 /* XXX the following is bogus.. These functions don't really match!!
1847 * GO */
1848 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1849 cb->callbackArg.p = (void *) cbArg;
1850 cb->next = pssPtr->procWaitList;
1851 pssPtr->procWaitList = cb;
1852 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1853 raidPtr->raidid, psid);
1854
1855 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1856 return (1);
1857 }
1858 /* called upon the completion of a forced reconstruction read.
1859 * all we do is schedule the FORCEDREADONE event.
1860 * called at interrupt context in the kernel, so don't do anything illegal here.
1861 */
1862 static void
1863 ForceReconReadDoneProc(void *arg, int status)
1864 {
1865 RF_ReconBuffer_t *rbuf = arg;
1866
1867 /* Detect that reconControl is no longer valid, and if that
1868 is the case, bail without calling rf_CauseReconEvent().
1869 There won't be anyone listening for this event anyway */
1870
1871 if (rbuf->raidPtr->reconControl == NULL)
1872 return;
1873
1874 if (status) {
1875 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1876 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1877 return;
1878 }
1879 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1880 }
1881 /* releases a block on the reconstruction of the indicated stripe */
1882 int
1883 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1884 {
1885 RF_StripeNum_t stripeID = asmap->stripeID;
1886 RF_ReconParityStripeStatus_t *pssPtr;
1887 RF_ReconUnitNum_t which_ru;
1888 RF_StripeNum_t psid;
1889 RF_CallbackDesc_t *cb;
1890
1891 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1892 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1893 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1894
1895 /* When recon is forced, the pss desc can get deleted before we get
1896 * back to unblock recon. But, this can _only_ happen when recon is
1897 * forced. It would be good to put some kind of sanity check here, but
1898 * how to decide if recon was just forced or not? */
1899 if (!pssPtr) {
1900 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1901 * RU %d\n",psid,which_ru); */
1902 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1903 if (rf_reconDebug || rf_pssDebug)
1904 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1905 #endif
1906 goto out;
1907 }
1908 pssPtr->blockCount--;
1909 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1910 raidPtr->raidid, psid, pssPtr->blockCount);
1911 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1912
1913 /* unblock recon before calling CauseReconEvent in case
1914 * CauseReconEvent causes us to try to issue a new read before
1915 * returning here. */
1916 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1917
1918
1919 while (pssPtr->blockWaitList) {
1920 /* spin through the block-wait list and
1921 release all the waiters */
1922 cb = pssPtr->blockWaitList;
1923 pssPtr->blockWaitList = cb->next;
1924 cb->next = NULL;
1925 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1926 rf_FreeCallbackDesc(cb);
1927 }
1928 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1929 /* if no recon was requested while recon was blocked */
1930 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1931 }
1932 }
1933 out:
1934 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1935 return (0);
1936 }
1937
1938 void
1939 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1940 {
1941 RF_CallbackDesc_t *p;
1942
1943 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1944 while(raidPtr->reconControl->rb_lock) {
1945 rf_wait_cond2(raidPtr->reconControl->rb_cv,
1946 raidPtr->reconControl->rb_mutex);
1947 }
1948
1949 raidPtr->reconControl->rb_lock = 1;
1950 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1951
1952 while (raidPtr->reconControl->headSepCBList) {
1953 p = raidPtr->reconControl->headSepCBList;
1954 raidPtr->reconControl->headSepCBList = p->next;
1955 p->next = NULL;
1956 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1957 rf_FreeCallbackDesc(p);
1958 }
1959 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1960 raidPtr->reconControl->rb_lock = 0;
1961 rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
1962 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1963
1964 }
1965
1966