rf_reconstruct.c revision 1.12 1 /* $NetBSD: rf_reconstruct.c,v 1.12 2000/01/09 01:29:28 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_cpuutil.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 #define Dprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h))
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81 #define DDprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
82 #define DDprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
83 #define DDprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
84 #define DDprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
85 #define DDprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
86 #define DDprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h))
87
88 static RF_FreeList_t *rf_recond_freelist;
89 #define RF_MAX_FREE_RECOND 4
90 #define RF_RECOND_INC 1
91
92 static RF_RaidReconDesc_t *
93 AllocRaidReconDesc(RF_Raid_t * raidPtr,
94 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
95 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
96 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
97 static int
98 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
99 RF_ReconEvent_t * event);
100 static int
101 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
102 RF_RowCol_t col);
103 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
104 static int
105 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
106 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
107 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
108 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
109 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
110 static int ReconReadDoneProc(void *arg, int status);
111 static int ReconWriteDoneProc(void *arg, int status);
112 static void
113 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
114 RF_HeadSepLimit_t hsCtr);
115 static int
116 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
117 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
118 RF_ReconUnitNum_t which_ru);
119 static int
120 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
121 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
122 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
123 RF_ReconUnitNum_t which_ru);
124 static void ForceReconReadDoneProc(void *arg, int status);
125
126 static void rf_ShutdownReconstruction(void *);
127
128 struct RF_ReconDoneProc_s {
129 void (*proc) (RF_Raid_t *, void *);
130 void *arg;
131 RF_ReconDoneProc_t *next;
132 };
133
134 static RF_FreeList_t *rf_rdp_freelist;
135 #define RF_MAX_FREE_RDP 4
136 #define RF_RDP_INC 1
137
138 static void
139 SignalReconDone(RF_Raid_t * raidPtr)
140 {
141 RF_ReconDoneProc_t *p;
142
143 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
144 for (p = raidPtr->recon_done_procs; p; p = p->next) {
145 p->proc(raidPtr, p->arg);
146 }
147 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
148 }
149
150 int
151 rf_RegisterReconDoneProc(
152 RF_Raid_t * raidPtr,
153 void (*proc) (RF_Raid_t *, void *),
154 void *arg,
155 RF_ReconDoneProc_t ** handlep)
156 {
157 RF_ReconDoneProc_t *p;
158
159 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
160 if (p == NULL)
161 return (ENOMEM);
162 p->proc = proc;
163 p->arg = arg;
164 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
165 p->next = raidPtr->recon_done_procs;
166 raidPtr->recon_done_procs = p;
167 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
168 if (handlep)
169 *handlep = p;
170 return (0);
171 }
172 /*****************************************************************************************
173 *
174 * sets up the parameters that will be used by the reconstruction process
175 * currently there are none, except for those that the layout-specific
176 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
177 *
178 * in the kernel, we fire off the recon thread.
179 *
180 ****************************************************************************************/
181 static void
182 rf_ShutdownReconstruction(ignored)
183 void *ignored;
184 {
185 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
186 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
187 }
188
189 int
190 rf_ConfigureReconstruction(listp)
191 RF_ShutdownList_t **listp;
192 {
193 int rc;
194
195 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
196 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
197 if (rf_recond_freelist == NULL)
198 return (ENOMEM);
199 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
200 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
201 if (rf_rdp_freelist == NULL) {
202 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
203 return (ENOMEM);
204 }
205 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
206 if (rc) {
207 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
208 __FILE__, __LINE__, rc);
209 rf_ShutdownReconstruction(NULL);
210 return (rc);
211 }
212 return (0);
213 }
214
215 static RF_RaidReconDesc_t *
216 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
217 RF_Raid_t *raidPtr;
218 RF_RowCol_t row;
219 RF_RowCol_t col;
220 RF_RaidDisk_t *spareDiskPtr;
221 int numDisksDone;
222 RF_RowCol_t srow;
223 RF_RowCol_t scol;
224 {
225
226 RF_RaidReconDesc_t *reconDesc;
227
228 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
229
230 reconDesc->raidPtr = raidPtr;
231 reconDesc->row = row;
232 reconDesc->col = col;
233 reconDesc->spareDiskPtr = spareDiskPtr;
234 reconDesc->numDisksDone = numDisksDone;
235 reconDesc->srow = srow;
236 reconDesc->scol = scol;
237 reconDesc->state = 0;
238 reconDesc->next = NULL;
239
240 return (reconDesc);
241 }
242
243 static void
244 FreeReconDesc(reconDesc)
245 RF_RaidReconDesc_t *reconDesc;
246 {
247 #if RF_RECON_STATS > 0
248 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
249 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
250 #endif /* RF_RECON_STATS > 0 */
251 printf("RAIDframe: %lu max exec ticks\n",
252 (long) reconDesc->maxReconExecTicks);
253 #if (RF_RECON_STATS > 0) || defined(KERNEL)
254 printf("\n");
255 #endif /* (RF_RECON_STATS > 0) || KERNEL */
256 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
257 }
258
259
260 /*****************************************************************************************
261 *
262 * primary routine to reconstruct a failed disk. This should be called from
263 * within its own thread. It won't return until reconstruction completes,
264 * fails, or is aborted.
265 ****************************************************************************************/
266 int
267 rf_ReconstructFailedDisk(raidPtr, row, col)
268 RF_Raid_t *raidPtr;
269 RF_RowCol_t row;
270 RF_RowCol_t col;
271 {
272 RF_LayoutSW_t *lp;
273 int rc;
274
275 lp = raidPtr->Layout.map;
276 if (lp->SubmitReconBuffer) {
277 /*
278 * The current infrastructure only supports reconstructing one
279 * disk at a time for each array.
280 */
281 RF_LOCK_MUTEX(raidPtr->mutex);
282 while (raidPtr->reconInProgress) {
283 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
284 }
285 raidPtr->reconInProgress++;
286 RF_UNLOCK_MUTEX(raidPtr->mutex);
287 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
288 RF_LOCK_MUTEX(raidPtr->mutex);
289 raidPtr->reconInProgress--;
290 RF_UNLOCK_MUTEX(raidPtr->mutex);
291 } else {
292 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
293 lp->parityConfig);
294 rc = EIO;
295 }
296 RF_SIGNAL_COND(raidPtr->waitForReconCond);
297 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
298 * needed at some point... GO */
299 return (rc);
300 }
301
302 int
303 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
304 RF_Raid_t *raidPtr;
305 RF_RowCol_t row;
306 RF_RowCol_t col;
307 {
308 RF_ComponentLabel_t c_label;
309 RF_RaidDisk_t *spareDiskPtr = NULL;
310 RF_RaidReconDesc_t *reconDesc;
311 RF_RowCol_t srow, scol;
312 int numDisksDone = 0, rc;
313
314 /* first look for a spare drive onto which to reconstruct the data */
315 /* spare disk descriptors are stored in row 0. This may have to
316 * change eventually */
317
318 RF_LOCK_MUTEX(raidPtr->mutex);
319 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
320
321 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
322 if (raidPtr->status[row] != rf_rs_degraded) {
323 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
324 RF_UNLOCK_MUTEX(raidPtr->mutex);
325 return (EINVAL);
326 }
327 srow = row;
328 scol = (-1);
329 } else {
330 srow = 0;
331 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
332 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
333 spareDiskPtr = &raidPtr->Disks[srow][scol];
334 spareDiskPtr->status = rf_ds_used_spare;
335 break;
336 }
337 }
338 if (!spareDiskPtr) {
339 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
340 RF_UNLOCK_MUTEX(raidPtr->mutex);
341 return (ENOSPC);
342 }
343 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
344 }
345 RF_UNLOCK_MUTEX(raidPtr->mutex);
346
347 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
348 raidPtr->reconDesc = (void *) reconDesc;
349 #if RF_RECON_STATS > 0
350 reconDesc->hsStallCount = 0;
351 reconDesc->numReconExecDelays = 0;
352 reconDesc->numReconEventWaits = 0;
353 #endif /* RF_RECON_STATS > 0 */
354 reconDesc->reconExecTimerRunning = 0;
355 reconDesc->reconExecTicks = 0;
356 reconDesc->maxReconExecTicks = 0;
357 rc = rf_ContinueReconstructFailedDisk(reconDesc);
358
359 if (!rc) {
360 /* fix up the component label */
361 /* Don't actually need the read here.. */
362 raidread_component_label(
363 raidPtr->raid_cinfo[srow][scol].ci_dev,
364 raidPtr->raid_cinfo[srow][scol].ci_vp,
365 &c_label);
366
367 c_label.version = RF_COMPONENT_LABEL_VERSION;
368 c_label.mod_counter = raidPtr->mod_counter;
369 c_label.serial_number = raidPtr->serial_number;
370 c_label.row = row;
371 c_label.column = col;
372 c_label.num_rows = raidPtr->numRow;
373 c_label.num_columns = raidPtr->numCol;
374 c_label.clean = RF_RAID_DIRTY;
375 c_label.status = rf_ds_optimal;
376
377 raidwrite_component_label(
378 raidPtr->raid_cinfo[srow][scol].ci_dev,
379 raidPtr->raid_cinfo[srow][scol].ci_vp,
380 &c_label);
381
382 }
383 return (rc);
384 }
385
386 /*
387
388 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
389 and you don't get a spare until the next Monday. With this function
390 (and hot-swappable drives) you can now put your new disk containing
391 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
392 rebuild the data "on the spot".
393
394 */
395
396 int
397 rf_ReconstructInPlace(raidPtr, row, col)
398 RF_Raid_t *raidPtr;
399 RF_RowCol_t row;
400 RF_RowCol_t col;
401 {
402 RF_RaidDisk_t *spareDiskPtr = NULL;
403 RF_RaidReconDesc_t *reconDesc;
404 RF_LayoutSW_t *lp;
405 RF_RaidDisk_t *badDisk;
406 RF_ComponentLabel_t c_label;
407 int numDisksDone = 0, rc;
408 struct partinfo dpart;
409 struct vnode *vp;
410 struct vattr va;
411 struct proc *proc;
412 int retcode;
413
414 lp = raidPtr->Layout.map;
415 if (lp->SubmitReconBuffer) {
416 /*
417 * The current infrastructure only supports reconstructing one
418 * disk at a time for each array.
419 */
420 RF_LOCK_MUTEX(raidPtr->mutex);
421 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
422 (raidPtr->numFailures > 0)) {
423 /* XXX 0 above shouldn't be constant!!! */
424 /* some component other than this has failed.
425 Let's not make things worse than they already
426 are... */
427 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
428 printf(" Row: %d Col: %d Too many failures.\n",
429 row, col);
430 RF_UNLOCK_MUTEX(raidPtr->mutex);
431 return (EINVAL);
432 }
433 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
434 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
435 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
436
437 RF_UNLOCK_MUTEX(raidPtr->mutex);
438 return (EINVAL);
439 }
440
441
442 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
443 /* "It's gone..." */
444 raidPtr->numFailures++;
445 raidPtr->Disks[row][col].status = rf_ds_failed;
446 raidPtr->status[row] = rf_rs_degraded;
447 }
448
449 while (raidPtr->reconInProgress) {
450 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
451 }
452
453 raidPtr->reconInProgress++;
454
455
456 /* first look for a spare drive onto which to reconstruct
457 the data. spare disk descriptors are stored in row 0.
458 This may have to change eventually */
459
460 /* Actually, we don't care if it's failed or not...
461 On a RAID set with correct parity, this function
462 should be callable on any component without ill affects. */
463 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
464 */
465
466 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
467 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
468
469 raidPtr->reconInProgress--;
470 RF_UNLOCK_MUTEX(raidPtr->mutex);
471 return (EINVAL);
472 }
473
474 /* XXX need goop here to see if the disk is alive,
475 and, if not, make it so... */
476
477
478
479 badDisk = &raidPtr->Disks[row][col];
480
481 proc = raidPtr->engine_thread;
482
483 /* This device may have been opened successfully the
484 first time. Close it before trying to open it again.. */
485
486 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
487 printf("Closed the open device: %s\n",
488 raidPtr->Disks[row][col].devname);
489 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0);
490 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp,
491 FREAD | FWRITE, proc->p_ucred, proc);
492 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
493 }
494 printf("About to (re-)open the device for rebuilding: %s\n",
495 raidPtr->Disks[row][col].devname);
496
497 retcode = raidlookup(raidPtr->Disks[row][col].devname,
498 proc, &vp);
499
500 if (retcode) {
501 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
502 raidPtr->Disks[row][col].devname, retcode);
503
504 /* XXX the component isn't responding properly...
505 must be still dead :-( */
506 raidPtr->reconInProgress--;
507 RF_UNLOCK_MUTEX(raidPtr->mutex);
508 return(retcode);
509
510 } else {
511
512 /* Ok, so we can at least do a lookup...
513 How about actually getting a vp for it? */
514
515 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
516 proc)) != 0) {
517 raidPtr->reconInProgress--;
518 RF_UNLOCK_MUTEX(raidPtr->mutex);
519 return(retcode);
520 }
521 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
522 FREAD, proc->p_ucred, proc);
523 if (retcode) {
524 raidPtr->reconInProgress--;
525 RF_UNLOCK_MUTEX(raidPtr->mutex);
526 return(retcode);
527 }
528 raidPtr->Disks[row][col].blockSize =
529 dpart.disklab->d_secsize;
530
531 raidPtr->Disks[row][col].numBlocks =
532 dpart.part->p_size - rf_protectedSectors;
533
534 raidPtr->raid_cinfo[row][col].ci_vp = vp;
535 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
536
537 raidPtr->Disks[row][col].dev = va.va_rdev;
538
539 /* we allow the user to specify that only a
540 fraction of the disks should be used this is
541 just for debug: it speeds up
542 * the parity scan */
543 raidPtr->Disks[row][col].numBlocks =
544 raidPtr->Disks[row][col].numBlocks *
545 rf_sizePercentage / 100;
546 }
547
548
549
550 spareDiskPtr = &raidPtr->Disks[row][col];
551 spareDiskPtr->status = rf_ds_used_spare;
552
553 printf("RECON: initiating in-place reconstruction on\n");
554 printf(" row %d col %d -> spare at row %d col %d\n",
555 row, col, row, col);
556
557 RF_UNLOCK_MUTEX(raidPtr->mutex);
558
559 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
560 spareDiskPtr, numDisksDone,
561 row, col);
562 raidPtr->reconDesc = (void *) reconDesc;
563 #if RF_RECON_STATS > 0
564 reconDesc->hsStallCount = 0;
565 reconDesc->numReconExecDelays = 0;
566 reconDesc->numReconEventWaits = 0;
567 #endif /* RF_RECON_STATS > 0 */
568 reconDesc->reconExecTimerRunning = 0;
569 reconDesc->reconExecTicks = 0;
570 reconDesc->maxReconExecTicks = 0;
571 rc = rf_ContinueReconstructFailedDisk(reconDesc);
572
573 RF_LOCK_MUTEX(raidPtr->mutex);
574 raidPtr->reconInProgress--;
575 RF_UNLOCK_MUTEX(raidPtr->mutex);
576
577 } else {
578 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
579 lp->parityConfig);
580 rc = EIO;
581 }
582 RF_LOCK_MUTEX(raidPtr->mutex);
583
584 if (!rc) {
585 /* Need to set these here, as at this point it'll be claiming
586 that the disk is in rf_ds_spared! But we know better :-) */
587
588 raidPtr->Disks[row][col].status = rf_ds_optimal;
589 raidPtr->status[row] = rf_rs_optimal;
590
591 /* fix up the component label */
592 /* Don't actually need the read here.. */
593 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
594 raidPtr->raid_cinfo[row][col].ci_vp,
595 &c_label);
596
597 c_label.version = RF_COMPONENT_LABEL_VERSION;
598 c_label.mod_counter = raidPtr->mod_counter;
599 c_label.serial_number = raidPtr->serial_number;
600 c_label.row = row;
601 c_label.column = col;
602 c_label.num_rows = raidPtr->numRow;
603 c_label.num_columns = raidPtr->numCol;
604 c_label.clean = RF_RAID_DIRTY;
605 c_label.status = rf_ds_optimal;
606
607 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
608 raidPtr->raid_cinfo[row][col].ci_vp,
609 &c_label);
610
611 }
612 RF_UNLOCK_MUTEX(raidPtr->mutex);
613 RF_SIGNAL_COND(raidPtr->waitForReconCond);
614 wakeup(&raidPtr->waitForReconCond);
615 return (rc);
616 }
617
618
619 int
620 rf_ContinueReconstructFailedDisk(reconDesc)
621 RF_RaidReconDesc_t *reconDesc;
622 {
623 RF_Raid_t *raidPtr = reconDesc->raidPtr;
624 RF_RowCol_t row = reconDesc->row;
625 RF_RowCol_t col = reconDesc->col;
626 RF_RowCol_t srow = reconDesc->srow;
627 RF_RowCol_t scol = reconDesc->scol;
628 RF_ReconMap_t *mapPtr;
629
630 RF_ReconEvent_t *event;
631 struct timeval etime, elpsd;
632 unsigned long xor_s, xor_resid_us;
633 int retcode, i, ds;
634
635 switch (reconDesc->state) {
636
637
638 case 0:
639
640 raidPtr->accumXorTimeUs = 0;
641
642 /* create one trace record per physical disk */
643 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
644
645 /* quiesce the array prior to starting recon. this is needed
646 * to assure no nasty interactions with pending user writes.
647 * We need to do this before we change the disk or row status. */
648 reconDesc->state = 1;
649
650 Dprintf("RECON: begin request suspend\n");
651 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
652 Dprintf("RECON: end request suspend\n");
653 rf_StartUserStats(raidPtr); /* zero out the stats kept on
654 * user accs */
655
656 /* fall through to state 1 */
657
658 case 1:
659
660 RF_LOCK_MUTEX(raidPtr->mutex);
661
662 /* create the reconstruction control pointer and install it in
663 * the right slot */
664 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
665 mapPtr = raidPtr->reconControl[row]->reconMap;
666 raidPtr->status[row] = rf_rs_reconstructing;
667 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
668 raidPtr->Disks[row][col].spareRow = srow;
669 raidPtr->Disks[row][col].spareCol = scol;
670
671 RF_UNLOCK_MUTEX(raidPtr->mutex);
672
673 RF_GETTIME(raidPtr->reconControl[row]->starttime);
674
675 /* now start up the actual reconstruction: issue a read for
676 * each surviving disk */
677 rf_start_cpu_monitor();
678 reconDesc->numDisksDone = 0;
679 for (i = 0; i < raidPtr->numCol; i++) {
680 if (i != col) {
681 /* find and issue the next I/O on the
682 * indicated disk */
683 if (IssueNextReadRequest(raidPtr, row, i)) {
684 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
685 reconDesc->numDisksDone++;
686 }
687 }
688 }
689
690 case 2:
691 Dprintf("RECON: resume requests\n");
692 rf_ResumeNewRequests(raidPtr);
693
694
695 reconDesc->state = 3;
696
697 case 3:
698
699 /* process reconstruction events until all disks report that
700 * they've completed all work */
701 mapPtr = raidPtr->reconControl[row]->reconMap;
702
703
704
705 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
706
707 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
708 RF_ASSERT(event);
709
710 if (ProcessReconEvent(raidPtr, row, event))
711 reconDesc->numDisksDone++;
712 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
713 if (rf_prReconSched) {
714 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
715 }
716 }
717
718
719
720 reconDesc->state = 4;
721
722
723 case 4:
724 mapPtr = raidPtr->reconControl[row]->reconMap;
725 if (rf_reconDebug) {
726 printf("RECON: all reads completed\n");
727 }
728 /* at this point all the reads have completed. We now wait
729 * for any pending writes to complete, and then we're done */
730
731 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
732
733 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
734 RF_ASSERT(event);
735
736 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
737 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
738 if (rf_prReconSched) {
739 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
740 }
741 }
742 reconDesc->state = 5;
743
744 case 5:
745 rf_stop_cpu_monitor();
746
747 /* Success: mark the dead disk as reconstructed. We quiesce
748 * the array here to assure no nasty interactions with pending
749 * user accesses when we free up the psstatus structure as
750 * part of FreeReconControl() */
751
752
753
754 reconDesc->state = 6;
755
756 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
757 rf_StopUserStats(raidPtr);
758 rf_PrintUserStats(raidPtr); /* print out the stats on user
759 * accs accumulated during
760 * recon */
761
762 /* fall through to state 6 */
763 case 6:
764
765
766
767 RF_LOCK_MUTEX(raidPtr->mutex);
768 raidPtr->numFailures--;
769 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
770 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
771 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
772 RF_UNLOCK_MUTEX(raidPtr->mutex);
773 RF_GETTIME(etime);
774 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
775
776 /* XXX -- why is state 7 different from state 6 if there is no
777 * return() here? -- XXX Note that I set elpsd above & use it
778 * below, so if you put a return here you'll have to fix this.
779 * (also, FreeReconControl is called below) */
780
781 case 7:
782
783 rf_ResumeNewRequests(raidPtr);
784
785 printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col);
786 xor_s = raidPtr->accumXorTimeUs / 1000000;
787 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
788 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
789 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
790 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
791 (int) raidPtr->reconControl[row]->starttime.tv_sec,
792 (int) raidPtr->reconControl[row]->starttime.tv_usec,
793 (int) etime.tv_sec, (int) etime.tv_usec);
794 rf_print_cpu_util("reconstruction");
795 #if RF_RECON_STATS > 0
796 printf("Total head-sep stall count was %d\n",
797 (int) reconDesc->hsStallCount);
798 #endif /* RF_RECON_STATS > 0 */
799 rf_FreeReconControl(raidPtr, row);
800 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
801 FreeReconDesc(reconDesc);
802
803 }
804
805 SignalReconDone(raidPtr);
806 return (0);
807 }
808 /*****************************************************************************************
809 * do the right thing upon each reconstruction event.
810 * returns nonzero if and only if there is nothing left unread on the indicated disk
811 ****************************************************************************************/
812 static int
813 ProcessReconEvent(raidPtr, frow, event)
814 RF_Raid_t *raidPtr;
815 RF_RowCol_t frow;
816 RF_ReconEvent_t *event;
817 {
818 int retcode = 0, submitblocked;
819 RF_ReconBuffer_t *rbuf;
820 RF_SectorCount_t sectorsPerRU;
821
822 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
823 switch (event->type) {
824
825 /* a read I/O has completed */
826 case RF_REVENT_READDONE:
827 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
828 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
829 frow, event->col, rbuf->parityStripeID);
830 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
831 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
832 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
833 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
834 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
835 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
836 if (!submitblocked)
837 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
838 break;
839
840 /* a write I/O has completed */
841 case RF_REVENT_WRITEDONE:
842 if (rf_floatingRbufDebug) {
843 rf_CheckFloatingRbufCount(raidPtr, 1);
844 }
845 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
846 rbuf = (RF_ReconBuffer_t *) event->arg;
847 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
848 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
849 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
850 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
851 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
852 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
853
854 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
855 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
856 raidPtr->numFullReconBuffers--;
857 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
858 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
859 } else
860 if (rbuf->type == RF_RBUF_TYPE_FORCED)
861 rf_FreeReconBuffer(rbuf);
862 else
863 RF_ASSERT(0);
864 break;
865
866 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
867 * cleared */
868 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
869 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
870 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
871 * BUFCLEAR event if we
872 * couldn't submit */
873 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
874 break;
875
876 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
877 * blockage has been cleared */
878 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
879 retcode = TryToRead(raidPtr, frow, event->col);
880 break;
881
882 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
883 * reconstruction blockage has been
884 * cleared */
885 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
886 retcode = TryToRead(raidPtr, frow, event->col);
887 break;
888
889 /* a buffer has become ready to write */
890 case RF_REVENT_BUFREADY:
891 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
892 retcode = IssueNextWriteRequest(raidPtr, frow);
893 if (rf_floatingRbufDebug) {
894 rf_CheckFloatingRbufCount(raidPtr, 1);
895 }
896 break;
897
898 /* we need to skip the current RU entirely because it got
899 * recon'd while we were waiting for something else to happen */
900 case RF_REVENT_SKIP:
901 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
902 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
903 break;
904
905 /* a forced-reconstruction read access has completed. Just
906 * submit the buffer */
907 case RF_REVENT_FORCEDREADDONE:
908 rbuf = (RF_ReconBuffer_t *) event->arg;
909 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
910 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
911 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
912 RF_ASSERT(!submitblocked);
913 break;
914
915 default:
916 RF_PANIC();
917 }
918 rf_FreeReconEventDesc(event);
919 return (retcode);
920 }
921 /*****************************************************************************************
922 *
923 * find the next thing that's needed on the indicated disk, and issue a read
924 * request for it. We assume that the reconstruction buffer associated with this
925 * process is free to receive the data. If reconstruction is blocked on the
926 * indicated RU, we issue a blockage-release request instead of a physical disk
927 * read request. If the current disk gets too far ahead of the others, we issue
928 * a head-separation wait request and return.
929 *
930 * ctrl->{ru_count, curPSID, diskOffset} and rbuf->failedDiskSectorOffset are
931 * maintained to point the the unit we're currently accessing. Note that this deviates
932 * from the standard C idiom of having counters point to the next thing to be
933 * accessed. This allows us to easily retry when we're blocked by head separation
934 * or reconstruction-blockage events.
935 *
936 * returns nonzero if and only if there is nothing left unread on the indicated disk
937 ****************************************************************************************/
938 static int
939 IssueNextReadRequest(raidPtr, row, col)
940 RF_Raid_t *raidPtr;
941 RF_RowCol_t row;
942 RF_RowCol_t col;
943 {
944 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
945 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
946 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
947 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
948 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
949 int do_new_check = 0, retcode = 0, status;
950
951 /* if we are currently the slowest disk, mark that we have to do a new
952 * check */
953 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
954 do_new_check = 1;
955
956 while (1) {
957
958 ctrl->ru_count++;
959 if (ctrl->ru_count < RUsPerPU) {
960 ctrl->diskOffset += sectorsPerRU;
961 rbuf->failedDiskSectorOffset += sectorsPerRU;
962 } else {
963 ctrl->curPSID++;
964 ctrl->ru_count = 0;
965 /* code left over from when head-sep was based on
966 * parity stripe id */
967 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
968 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
969 return (1); /* finito! */
970 }
971 /* find the disk offsets of the start of the parity
972 * stripe on both the current disk and the failed
973 * disk. skip this entire parity stripe if either disk
974 * does not appear in the indicated PS */
975 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
976 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
977 if (status) {
978 ctrl->ru_count = RUsPerPU - 1;
979 continue;
980 }
981 }
982 rbuf->which_ru = ctrl->ru_count;
983
984 /* skip this RU if it's already been reconstructed */
985 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
986 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
987 continue;
988 }
989 break;
990 }
991 ctrl->headSepCounter++;
992 if (do_new_check)
993 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
994
995
996 /* at this point, we have definitely decided what to do, and we have
997 * only to see if we can actually do it now */
998 rbuf->parityStripeID = ctrl->curPSID;
999 rbuf->which_ru = ctrl->ru_count;
1000 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
1001 raidPtr->recon_tracerecs[col].reconacc = 1;
1002 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1003 retcode = TryToRead(raidPtr, row, col);
1004 return (retcode);
1005 }
1006 /* tries to issue the next read on the indicated disk. We may be blocked by (a) the heads being too
1007 * far apart, or (b) recon on the indicated RU being blocked due to a write by a user thread.
1008 * In this case, we issue a head-sep or blockage wait request, which will cause this same routine
1009 * to be invoked again later when the blockage has cleared.
1010 */
1011 static int
1012 TryToRead(raidPtr, row, col)
1013 RF_Raid_t *raidPtr;
1014 RF_RowCol_t row;
1015 RF_RowCol_t col;
1016 {
1017 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1018 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1019 RF_StripeNum_t psid = ctrl->curPSID;
1020 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1021 RF_DiskQueueData_t *req;
1022 int status, created = 0;
1023 RF_ReconParityStripeStatus_t *pssPtr;
1024
1025 /* if the current disk is too far ahead of the others, issue a
1026 * head-separation wait and return */
1027 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1028 return (0);
1029 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1030 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1031
1032 /* if recon is blocked on the indicated parity stripe, issue a
1033 * block-wait request and return. this also must mark the indicated RU
1034 * in the stripe as under reconstruction if not blocked. */
1035 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1036 if (status == RF_PSS_RECON_BLOCKED) {
1037 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1038 goto out;
1039 } else
1040 if (status == RF_PSS_FORCED_ON_WRITE) {
1041 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1042 goto out;
1043 }
1044 /* make one last check to be sure that the indicated RU didn't get
1045 * reconstructed while we were waiting for something else to happen.
1046 * This is unfortunate in that it causes us to make this check twice
1047 * in the normal case. Might want to make some attempt to re-work
1048 * this so that we only do this check if we've definitely blocked on
1049 * one of the above checks. When this condition is detected, we may
1050 * have just created a bogus status entry, which we need to delete. */
1051 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1052 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1053 if (created)
1054 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1055 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1056 goto out;
1057 }
1058 /* found something to read. issue the I/O */
1059 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1060 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1061 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1062 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1063 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1064 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1065 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1066
1067 /* should be ok to use a NULL proc pointer here, all the bufs we use
1068 * should be in kernel space */
1069 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1070 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1071
1072 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1073
1074 ctrl->rbuf->arg = (void *) req;
1075 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1076 pssPtr->issued[col] = 1;
1077
1078 out:
1079 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1080 return (0);
1081 }
1082
1083
1084 /* given a parity stripe ID, we want to find out whether both the current disk and the
1085 * failed disk exist in that parity stripe. If not, we want to skip this whole PS.
1086 * If so, we want to find the disk offset of the start of the PS on both the current
1087 * disk and the failed disk.
1088 *
1089 * this works by getting a list of disks comprising the indicated parity stripe, and
1090 * searching the list for the current and failed disks. Once we've decided they both
1091 * exist in the parity stripe, we need to decide whether each is data or parity,
1092 * so that we'll know which mapping function to call to get the corresponding disk
1093 * offsets.
1094 *
1095 * this is kind of unpleasant, but doing it this way allows the reconstruction code
1096 * to use parity stripe IDs rather than physical disks address to march through the
1097 * failed disk, which greatly simplifies a lot of code, as well as eliminating the
1098 * need for a reverse-mapping function. I also think it will execute faster, since
1099 * the calls to the mapping module are kept to a minimum.
1100 *
1101 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING THE STRIPE
1102 * IN THE CORRECT ORDER
1103 */
1104 static int
1105 ComputePSDiskOffsets(
1106 RF_Raid_t * raidPtr, /* raid descriptor */
1107 RF_StripeNum_t psid, /* parity stripe identifier */
1108 RF_RowCol_t row, /* row and column of disk to find the offsets
1109 * for */
1110 RF_RowCol_t col,
1111 RF_SectorNum_t * outDiskOffset,
1112 RF_SectorNum_t * outFailedDiskSectorOffset,
1113 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1114 RF_RowCol_t * spCol,
1115 RF_SectorNum_t * spOffset)
1116 { /* OUT: offset into disk containing spare unit */
1117 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1118 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1119 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1120 RF_RowCol_t *diskids;
1121 u_int i, j, k, i_offset, j_offset;
1122 RF_RowCol_t prow, pcol;
1123 int testcol, testrow;
1124 RF_RowCol_t stripe;
1125 RF_SectorNum_t poffset;
1126 char i_is_parity = 0, j_is_parity = 0;
1127 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1128
1129 /* get a listing of the disks comprising that stripe */
1130 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1131 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1132 RF_ASSERT(diskids);
1133
1134 /* reject this entire parity stripe if it does not contain the
1135 * indicated disk or it does not contain the failed disk */
1136 if (row != stripe)
1137 goto skipit;
1138 for (i = 0; i < stripeWidth; i++) {
1139 if (col == diskids[i])
1140 break;
1141 }
1142 if (i == stripeWidth)
1143 goto skipit;
1144 for (j = 0; j < stripeWidth; j++) {
1145 if (fcol == diskids[j])
1146 break;
1147 }
1148 if (j == stripeWidth) {
1149 goto skipit;
1150 }
1151 /* find out which disk the parity is on */
1152 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1153
1154 /* find out if either the current RU or the failed RU is parity */
1155 /* also, if the parity occurs in this stripe prior to the data and/or
1156 * failed col, we need to decrement i and/or j */
1157 for (k = 0; k < stripeWidth; k++)
1158 if (diskids[k] == pcol)
1159 break;
1160 RF_ASSERT(k < stripeWidth);
1161 i_offset = i;
1162 j_offset = j;
1163 if (k < i)
1164 i_offset--;
1165 else
1166 if (k == i) {
1167 i_is_parity = 1;
1168 i_offset = 0;
1169 } /* set offsets to zero to disable multiply
1170 * below */
1171 if (k < j)
1172 j_offset--;
1173 else
1174 if (k == j) {
1175 j_is_parity = 1;
1176 j_offset = 0;
1177 }
1178 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1179 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1180 * tells us how far into the stripe the [current,failed] disk is. */
1181
1182 /* call the mapping routine to get the offset into the current disk,
1183 * repeat for failed disk. */
1184 if (i_is_parity)
1185 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1186 else
1187 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1188
1189 RF_ASSERT(row == testrow && col == testcol);
1190
1191 if (j_is_parity)
1192 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1193 else
1194 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1195 RF_ASSERT(row == testrow && fcol == testcol);
1196
1197 /* now locate the spare unit for the failed unit */
1198 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1199 if (j_is_parity)
1200 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1201 else
1202 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1203 } else {
1204 *spRow = raidPtr->reconControl[row]->spareRow;
1205 *spCol = raidPtr->reconControl[row]->spareCol;
1206 *spOffset = *outFailedDiskSectorOffset;
1207 }
1208
1209 return (0);
1210
1211 skipit:
1212 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1213 psid, row, col);
1214 return (1);
1215 }
1216 /* this is called when a buffer has become ready to write to the replacement disk */
1217 static int
1218 IssueNextWriteRequest(raidPtr, row)
1219 RF_Raid_t *raidPtr;
1220 RF_RowCol_t row;
1221 {
1222 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1223 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1224 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1225 RF_ReconBuffer_t *rbuf;
1226 RF_DiskQueueData_t *req;
1227
1228 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1229 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1230 * have gotten the event that sent us here */
1231 RF_ASSERT(rbuf->pssPtr);
1232
1233 rbuf->pssPtr->writeRbuf = rbuf;
1234 rbuf->pssPtr = NULL;
1235
1236 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1237 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1238 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1239 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1240 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1241 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1242
1243 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1244 * kernel space */
1245 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1246 sectorsPerRU, rbuf->buffer,
1247 rbuf->parityStripeID, rbuf->which_ru,
1248 ReconWriteDoneProc, (void *) rbuf, NULL,
1249 &raidPtr->recon_tracerecs[fcol],
1250 (void *) raidPtr, 0, NULL);
1251
1252 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1253
1254 rbuf->arg = (void *) req;
1255 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1256
1257 return (0);
1258 }
1259 /* this gets called upon the completion of a reconstruction read operation
1260 * the arg is a pointer to the per-disk reconstruction control structure
1261 * for the process that just finished a read.
1262 *
1263 * called at interrupt context in the kernel, so don't do anything illegal here.
1264 */
1265 static int
1266 ReconReadDoneProc(arg, status)
1267 void *arg;
1268 int status;
1269 {
1270 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1271 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1272
1273 if (status) {
1274 /*
1275 * XXX
1276 */
1277 printf("Recon read failed!\n");
1278 RF_PANIC();
1279 }
1280 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1281 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1282 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1283 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1284 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1285
1286 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1287 return (0);
1288 }
1289 /* this gets called upon the completion of a reconstruction write operation.
1290 * the arg is a pointer to the rbuf that was just written
1291 *
1292 * called at interrupt context in the kernel, so don't do anything illegal here.
1293 */
1294 static int
1295 ReconWriteDoneProc(arg, status)
1296 void *arg;
1297 int status;
1298 {
1299 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1300
1301 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1302 if (status) {
1303 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1304 * write failed!\n"); */
1305 RF_PANIC();
1306 }
1307 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1308 return (0);
1309 }
1310
1311
1312 /* computes a new minimum head sep, and wakes up anyone who needs to be woken as a result */
1313 static void
1314 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1315 RF_Raid_t *raidPtr;
1316 RF_RowCol_t row;
1317 RF_HeadSepLimit_t hsCtr;
1318 {
1319 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1320 RF_HeadSepLimit_t new_min;
1321 RF_RowCol_t i;
1322 RF_CallbackDesc_t *p;
1323 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1324 * of a minimum */
1325
1326
1327 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1328
1329 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1330 for (i = 0; i < raidPtr->numCol; i++)
1331 if (i != reconCtrlPtr->fcol) {
1332 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1333 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1334 }
1335 /* set the new minimum and wake up anyone who can now run again */
1336 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1337 reconCtrlPtr->minHeadSepCounter = new_min;
1338 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1339 while (reconCtrlPtr->headSepCBList) {
1340 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1341 break;
1342 p = reconCtrlPtr->headSepCBList;
1343 reconCtrlPtr->headSepCBList = p->next;
1344 p->next = NULL;
1345 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1346 rf_FreeCallbackDesc(p);
1347 }
1348
1349 }
1350 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1351 }
1352 /* checks to see that the maximum head separation will not be violated
1353 * if we initiate a reconstruction I/O on the indicated disk. Limiting the
1354 * maximum head separation between two disks eliminates the nasty buffer-stall
1355 * conditions that occur when one disk races ahead of the others and consumes
1356 * all of the floating recon buffers. This code is complex and unpleasant
1357 * but it's necessary to avoid some very nasty, albeit fairly rare,
1358 * reconstruction behavior.
1359 *
1360 * returns non-zero if and only if we have to stop working on the indicated disk
1361 * due to a head-separation delay.
1362 */
1363 static int
1364 CheckHeadSeparation(
1365 RF_Raid_t * raidPtr,
1366 RF_PerDiskReconCtrl_t * ctrl,
1367 RF_RowCol_t row,
1368 RF_RowCol_t col,
1369 RF_HeadSepLimit_t hsCtr,
1370 RF_ReconUnitNum_t which_ru)
1371 {
1372 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1373 RF_CallbackDesc_t *cb, *p, *pt;
1374 int retval = 0;
1375
1376 /* if we're too far ahead of the slowest disk, stop working on this
1377 * disk until the slower ones catch up. We do this by scheduling a
1378 * wakeup callback for the time when the slowest disk has caught up.
1379 * We define "caught up" with 20% hysteresis, i.e. the head separation
1380 * must have fallen to at most 80% of the max allowable head
1381 * separation before we'll wake up.
1382 *
1383 */
1384 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1385 if ((raidPtr->headSepLimit >= 0) &&
1386 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1387 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1388 raidPtr->raidid, row, col, ctrl->headSepCounter,
1389 reconCtrlPtr->minHeadSepCounter,
1390 raidPtr->headSepLimit);
1391 cb = rf_AllocCallbackDesc();
1392 /* the minHeadSepCounter value we have to get to before we'll
1393 * wake up. build in 20% hysteresis. */
1394 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1395 cb->row = row;
1396 cb->col = col;
1397 cb->next = NULL;
1398
1399 /* insert this callback descriptor into the sorted list of
1400 * pending head-sep callbacks */
1401 p = reconCtrlPtr->headSepCBList;
1402 if (!p)
1403 reconCtrlPtr->headSepCBList = cb;
1404 else
1405 if (cb->callbackArg.v < p->callbackArg.v) {
1406 cb->next = reconCtrlPtr->headSepCBList;
1407 reconCtrlPtr->headSepCBList = cb;
1408 } else {
1409 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1410 cb->next = p;
1411 pt->next = cb;
1412 }
1413 retval = 1;
1414 #if RF_RECON_STATS > 0
1415 ctrl->reconCtrl->reconDesc->hsStallCount++;
1416 #endif /* RF_RECON_STATS > 0 */
1417 }
1418 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1419
1420 return (retval);
1421 }
1422 /* checks to see if reconstruction has been either forced or blocked by a user operation.
1423 * if forced, we skip this RU entirely.
1424 * else if blocked, put ourselves on the wait list.
1425 * else return 0.
1426 *
1427 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1428 */
1429 static int
1430 CheckForcedOrBlockedReconstruction(
1431 RF_Raid_t * raidPtr,
1432 RF_ReconParityStripeStatus_t * pssPtr,
1433 RF_PerDiskReconCtrl_t * ctrl,
1434 RF_RowCol_t row,
1435 RF_RowCol_t col,
1436 RF_StripeNum_t psid,
1437 RF_ReconUnitNum_t which_ru)
1438 {
1439 RF_CallbackDesc_t *cb;
1440 int retcode = 0;
1441
1442 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1443 retcode = RF_PSS_FORCED_ON_WRITE;
1444 else
1445 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1446 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1447 cb = rf_AllocCallbackDesc(); /* append ourselves to
1448 * the blockage-wait
1449 * list */
1450 cb->row = row;
1451 cb->col = col;
1452 cb->next = pssPtr->blockWaitList;
1453 pssPtr->blockWaitList = cb;
1454 retcode = RF_PSS_RECON_BLOCKED;
1455 }
1456 if (!retcode)
1457 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1458 * reconstruction */
1459
1460 return (retcode);
1461 }
1462 /* if reconstruction is currently ongoing for the indicated stripeID, reconstruction
1463 * is forced to completion and we return non-zero to indicate that the caller must
1464 * wait. If not, then reconstruction is blocked on the indicated stripe and the
1465 * routine returns zero. If and only if we return non-zero, we'll cause the cbFunc
1466 * to get invoked with the cbArg when the reconstruction has completed.
1467 */
1468 int
1469 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1470 RF_Raid_t *raidPtr;
1471 RF_AccessStripeMap_t *asmap;
1472 void (*cbFunc) (RF_Raid_t *, void *);
1473 void *cbArg;
1474 {
1475 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1476 * we're working on */
1477 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1478 * forcing recon on */
1479 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1480 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1481 * stripe status structure */
1482 RF_StripeNum_t psid; /* parity stripe id */
1483 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1484 * offset */
1485 RF_RowCol_t *diskids;
1486 RF_RowCol_t stripe;
1487 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1488 RF_RowCol_t fcol, diskno, i;
1489 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1490 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1491 RF_CallbackDesc_t *cb;
1492 int created = 0, nPromoted;
1493
1494 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1495
1496 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1497
1498 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1499
1500 /* if recon is not ongoing on this PS, just return */
1501 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1502 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1503 return (0);
1504 }
1505 /* otherwise, we have to wait for reconstruction to complete on this
1506 * RU. */
1507 /* In order to avoid waiting for a potentially large number of
1508 * low-priority accesses to complete, we force a normal-priority (i.e.
1509 * not low-priority) reconstruction on this RU. */
1510 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1511 DDprintf1("Forcing recon on psid %ld\n", psid);
1512 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1513 * forced recon */
1514 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1515 * that we just set */
1516 fcol = raidPtr->reconControl[row]->fcol;
1517
1518 /* get a listing of the disks comprising the indicated stripe */
1519 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1520 RF_ASSERT(row == stripe);
1521
1522 /* For previously issued reads, elevate them to normal
1523 * priority. If the I/O has already completed, it won't be
1524 * found in the queue, and hence this will be a no-op. For
1525 * unissued reads, allocate buffers and issue new reads. The
1526 * fact that we've set the FORCED bit means that the regular
1527 * recon procs will not re-issue these reqs */
1528 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1529 if ((diskno = diskids[i]) != fcol) {
1530 if (pssPtr->issued[diskno]) {
1531 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1532 if (rf_reconDebug && nPromoted)
1533 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1534 } else {
1535 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1536 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1537 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1538 * location */
1539 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1540 new_rbuf->which_ru = which_ru;
1541 new_rbuf->failedDiskSectorOffset = fd_offset;
1542 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1543
1544 /* use NULL b_proc b/c all addrs
1545 * should be in kernel space */
1546 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1547 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1548 NULL, (void *) raidPtr, 0, NULL);
1549
1550 RF_ASSERT(req); /* XXX -- fix this --
1551 * XXX */
1552
1553 new_rbuf->arg = req;
1554 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1555 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1556 }
1557 }
1558 /* if the write is sitting in the disk queue, elevate its
1559 * priority */
1560 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1561 printf("raid%d: promoted write to row %d col %d\n",
1562 raidPtr->raidid, row, fcol);
1563 }
1564 /* install a callback descriptor to be invoked when recon completes on
1565 * this parity stripe. */
1566 cb = rf_AllocCallbackDesc();
1567 /* XXX the following is bogus.. These functions don't really match!!
1568 * GO */
1569 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1570 cb->callbackArg.p = (void *) cbArg;
1571 cb->next = pssPtr->procWaitList;
1572 pssPtr->procWaitList = cb;
1573 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1574 raidPtr->raidid, psid);
1575
1576 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1577 return (1);
1578 }
1579 /* called upon the completion of a forced reconstruction read.
1580 * all we do is schedule the FORCEDREADONE event.
1581 * called at interrupt context in the kernel, so don't do anything illegal here.
1582 */
1583 static void
1584 ForceReconReadDoneProc(arg, status)
1585 void *arg;
1586 int status;
1587 {
1588 RF_ReconBuffer_t *rbuf = arg;
1589
1590 if (status) {
1591 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1592 * recon read
1593 * failed!\n"); */
1594 RF_PANIC();
1595 }
1596 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1597 }
1598 /* releases a block on the reconstruction of the indicated stripe */
1599 int
1600 rf_UnblockRecon(raidPtr, asmap)
1601 RF_Raid_t *raidPtr;
1602 RF_AccessStripeMap_t *asmap;
1603 {
1604 RF_RowCol_t row = asmap->origRow;
1605 RF_StripeNum_t stripeID = asmap->stripeID;
1606 RF_ReconParityStripeStatus_t *pssPtr;
1607 RF_ReconUnitNum_t which_ru;
1608 RF_StripeNum_t psid;
1609 int created = 0;
1610 RF_CallbackDesc_t *cb;
1611
1612 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1613 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1614 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1615
1616 /* When recon is forced, the pss desc can get deleted before we get
1617 * back to unblock recon. But, this can _only_ happen when recon is
1618 * forced. It would be good to put some kind of sanity check here, but
1619 * how to decide if recon was just forced or not? */
1620 if (!pssPtr) {
1621 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1622 * RU %d\n",psid,which_ru); */
1623 if (rf_reconDebug || rf_pssDebug)
1624 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1625 goto out;
1626 }
1627 pssPtr->blockCount--;
1628 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1629 raidPtr->raidid, psid, pssPtr->blockCount);
1630 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1631
1632 /* unblock recon before calling CauseReconEvent in case
1633 * CauseReconEvent causes us to try to issue a new read before
1634 * returning here. */
1635 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1636
1637
1638 while (pssPtr->blockWaitList) { /* spin through the block-wait
1639 * list and release all the
1640 * waiters */
1641 cb = pssPtr->blockWaitList;
1642 pssPtr->blockWaitList = cb->next;
1643 cb->next = NULL;
1644 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1645 rf_FreeCallbackDesc(cb);
1646 }
1647 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { /* if no recon was
1648 * requested while recon
1649 * was blocked */
1650 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1651 }
1652 }
1653 out:
1654 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1655 return (0);
1656 }
1657