rf_reconstruct.c revision 1.127.10.1 1 /* $NetBSD: rf_reconstruct.c,v 1.127.10.1 2023/09/09 14:54:38 martin Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.127.10.1 2023/09/09 14:54:38 martin Exp $");
37
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <sys/namei.h> /* for pathbuf */
48 #include <dev/raidframe/raidframevar.h>
49
50 #include <miscfs/specfs/specdev.h> /* for v_rdev */
51
52 #include "rf_raid.h"
53 #include "rf_reconutil.h"
54 #include "rf_revent.h"
55 #include "rf_reconbuffer.h"
56 #include "rf_acctrace.h"
57 #include "rf_etimer.h"
58 #include "rf_dag.h"
59 #include "rf_desc.h"
60 #include "rf_debugprint.h"
61 #include "rf_general.h"
62 #include "rf_driver.h"
63 #include "rf_utils.h"
64 #include "rf_shutdown.h"
65
66 #include "rf_kintf.h"
67
68 /* setting these to -1 causes them to be set to their default values if not set by debug options */
69
70 #if RF_DEBUG_RECON
71 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
75 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
76 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
77 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
78 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
79
80 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
81 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
82
83 #else /* RF_DEBUG_RECON */
84
85 #define Dprintf(s) {}
86 #define Dprintf1(s,a) {}
87 #define Dprintf2(s,a,b) {}
88 #define Dprintf3(s,a,b,c) {}
89 #define Dprintf4(s,a,b,c,d) {}
90 #define Dprintf5(s,a,b,c,d,e) {}
91 #define Dprintf6(s,a,b,c,d,e,f) {}
92 #define Dprintf7(s,a,b,c,d,e,f,g) {}
93
94 #define DDprintf1(s,a) {}
95 #define DDprintf2(s,a,b) {}
96
97 #endif /* RF_DEBUG_RECON */
98
99 #define RF_RECON_DONE_READS 1
100 #define RF_RECON_READ_ERROR 2
101 #define RF_RECON_WRITE_ERROR 3
102 #define RF_RECON_READ_STOPPED 4
103 #define RF_RECON_WRITE_DONE 5
104
105 #define RF_MAX_FREE_RECONBUFFER 32
106 #define RF_MIN_FREE_RECONBUFFER 16
107
108 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
109 RF_RaidDisk_t *, int, RF_RowCol_t);
110 static void FreeReconDesc(RF_RaidReconDesc_t *);
111 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
112 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
113 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
114 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
115 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
116 RF_SectorNum_t *);
117 static int IssueNextWriteRequest(RF_Raid_t *);
118 static void ReconReadDoneProc(void *, int);
119 static void ReconWriteDoneProc(void *, int);
120 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
121 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
122 RF_RowCol_t, RF_HeadSepLimit_t,
123 RF_ReconUnitNum_t);
124 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
125 RF_ReconParityStripeStatus_t *,
126 RF_PerDiskReconCtrl_t *,
127 RF_RowCol_t, RF_StripeNum_t,
128 RF_ReconUnitNum_t);
129 static void ForceReconReadDoneProc(void *, int);
130 static void rf_ShutdownReconstruction(void *);
131
132 struct RF_ReconDoneProc_s {
133 void (*proc) (RF_Raid_t *, void *);
134 void *arg;
135 RF_ReconDoneProc_t *next;
136 };
137
138 /**************************************************************************
139 *
140 * sets up the parameters that will be used by the reconstruction process
141 * currently there are none, except for those that the layout-specific
142 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
143 *
144 * in the kernel, we fire off the recon thread.
145 *
146 **************************************************************************/
147 static void
148 rf_ShutdownReconstruction(void *arg)
149 {
150 RF_Raid_t *raidPtr;
151
152 raidPtr = (RF_Raid_t *) arg;
153
154 pool_destroy(&raidPtr->pools.reconbuffer);
155 }
156
157 int
158 rf_ConfigureReconstruction(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
159 RF_Config_t *cfgPtr)
160 {
161
162 rf_pool_init(raidPtr, raidPtr->poolNames.reconbuffer, &raidPtr->pools.reconbuffer, sizeof(RF_ReconBuffer_t),
163 "reconbuf", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
164 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, raidPtr);
165
166 return (0);
167 }
168
169 static RF_RaidReconDesc_t *
170 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
171 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
172 RF_RowCol_t scol)
173 {
174
175 RF_RaidReconDesc_t *reconDesc;
176
177 reconDesc = RF_Malloc(sizeof(*reconDesc));
178 reconDesc->raidPtr = raidPtr;
179 reconDesc->col = col;
180 reconDesc->spareDiskPtr = spareDiskPtr;
181 reconDesc->numDisksDone = numDisksDone;
182 reconDesc->scol = scol;
183 reconDesc->next = NULL;
184
185 return (reconDesc);
186 }
187
188 static void
189 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
190 {
191 #if RF_RECON_STATS > 0
192 printf("raid%d: %lu recon event waits, %lu recon delays\n",
193 reconDesc->raidPtr->raidid,
194 (long) reconDesc->numReconEventWaits,
195 (long) reconDesc->numReconExecDelays);
196 #endif /* RF_RECON_STATS > 0 */
197 printf("raid%d: %lu max exec ticks\n",
198 reconDesc->raidPtr->raidid,
199 (long) reconDesc->maxReconExecTicks);
200 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
201 }
202
203
204 /*****************************************************************************
205 *
206 * primary routine to reconstruct a failed disk. This should be called from
207 * within its own thread. It won't return until reconstruction completes,
208 * fails, or is aborted.
209 *****************************************************************************/
210 int
211 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
212 {
213 const RF_LayoutSW_t *lp;
214 int rc;
215
216 lp = raidPtr->Layout.map;
217 if (lp->SubmitReconBuffer) {
218 /*
219 * The current infrastructure only supports reconstructing one
220 * disk at a time for each array.
221 */
222 rf_lock_mutex2(raidPtr->mutex);
223 while (raidPtr->reconInProgress) {
224 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
225 }
226 raidPtr->reconInProgress++;
227 rf_unlock_mutex2(raidPtr->mutex);
228 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
229 rf_lock_mutex2(raidPtr->mutex);
230 raidPtr->reconInProgress--;
231 } else {
232 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
233 lp->parityConfig);
234 rc = EIO;
235 rf_lock_mutex2(raidPtr->mutex);
236 }
237 rf_signal_cond2(raidPtr->waitForReconCond);
238 rf_unlock_mutex2(raidPtr->mutex);
239 return (rc);
240 }
241
242 int
243 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
244 {
245 RF_ComponentLabel_t *c_label;
246 RF_RaidDisk_t *spareDiskPtr = NULL;
247 RF_RaidReconDesc_t *reconDesc;
248 RF_RowCol_t scol;
249 int numDisksDone = 0, rc;
250
251 /* first look for a spare drive onto which to reconstruct the data */
252 /* spare disk descriptors are stored in row 0. This may have to
253 * change eventually */
254
255 rf_lock_mutex2(raidPtr->mutex);
256 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
257 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
258 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
259 if (raidPtr->status != rf_rs_degraded) {
260 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
261 rf_unlock_mutex2(raidPtr->mutex);
262 return (EINVAL);
263 }
264 scol = (-1);
265 } else {
266 #endif
267 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
268 if (raidPtr->Disks[scol].status == rf_ds_spare) {
269 spareDiskPtr = &raidPtr->Disks[scol];
270 spareDiskPtr->status = rf_ds_rebuilding_spare;
271 break;
272 }
273 }
274 if (!spareDiskPtr) {
275 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
276 rf_unlock_mutex2(raidPtr->mutex);
277 return (ENOSPC);
278 }
279 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
280 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
281 }
282 #endif
283 rf_unlock_mutex2(raidPtr->mutex);
284
285 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
286 raidPtr->reconDesc = (void *) reconDesc;
287 #if RF_RECON_STATS > 0
288 reconDesc->hsStallCount = 0;
289 reconDesc->numReconExecDelays = 0;
290 reconDesc->numReconEventWaits = 0;
291 #endif /* RF_RECON_STATS > 0 */
292 reconDesc->reconExecTimerRunning = 0;
293 reconDesc->reconExecTicks = 0;
294 reconDesc->maxReconExecTicks = 0;
295 rc = rf_ContinueReconstructFailedDisk(reconDesc);
296
297 if (!rc) {
298 /* fix up the component label */
299 /* Don't actually need the read here.. */
300 c_label = raidget_component_label(raidPtr, scol);
301
302 raid_init_component_label(raidPtr, c_label);
303 c_label->row = 0;
304 c_label->column = col;
305 c_label->clean = RF_RAID_DIRTY;
306 c_label->status = rf_ds_optimal;
307 rf_component_label_set_partitionsize(c_label,
308 raidPtr->Disks[scol].partitionSize);
309
310 /* We've just done a rebuild based on all the other
311 disks, so at this point the parity is known to be
312 clean, even if it wasn't before. */
313
314 /* XXX doesn't hold for RAID 6!!*/
315
316 rf_lock_mutex2(raidPtr->mutex);
317 /* The failed disk has already been marked as rf_ds_spared
318 (or rf_ds_dist_spared) in
319 rf_ContinueReconstructFailedDisk()
320 so we just update the spare disk as being a used spare
321 */
322
323 spareDiskPtr->status = rf_ds_used_spare;
324 raidPtr->parity_good = RF_RAID_CLEAN;
325 rf_unlock_mutex2(raidPtr->mutex);
326
327 /* XXXX MORE NEEDED HERE */
328
329 raidflush_component_label(raidPtr, scol);
330 } else {
331 /* Reconstruct failed. */
332
333 rf_lock_mutex2(raidPtr->mutex);
334 /* Failed disk goes back to "failed" status */
335 raidPtr->Disks[col].status = rf_ds_failed;
336
337 /* Spare disk goes back to "spare" status. */
338 spareDiskPtr->status = rf_ds_spare;
339 rf_unlock_mutex2(raidPtr->mutex);
340
341 }
342 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
343 return (rc);
344 }
345
346 /*
347
348 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
349 and you don't get a spare until the next Monday. With this function
350 (and hot-swappable drives) you can now put your new disk containing
351 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
352 rebuild the data "on the spot".
353
354 */
355
356 int
357 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
358 {
359 RF_RaidDisk_t *spareDiskPtr = NULL;
360 RF_RaidReconDesc_t *reconDesc;
361 const RF_LayoutSW_t *lp;
362 RF_ComponentLabel_t *c_label;
363 int numDisksDone = 0, rc;
364 uint64_t numsec;
365 unsigned int secsize;
366 struct pathbuf *pb;
367 struct vnode *vp;
368 int retcode;
369 int ac;
370
371 rf_lock_mutex2(raidPtr->mutex);
372 lp = raidPtr->Layout.map;
373 if (!lp->SubmitReconBuffer) {
374 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
375 lp->parityConfig);
376 /* wakeup anyone who might be waiting to do a reconstruct */
377 rf_signal_cond2(raidPtr->waitForReconCond);
378 rf_unlock_mutex2(raidPtr->mutex);
379 return(EIO);
380 }
381
382 /*
383 * The current infrastructure only supports reconstructing one
384 * disk at a time for each array.
385 */
386
387 if (raidPtr->Disks[col].status != rf_ds_failed) {
388 /* "It's gone..." */
389 raidPtr->numFailures++;
390 raidPtr->Disks[col].status = rf_ds_failed;
391 raidPtr->status = rf_rs_degraded;
392 rf_unlock_mutex2(raidPtr->mutex);
393 rf_update_component_labels(raidPtr,
394 RF_NORMAL_COMPONENT_UPDATE);
395 rf_lock_mutex2(raidPtr->mutex);
396 }
397
398 while (raidPtr->reconInProgress) {
399 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
400 }
401
402 raidPtr->reconInProgress++;
403
404 /* first look for a spare drive onto which to reconstruct the
405 data. spare disk descriptors are stored in row 0. This
406 may have to change eventually */
407
408 /* Actually, we don't care if it's failed or not... On a RAID
409 set with correct parity, this function should be callable
410 on any component without ill effects. */
411 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
412
413 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
414 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
415 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
416
417 raidPtr->reconInProgress--;
418 rf_signal_cond2(raidPtr->waitForReconCond);
419 rf_unlock_mutex2(raidPtr->mutex);
420 return (EINVAL);
421 }
422 #endif
423
424 /* This device may have been opened successfully the
425 first time. Close it before trying to open it again.. */
426
427 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
428 #if 0
429 printf("Closed the open device: %s\n",
430 raidPtr->Disks[col].devname);
431 #endif
432 vp = raidPtr->raid_cinfo[col].ci_vp;
433 ac = raidPtr->Disks[col].auto_configured;
434 rf_unlock_mutex2(raidPtr->mutex);
435 rf_close_component(raidPtr, vp, ac);
436 rf_lock_mutex2(raidPtr->mutex);
437 raidPtr->raid_cinfo[col].ci_vp = NULL;
438 }
439 /* note that this disk was *not* auto_configured (any longer)*/
440 raidPtr->Disks[col].auto_configured = 0;
441
442 #if 0
443 printf("About to (re-)open the device for rebuilding: %s\n",
444 raidPtr->Disks[col].devname);
445 #endif
446 rf_unlock_mutex2(raidPtr->mutex);
447 pb = pathbuf_create(raidPtr->Disks[col].devname);
448 if (pb == NULL) {
449 retcode = ENOMEM;
450 } else {
451 retcode = vn_bdev_openpath(pb, &vp, curlwp);
452 pathbuf_destroy(pb);
453 }
454
455 if (retcode) {
456 printf("raid%d: rebuilding: open device: %s failed: %d!\n",raidPtr->raidid,
457 raidPtr->Disks[col].devname, retcode);
458
459 /* the component isn't responding properly...
460 must be still dead :-( */
461 rf_lock_mutex2(raidPtr->mutex);
462 raidPtr->reconInProgress--;
463 rf_signal_cond2(raidPtr->waitForReconCond);
464 rf_unlock_mutex2(raidPtr->mutex);
465 return(retcode);
466 }
467
468 /* Ok, so we can at least do a lookup...
469 How about actually getting a vp for it? */
470
471 retcode = getdisksize(vp, &numsec, &secsize);
472 if (retcode) {
473 vn_close(vp, FREAD | FWRITE, kauth_cred_get());
474 rf_lock_mutex2(raidPtr->mutex);
475 raidPtr->reconInProgress--;
476 rf_signal_cond2(raidPtr->waitForReconCond);
477 rf_unlock_mutex2(raidPtr->mutex);
478 return(retcode);
479 }
480 rf_lock_mutex2(raidPtr->mutex);
481 raidPtr->Disks[col].blockSize = secsize;
482 raidPtr->Disks[col].numBlocks = numsec - rf_protectedSectors;
483
484 raidPtr->raid_cinfo[col].ci_vp = vp;
485 raidPtr->raid_cinfo[col].ci_dev = vp->v_rdev;
486
487 raidPtr->Disks[col].dev = vp->v_rdev;
488
489 /* we allow the user to specify that only a fraction
490 of the disks should be used this is just for debug:
491 it speeds up * the parity scan */
492 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
493 rf_sizePercentage / 100;
494 rf_unlock_mutex2(raidPtr->mutex);
495
496 spareDiskPtr = &raidPtr->Disks[col];
497 spareDiskPtr->status = rf_ds_rebuilding_spare;
498
499 printf("raid%d: initiating in-place reconstruction on column %d\n",
500 raidPtr->raidid, col);
501
502 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
503 numDisksDone, col);
504 raidPtr->reconDesc = (void *) reconDesc;
505 #if RF_RECON_STATS > 0
506 reconDesc->hsStallCount = 0;
507 reconDesc->numReconExecDelays = 0;
508 reconDesc->numReconEventWaits = 0;
509 #endif /* RF_RECON_STATS > 0 */
510 reconDesc->reconExecTimerRunning = 0;
511 reconDesc->reconExecTicks = 0;
512 reconDesc->maxReconExecTicks = 0;
513 rc = rf_ContinueReconstructFailedDisk(reconDesc);
514
515 if (!rc) {
516 rf_lock_mutex2(raidPtr->mutex);
517 /* Need to set these here, as at this point it'll be claiming
518 that the disk is in rf_ds_spared! But we know better :-) */
519
520 raidPtr->Disks[col].status = rf_ds_optimal;
521 raidPtr->status = rf_rs_optimal;
522 rf_unlock_mutex2(raidPtr->mutex);
523
524 /* fix up the component label */
525 /* Don't actually need the read here.. */
526 c_label = raidget_component_label(raidPtr, col);
527
528 rf_lock_mutex2(raidPtr->mutex);
529 raid_init_component_label(raidPtr, c_label);
530
531 c_label->row = 0;
532 c_label->column = col;
533
534 /* We've just done a rebuild based on all the other
535 disks, so at this point the parity is known to be
536 clean, even if it wasn't before. */
537
538 /* XXX doesn't hold for RAID 6!!*/
539
540 raidPtr->parity_good = RF_RAID_CLEAN;
541 rf_unlock_mutex2(raidPtr->mutex);
542
543 raidflush_component_label(raidPtr, col);
544 } else {
545 /* Reconstruct-in-place failed. Disk goes back to
546 "failed" status, regardless of what it was before. */
547 rf_lock_mutex2(raidPtr->mutex);
548 raidPtr->Disks[col].status = rf_ds_failed;
549 rf_unlock_mutex2(raidPtr->mutex);
550 }
551
552 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
553
554 rf_lock_mutex2(raidPtr->mutex);
555 raidPtr->reconInProgress--;
556 rf_signal_cond2(raidPtr->waitForReconCond);
557 rf_unlock_mutex2(raidPtr->mutex);
558
559 return (rc);
560 }
561
562
563 int
564 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
565 {
566 RF_Raid_t *raidPtr = reconDesc->raidPtr;
567 RF_RowCol_t col = reconDesc->col;
568 RF_RowCol_t scol = reconDesc->scol;
569 RF_ReconMap_t *mapPtr;
570 RF_ReconCtrl_t *tmp_reconctrl;
571 RF_ReconEvent_t *event;
572 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
573 #if RF_INCLUDE_RAID5_RS > 0
574 RF_StripeCount_t startPSID,endPSID,aPSID,bPSID,offPSID;
575 #endif
576 RF_ReconUnitCount_t RUsPerPU;
577 struct timeval etime, elpsd;
578 unsigned long xor_s, xor_resid_us;
579 int i, ds;
580 int status, done;
581 int recon_error, write_error;
582
583 raidPtr->accumXorTimeUs = 0;
584 #if RF_ACC_TRACE > 0
585 /* create one trace record per physical disk */
586 raidPtr->recon_tracerecs =
587 RF_Malloc(raidPtr->numCol * sizeof(*raidPtr->recon_tracerecs));
588 #endif
589
590 /* quiesce the array prior to starting recon. this is needed
591 * to assure no nasty interactions with pending user writes.
592 * We need to do this before we change the disk or row status. */
593
594 Dprintf("RECON: begin request suspend\n");
595 rf_SuspendNewRequestsAndWait(raidPtr);
596 Dprintf("RECON: end request suspend\n");
597
598 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
599 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
600
601 rf_lock_mutex2(raidPtr->mutex);
602
603 /* create the reconstruction control pointer and install it in
604 * the right slot */
605 raidPtr->reconControl = tmp_reconctrl;
606 mapPtr = raidPtr->reconControl->reconMap;
607 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
608 raidPtr->reconControl->numRUsComplete = 0;
609 raidPtr->status = rf_rs_reconstructing;
610 raidPtr->Disks[col].status = rf_ds_reconstructing;
611 raidPtr->Disks[col].spareCol = scol;
612
613 rf_unlock_mutex2(raidPtr->mutex);
614
615 RF_GETTIME(raidPtr->reconControl->starttime);
616
617 Dprintf("RECON: resume requests\n");
618 rf_ResumeNewRequests(raidPtr);
619
620
621 mapPtr = raidPtr->reconControl->reconMap;
622
623 incPSID = RF_RECONMAP_SIZE;
624 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU - 1;
625 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
626 recon_error = 0;
627 write_error = 0;
628 pending_writes = incPSID;
629 raidPtr->reconControl->lastPSID = incPSID - 1;
630
631 /* bounds check raidPtr->reconControl->lastPSID and
632 pending_writes so that we don't attempt to wait for more IO
633 than can possibly happen */
634
635 if (raidPtr->reconControl->lastPSID > lastPSID)
636 raidPtr->reconControl->lastPSID = lastPSID;
637
638 if (pending_writes > lastPSID)
639 pending_writes = lastPSID + 1;
640
641 /* start the actual reconstruction */
642
643 done = 0;
644 while (!done) {
645
646 if (raidPtr->waitShutdown) {
647 /* someone is unconfiguring this array... bail on the reconstruct.. */
648 recon_error = 1;
649 break;
650 }
651
652 num_writes = 0;
653
654 #if RF_INCLUDE_RAID5_RS > 0
655 /* For RAID5 with Rotated Spares we will be 'short'
656 some number of writes since no writes will get
657 issued for stripes where the spare is on the
658 component being rebuilt. Account for the shortage
659 here so that we don't hang indefinitely below
660 waiting for writes to complete that were never
661 scheduled.
662
663 XXX: Should be fixed for PARITY_DECLUSTERING and
664 others too!
665
666 */
667
668 if (raidPtr->Layout.numDataCol <
669 raidPtr->numCol - raidPtr->Layout.numParityCol) {
670 /* numDataCol is at least 2 less than numCol, so
671 should be RAID 5 with Rotated Spares */
672
673 /* XXX need to update for RAID 6 */
674
675 startPSID = raidPtr->reconControl->lastPSID - pending_writes + 1;
676 endPSID = raidPtr->reconControl->lastPSID;
677
678 offPSID = raidPtr->numCol - col - 1;
679
680 aPSID = startPSID - startPSID % raidPtr->numCol + offPSID;
681 if (aPSID < startPSID) {
682 aPSID += raidPtr->numCol;
683 }
684
685 bPSID = endPSID - ((endPSID - offPSID) % raidPtr->numCol);
686
687 if (aPSID < endPSID) {
688 num_writes = ((bPSID - aPSID) / raidPtr->numCol) + 1;
689 }
690
691 if ((aPSID == endPSID) && (bPSID == endPSID)) {
692 num_writes++;
693 }
694 }
695 #endif
696
697 /* issue a read for each surviving disk */
698
699 reconDesc->numDisksDone = 0;
700 for (i = 0; i < raidPtr->numCol; i++) {
701 if (i != col) {
702 /* find and issue the next I/O on the
703 * indicated disk */
704 if (IssueNextReadRequest(raidPtr, i)) {
705 Dprintf1("RECON: done issuing for c%d\n", i);
706 reconDesc->numDisksDone++;
707 }
708 }
709 }
710
711 /* process reconstruction events until all disks report that
712 * they've completed all work */
713
714 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
715
716 event = rf_GetNextReconEvent(reconDesc);
717 status = ProcessReconEvent(raidPtr, event);
718
719 /* the normal case is that a read completes, and all is well. */
720 if (status == RF_RECON_DONE_READS) {
721 reconDesc->numDisksDone++;
722 } else if ((status == RF_RECON_READ_ERROR) ||
723 (status == RF_RECON_WRITE_ERROR)) {
724 /* an error was encountered while reconstructing...
725 Pretend we've finished this disk.
726 */
727 recon_error = 1;
728 raidPtr->reconControl->error = 1;
729
730 /* bump the numDisksDone count for reads,
731 but not for writes */
732 if (status == RF_RECON_READ_ERROR)
733 reconDesc->numDisksDone++;
734
735 /* write errors are special -- when we are
736 done dealing with the reads that are
737 finished, we don't want to wait for any
738 writes */
739 if (status == RF_RECON_WRITE_ERROR) {
740 write_error = 1;
741 num_writes++;
742 }
743
744 } else if (status == RF_RECON_READ_STOPPED) {
745 /* count this component as being "done" */
746 reconDesc->numDisksDone++;
747 } else if (status == RF_RECON_WRITE_DONE) {
748 num_writes++;
749 }
750
751 if (recon_error) {
752 /* make sure any stragglers are woken up so that
753 their theads will complete, and we can get out
754 of here with all IO processed */
755
756 rf_WakeupHeadSepCBWaiters(raidPtr);
757 }
758
759 raidPtr->reconControl->numRUsTotal =
760 mapPtr->totalRUs;
761 raidPtr->reconControl->numRUsComplete =
762 mapPtr->totalRUs -
763 rf_UnitsLeftToReconstruct(mapPtr);
764
765 #if RF_DEBUG_RECON
766 raidPtr->reconControl->percentComplete =
767 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
768 if (rf_prReconSched) {
769 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
770 }
771 #endif
772 }
773
774 /* reads done, wakeup any waiters, and then wait for writes */
775
776 rf_WakeupHeadSepCBWaiters(raidPtr);
777
778 while (!recon_error && (num_writes < pending_writes)) {
779 event = rf_GetNextReconEvent(reconDesc);
780 status = ProcessReconEvent(raidPtr, event);
781
782 if (status == RF_RECON_WRITE_ERROR) {
783 num_writes++;
784 recon_error = 1;
785 raidPtr->reconControl->error = 1;
786 /* an error was encountered at the very end... bail */
787 } else if (status == RF_RECON_WRITE_DONE) {
788 num_writes++;
789 } /* else it's something else, and we don't care */
790 }
791 if (recon_error ||
792 (raidPtr->reconControl->lastPSID == lastPSID)) {
793 done = 1;
794 break;
795 }
796
797 prev = raidPtr->reconControl->lastPSID;
798 raidPtr->reconControl->lastPSID += incPSID;
799
800 if (raidPtr->reconControl->lastPSID > lastPSID) {
801 pending_writes = lastPSID - prev;
802 raidPtr->reconControl->lastPSID = lastPSID;
803 }
804 /* back down curPSID to get ready for the next round... */
805 for (i = 0; i < raidPtr->numCol; i++) {
806 if (i != col) {
807 raidPtr->reconControl->perDiskInfo[i].curPSID--;
808 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
809 }
810 }
811 }
812
813 mapPtr = raidPtr->reconControl->reconMap;
814 if (rf_reconDebug) {
815 printf("RECON: all reads completed\n");
816 }
817 /* at this point all the reads have completed. We now wait
818 * for any pending writes to complete, and then we're done */
819
820 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
821
822 event = rf_GetNextReconEvent(reconDesc);
823 status = ProcessReconEvent(raidPtr, event);
824
825 if (status == RF_RECON_WRITE_ERROR) {
826 recon_error = 1;
827 raidPtr->reconControl->error = 1;
828 /* an error was encountered at the very end... bail */
829 } else {
830 #if RF_DEBUG_RECON
831 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
832 if (rf_prReconSched) {
833 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
834 }
835 #endif
836 }
837 }
838
839 if (recon_error) {
840 /* we've encountered an error in reconstructing. */
841 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
842
843 /* we start by blocking IO to the RAID set. */
844 rf_SuspendNewRequestsAndWait(raidPtr);
845
846 rf_lock_mutex2(raidPtr->mutex);
847 /* mark set as being degraded, rather than
848 rf_rs_reconstructing as we were before the problem.
849 After this is done we can update status of the
850 component disks without worrying about someone
851 trying to read from a failed component.
852 */
853 raidPtr->status = rf_rs_degraded;
854 rf_unlock_mutex2(raidPtr->mutex);
855
856 /* resume IO */
857 rf_ResumeNewRequests(raidPtr);
858
859 /* At this point there are two cases:
860 1) If we've experienced a read error, then we've
861 already waited for all the reads we're going to get,
862 and we just need to wait for the writes.
863
864 2) If we've experienced a write error, we've also
865 already waited for all the reads to complete,
866 but there is little point in waiting for the writes --
867 when they do complete, they will just be ignored.
868
869 So we just wait for writes to complete if we didn't have a
870 write error.
871 */
872
873 if (!write_error) {
874 /* wait for writes to complete */
875 while (raidPtr->reconControl->pending_writes > 0) {
876
877 event = rf_GetNextReconEvent(reconDesc);
878 status = ProcessReconEvent(raidPtr, event);
879
880 if (status == RF_RECON_WRITE_ERROR) {
881 raidPtr->reconControl->error = 1;
882 /* an error was encountered at the very end... bail.
883 This will be very bad news for the user, since
884 at this point there will have been a read error
885 on one component, and a write error on another!
886 */
887 break;
888 }
889 }
890 }
891
892
893 /* cleanup */
894
895 /* drain the event queue - after waiting for the writes above,
896 there shouldn't be much (if anything!) left in the queue. */
897
898 rf_DrainReconEventQueue(reconDesc);
899
900 rf_FreeReconControl(raidPtr);
901 #if RF_ACC_TRACE > 0
902 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
903 #endif
904 FreeReconDesc(reconDesc);
905
906 return (1);
907 }
908
909 /* Success: mark the dead disk as reconstructed. We quiesce
910 * the array here to assure no nasty interactions with pending
911 * user accesses when we free up the psstatus structure as
912 * part of FreeReconControl() */
913
914 rf_SuspendNewRequestsAndWait(raidPtr);
915
916 rf_lock_mutex2(raidPtr->mutex);
917 raidPtr->numFailures--;
918 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
919 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
920 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
921 rf_unlock_mutex2(raidPtr->mutex);
922 RF_GETTIME(etime);
923 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
924
925 rf_ResumeNewRequests(raidPtr);
926
927 printf("raid%d: Reconstruction of disk at col %d completed\n",
928 raidPtr->raidid, col);
929 xor_s = raidPtr->accumXorTimeUs / 1000000;
930 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
931 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
932 raidPtr->raidid,
933 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
934 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
935 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
936 raidPtr->raidid,
937 (int) raidPtr->reconControl->starttime.tv_sec,
938 (int) raidPtr->reconControl->starttime.tv_usec,
939 (int) etime.tv_sec, (int) etime.tv_usec);
940 #if RF_RECON_STATS > 0
941 printf("raid%d: Total head-sep stall count was %d\n",
942 raidPtr->raidid, (int) reconDesc->hsStallCount);
943 #endif /* RF_RECON_STATS > 0 */
944 rf_FreeReconControl(raidPtr);
945 #if RF_ACC_TRACE > 0
946 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
947 #endif
948 FreeReconDesc(reconDesc);
949
950 return (0);
951
952 }
953 /*****************************************************************************
954 * do the right thing upon each reconstruction event.
955 *****************************************************************************/
956 static int
957 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
958 {
959 int retcode = 0, submitblocked;
960 RF_ReconBuffer_t *rbuf;
961 RF_SectorCount_t sectorsPerRU;
962
963 retcode = RF_RECON_READ_STOPPED;
964
965 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
966
967 switch (event->type) {
968
969 /* a read I/O has completed */
970 case RF_REVENT_READDONE:
971 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
972 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
973 event->col, rbuf->parityStripeID);
974 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
975 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
976 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
977 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
978 if (!raidPtr->reconControl->error) {
979 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
980 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
981 if (!submitblocked)
982 retcode = IssueNextReadRequest(raidPtr, event->col);
983 else
984 retcode = 0;
985 }
986 break;
987
988 /* a write I/O has completed */
989 case RF_REVENT_WRITEDONE:
990 #if RF_DEBUG_RECON
991 if (rf_floatingRbufDebug) {
992 rf_CheckFloatingRbufCount(raidPtr, 1);
993 }
994 #endif
995 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
996 rbuf = (RF_ReconBuffer_t *) event->arg;
997 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
998 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
999 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
1000 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
1001 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
1002 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
1003
1004 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1005 raidPtr->reconControl->pending_writes--;
1006 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1007
1008 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
1009 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1010 while(raidPtr->reconControl->rb_lock) {
1011 rf_wait_cond2(raidPtr->reconControl->rb_cv,
1012 raidPtr->reconControl->rb_mutex);
1013 }
1014 raidPtr->reconControl->rb_lock = 1;
1015 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1016
1017 raidPtr->numFullReconBuffers--;
1018 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
1019
1020 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1021 raidPtr->reconControl->rb_lock = 0;
1022 rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
1023 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1024 } else
1025 if (rbuf->type == RF_RBUF_TYPE_FORCED)
1026 rf_FreeReconBuffer(rbuf);
1027 else
1028 RF_ASSERT(0);
1029 retcode = RF_RECON_WRITE_DONE;
1030 break;
1031
1032 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
1033 * cleared */
1034 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
1035 if (!raidPtr->reconControl->error) {
1036 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
1037 0, (int) (long) event->arg);
1038 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
1039 * BUFCLEAR event if we
1040 * couldn't submit */
1041 retcode = IssueNextReadRequest(raidPtr, event->col);
1042 }
1043 break;
1044
1045 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
1046 * blockage has been cleared */
1047 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
1048 if (!raidPtr->reconControl->error) {
1049 retcode = TryToRead(raidPtr, event->col);
1050 }
1051 break;
1052
1053 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
1054 * reconstruction blockage has been
1055 * cleared */
1056 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1057 if (!raidPtr->reconControl->error) {
1058 retcode = TryToRead(raidPtr, event->col);
1059 }
1060 break;
1061
1062 /* a buffer has become ready to write */
1063 case RF_REVENT_BUFREADY:
1064 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1065 if (!raidPtr->reconControl->error) {
1066 retcode = IssueNextWriteRequest(raidPtr);
1067 #if RF_DEBUG_RECON
1068 if (rf_floatingRbufDebug) {
1069 rf_CheckFloatingRbufCount(raidPtr, 1);
1070 }
1071 #endif
1072 }
1073 break;
1074
1075 /* we need to skip the current RU entirely because it got
1076 * recon'd while we were waiting for something else to happen */
1077 case RF_REVENT_SKIP:
1078 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1079 if (!raidPtr->reconControl->error) {
1080 retcode = IssueNextReadRequest(raidPtr, event->col);
1081 }
1082 break;
1083
1084 /* a forced-reconstruction read access has completed. Just
1085 * submit the buffer */
1086 case RF_REVENT_FORCEDREADDONE:
1087 rbuf = (RF_ReconBuffer_t *) event->arg;
1088 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1089 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1090 if (!raidPtr->reconControl->error) {
1091 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1092 RF_ASSERT(!submitblocked);
1093 retcode = 0;
1094 }
1095 break;
1096
1097 /* A read I/O failed to complete */
1098 case RF_REVENT_READ_FAILED:
1099 retcode = RF_RECON_READ_ERROR;
1100 break;
1101
1102 /* A write I/O failed to complete */
1103 case RF_REVENT_WRITE_FAILED:
1104 retcode = RF_RECON_WRITE_ERROR;
1105
1106 /* This is an error, but it was a pending write.
1107 Account for it. */
1108 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1109 raidPtr->reconControl->pending_writes--;
1110 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1111
1112 rbuf = (RF_ReconBuffer_t *) event->arg;
1113
1114 /* cleanup the disk queue data */
1115 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1116
1117 /* At this point we're erroring out, badly, and floatingRbufs
1118 may not even be valid. Rather than putting this back onto
1119 the floatingRbufs list, just arrange for its immediate
1120 destruction.
1121 */
1122 rf_FreeReconBuffer(rbuf);
1123 break;
1124
1125 /* a forced read I/O failed to complete */
1126 case RF_REVENT_FORCEDREAD_FAILED:
1127 retcode = RF_RECON_READ_ERROR;
1128 break;
1129
1130 default:
1131 RF_PANIC();
1132 }
1133 rf_FreeReconEventDesc(raidPtr, event);
1134 return (retcode);
1135 }
1136 /*****************************************************************************
1137 *
1138 * find the next thing that's needed on the indicated disk, and issue
1139 * a read request for it. We assume that the reconstruction buffer
1140 * associated with this process is free to receive the data. If
1141 * reconstruction is blocked on the indicated RU, we issue a
1142 * blockage-release request instead of a physical disk read request.
1143 * If the current disk gets too far ahead of the others, we issue a
1144 * head-separation wait request and return.
1145 *
1146 * ctrl->{ru_count, curPSID, diskOffset} and
1147 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1148 * we're currently accessing. Note that this deviates from the
1149 * standard C idiom of having counters point to the next thing to be
1150 * accessed. This allows us to easily retry when we're blocked by
1151 * head separation or reconstruction-blockage events.
1152 *
1153 *****************************************************************************/
1154 static int
1155 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1156 {
1157 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1158 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1159 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1160 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1161 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1162 int do_new_check = 0, retcode = 0, status;
1163
1164 /* if we are currently the slowest disk, mark that we have to do a new
1165 * check */
1166 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1167 do_new_check = 1;
1168
1169 while (1) {
1170
1171 ctrl->ru_count++;
1172 if (ctrl->ru_count < RUsPerPU) {
1173 ctrl->diskOffset += sectorsPerRU;
1174 rbuf->failedDiskSectorOffset += sectorsPerRU;
1175 } else {
1176 ctrl->curPSID++;
1177 ctrl->ru_count = 0;
1178 /* code left over from when head-sep was based on
1179 * parity stripe id */
1180 if (ctrl->curPSID > raidPtr->reconControl->lastPSID) {
1181 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1182 return (RF_RECON_DONE_READS); /* finito! */
1183 }
1184 /* find the disk offsets of the start of the parity
1185 * stripe on both the current disk and the failed
1186 * disk. skip this entire parity stripe if either disk
1187 * does not appear in the indicated PS */
1188 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1189 &rbuf->spCol, &rbuf->spOffset);
1190 if (status) {
1191 ctrl->ru_count = RUsPerPU - 1;
1192 continue;
1193 }
1194 }
1195 rbuf->which_ru = ctrl->ru_count;
1196
1197 /* skip this RU if it's already been reconstructed */
1198 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1199 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1200 continue;
1201 }
1202 break;
1203 }
1204 ctrl->headSepCounter++;
1205 if (do_new_check)
1206 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1207
1208
1209 /* at this point, we have definitely decided what to do, and we have
1210 * only to see if we can actually do it now */
1211 rbuf->parityStripeID = ctrl->curPSID;
1212 rbuf->which_ru = ctrl->ru_count;
1213 #if RF_ACC_TRACE > 0
1214 memset(&raidPtr->recon_tracerecs[col], 0,
1215 sizeof(raidPtr->recon_tracerecs[col]));
1216 raidPtr->recon_tracerecs[col].reconacc = 1;
1217 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1218 #endif
1219 retcode = TryToRead(raidPtr, col);
1220 return (retcode);
1221 }
1222
1223 /*
1224 * tries to issue the next read on the indicated disk. We may be
1225 * blocked by (a) the heads being too far apart, or (b) recon on the
1226 * indicated RU being blocked due to a write by a user thread. In
1227 * this case, we issue a head-sep or blockage wait request, which will
1228 * cause this same routine to be invoked again later when the blockage
1229 * has cleared.
1230 */
1231
1232 static int
1233 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1234 {
1235 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1236 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1237 RF_StripeNum_t psid = ctrl->curPSID;
1238 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1239 RF_DiskQueueData_t *req;
1240 int status;
1241 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1242
1243 /* if the current disk is too far ahead of the others, issue a
1244 * head-separation wait and return */
1245 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1246 return (0);
1247
1248 /* allocate a new PSS in case we need it */
1249 newpssPtr = rf_AllocPSStatus(raidPtr);
1250
1251 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1252 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1253
1254 if (pssPtr != newpssPtr) {
1255 rf_FreePSStatus(raidPtr, newpssPtr);
1256 }
1257
1258 /* if recon is blocked on the indicated parity stripe, issue a
1259 * block-wait request and return. this also must mark the indicated RU
1260 * in the stripe as under reconstruction if not blocked. */
1261 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1262 if (status == RF_PSS_RECON_BLOCKED) {
1263 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1264 goto out;
1265 } else
1266 if (status == RF_PSS_FORCED_ON_WRITE) {
1267 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1268 goto out;
1269 }
1270 /* make one last check to be sure that the indicated RU didn't get
1271 * reconstructed while we were waiting for something else to happen.
1272 * This is unfortunate in that it causes us to make this check twice
1273 * in the normal case. Might want to make some attempt to re-work
1274 * this so that we only do this check if we've definitely blocked on
1275 * one of the above checks. When this condition is detected, we may
1276 * have just created a bogus status entry, which we need to delete. */
1277 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1278 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1279 if (pssPtr == newpssPtr)
1280 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1281 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1282 goto out;
1283 }
1284 /* found something to read. issue the I/O */
1285 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1286 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1287 #if RF_ACC_TRACE > 0
1288 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1289 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1290 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1291 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1292 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1293 #endif
1294 /* should be ok to use a NULL proc pointer here, all the bufs we use
1295 * should be in kernel space */
1296 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1297 ReconReadDoneProc, (void *) ctrl,
1298 #if RF_ACC_TRACE > 0
1299 &raidPtr->recon_tracerecs[col],
1300 #else
1301 NULL,
1302 #endif
1303 (void *) raidPtr, 0, NULL);
1304
1305 ctrl->rbuf->arg = (void *) req;
1306 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1307 pssPtr->issued[col] = 1;
1308
1309 out:
1310 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1311 return (0);
1312 }
1313
1314
1315 /*
1316 * given a parity stripe ID, we want to find out whether both the
1317 * current disk and the failed disk exist in that parity stripe. If
1318 * not, we want to skip this whole PS. If so, we want to find the
1319 * disk offset of the start of the PS on both the current disk and the
1320 * failed disk.
1321 *
1322 * this works by getting a list of disks comprising the indicated
1323 * parity stripe, and searching the list for the current and failed
1324 * disks. Once we've decided they both exist in the parity stripe, we
1325 * need to decide whether each is data or parity, so that we'll know
1326 * which mapping function to call to get the corresponding disk
1327 * offsets.
1328 *
1329 * this is kind of unpleasant, but doing it this way allows the
1330 * reconstruction code to use parity stripe IDs rather than physical
1331 * disks address to march through the failed disk, which greatly
1332 * simplifies a lot of code, as well as eliminating the need for a
1333 * reverse-mapping function. I also think it will execute faster,
1334 * since the calls to the mapping module are kept to a minimum.
1335 *
1336 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1337 * THE STRIPE IN THE CORRECT ORDER
1338 *
1339 * raidPtr - raid descriptor
1340 * psid - parity stripe identifier
1341 * col - column of disk to find the offsets for
1342 * spCol - out: col of spare unit for failed unit
1343 * spOffset - out: offset into disk containing spare unit
1344 *
1345 */
1346
1347
1348 static int
1349 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1350 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1351 RF_SectorNum_t *outFailedDiskSectorOffset,
1352 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1353 {
1354 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1355 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1356 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1357 RF_RowCol_t *diskids;
1358 u_int i, j, k, i_offset, j_offset;
1359 RF_RowCol_t pcol;
1360 int testcol;
1361 RF_SectorNum_t poffset;
1362 char i_is_parity = 0, j_is_parity = 0;
1363 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1364
1365 /* get a listing of the disks comprising that stripe */
1366 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1367 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1368 RF_ASSERT(diskids);
1369
1370 /* reject this entire parity stripe if it does not contain the
1371 * indicated disk or it does not contain the failed disk */
1372
1373 for (i = 0; i < stripeWidth; i++) {
1374 if (col == diskids[i])
1375 break;
1376 }
1377 if (i == stripeWidth)
1378 goto skipit;
1379 for (j = 0; j < stripeWidth; j++) {
1380 if (fcol == diskids[j])
1381 break;
1382 }
1383 if (j == stripeWidth) {
1384 goto skipit;
1385 }
1386 /* find out which disk the parity is on */
1387 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1388
1389 /* find out if either the current RU or the failed RU is parity */
1390 /* also, if the parity occurs in this stripe prior to the data and/or
1391 * failed col, we need to decrement i and/or j */
1392 for (k = 0; k < stripeWidth; k++)
1393 if (diskids[k] == pcol)
1394 break;
1395 RF_ASSERT(k < stripeWidth);
1396 i_offset = i;
1397 j_offset = j;
1398 if (k < i)
1399 i_offset--;
1400 else
1401 if (k == i) {
1402 i_is_parity = 1;
1403 i_offset = 0;
1404 } /* set offsets to zero to disable multiply
1405 * below */
1406 if (k < j)
1407 j_offset--;
1408 else
1409 if (k == j) {
1410 j_is_parity = 1;
1411 j_offset = 0;
1412 }
1413 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1414 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1415 * tells us how far into the stripe the [current,failed] disk is. */
1416
1417 /* call the mapping routine to get the offset into the current disk,
1418 * repeat for failed disk. */
1419 if (i_is_parity)
1420 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1421 else
1422 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1423
1424 RF_ASSERT(col == testcol);
1425
1426 if (j_is_parity)
1427 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1428 else
1429 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1430 RF_ASSERT(fcol == testcol);
1431
1432 /* now locate the spare unit for the failed unit */
1433 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1434 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1435 if (j_is_parity)
1436 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1437 else
1438 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1439 } else {
1440 #endif
1441 *spCol = raidPtr->reconControl->spareCol;
1442 *spOffset = *outFailedDiskSectorOffset;
1443 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1444 }
1445 #endif
1446 return (0);
1447
1448 skipit:
1449 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1450 psid, col);
1451 return (1);
1452 }
1453 /* this is called when a buffer has become ready to write to the replacement disk */
1454 static int
1455 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1456 {
1457 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1458 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1459 #if RF_ACC_TRACE > 0
1460 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1461 #endif
1462 RF_ReconBuffer_t *rbuf;
1463 RF_DiskQueueData_t *req;
1464
1465 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1466 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1467 * have gotten the event that sent us here */
1468 RF_ASSERT(rbuf->pssPtr);
1469
1470 rbuf->pssPtr->writeRbuf = rbuf;
1471 rbuf->pssPtr = NULL;
1472
1473 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1474 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1475 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1476 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1477 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1478 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1479
1480 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1481 * kernel space */
1482 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1483 sectorsPerRU, rbuf->buffer,
1484 rbuf->parityStripeID, rbuf->which_ru,
1485 ReconWriteDoneProc, (void *) rbuf,
1486 #if RF_ACC_TRACE > 0
1487 &raidPtr->recon_tracerecs[fcol],
1488 #else
1489 NULL,
1490 #endif
1491 (void *) raidPtr, 0, NULL);
1492
1493 rbuf->arg = (void *) req;
1494 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1495 raidPtr->reconControl->pending_writes++;
1496 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1497 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1498
1499 return (0);
1500 }
1501
1502 /*
1503 * this gets called upon the completion of a reconstruction read
1504 * operation the arg is a pointer to the per-disk reconstruction
1505 * control structure for the process that just finished a read.
1506 *
1507 * called at interrupt context in the kernel, so don't do anything
1508 * illegal here.
1509 */
1510 static void
1511 ReconReadDoneProc(void *arg, int status)
1512 {
1513 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1514 RF_Raid_t *raidPtr;
1515
1516 /* Detect that reconCtrl is no longer valid, and if that
1517 is the case, bail without calling rf_CauseReconEvent().
1518 There won't be anyone listening for this event anyway */
1519
1520 if (ctrl->reconCtrl == NULL)
1521 return;
1522
1523 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1524
1525 if (status) {
1526 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1527 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1528 return;
1529 }
1530 #if RF_ACC_TRACE > 0
1531 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1532 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1533 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1534 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1535 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1536 #endif
1537 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1538 return;
1539 }
1540 /* this gets called upon the completion of a reconstruction write operation.
1541 * the arg is a pointer to the rbuf that was just written
1542 *
1543 * called at interrupt context in the kernel, so don't do anything illegal here.
1544 */
1545 static void
1546 ReconWriteDoneProc(void *arg, int status)
1547 {
1548 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1549
1550 /* Detect that reconControl is no longer valid, and if that
1551 is the case, bail without calling rf_CauseReconEvent().
1552 There won't be anyone listening for this event anyway */
1553
1554 if (rbuf->raidPtr->reconControl == NULL)
1555 return;
1556
1557 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1558 if (status) {
1559 printf("raid%d: Recon write failed (status %d(0x%x))!\n", rbuf->raidPtr->raidid,status,status);
1560 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1561 return;
1562 }
1563 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1564 }
1565
1566
1567 /*
1568 * computes a new minimum head sep, and wakes up anyone who needs to
1569 * be woken as a result
1570 */
1571 static void
1572 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1573 {
1574 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1575 RF_HeadSepLimit_t new_min;
1576 RF_RowCol_t i;
1577 RF_CallbackValueDesc_t *p;
1578 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1579 * of a minimum */
1580
1581
1582 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1583 while(reconCtrlPtr->rb_lock) {
1584 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1585 }
1586 reconCtrlPtr->rb_lock = 1;
1587 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1588
1589 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1590 for (i = 0; i < raidPtr->numCol; i++)
1591 if (i != reconCtrlPtr->fcol) {
1592 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1593 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1594 }
1595 /* set the new minimum and wake up anyone who can now run again */
1596 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1597 reconCtrlPtr->minHeadSepCounter = new_min;
1598 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1599 while (reconCtrlPtr->headSepCBList) {
1600 if (reconCtrlPtr->headSepCBList->v > new_min)
1601 break;
1602 p = reconCtrlPtr->headSepCBList;
1603 reconCtrlPtr->headSepCBList = p->next;
1604 p->next = NULL;
1605 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1606 rf_FreeCallbackValueDesc(raidPtr, p);
1607 }
1608
1609 }
1610 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1611 reconCtrlPtr->rb_lock = 0;
1612 rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1613 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1614 }
1615
1616 /*
1617 * checks to see that the maximum head separation will not be violated
1618 * if we initiate a reconstruction I/O on the indicated disk.
1619 * Limiting the maximum head separation between two disks eliminates
1620 * the nasty buffer-stall conditions that occur when one disk races
1621 * ahead of the others and consumes all of the floating recon buffers.
1622 * This code is complex and unpleasant but it's necessary to avoid
1623 * some very nasty, albeit fairly rare, reconstruction behavior.
1624 *
1625 * returns non-zero if and only if we have to stop working on the
1626 * indicated disk due to a head-separation delay.
1627 */
1628 static int
1629 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1630 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1631 RF_ReconUnitNum_t which_ru)
1632 {
1633 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1634 RF_CallbackValueDesc_t *cb, *p, *pt;
1635 int retval = 0;
1636
1637 /* if we're too far ahead of the slowest disk, stop working on this
1638 * disk until the slower ones catch up. We do this by scheduling a
1639 * wakeup callback for the time when the slowest disk has caught up.
1640 * We define "caught up" with 20% hysteresis, i.e. the head separation
1641 * must have fallen to at most 80% of the max allowable head
1642 * separation before we'll wake up.
1643 *
1644 */
1645 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1646 while(reconCtrlPtr->rb_lock) {
1647 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1648 }
1649 reconCtrlPtr->rb_lock = 1;
1650 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1651 if ((raidPtr->headSepLimit >= 0) &&
1652 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1653 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1654 raidPtr->raidid, col, ctrl->headSepCounter,
1655 reconCtrlPtr->minHeadSepCounter,
1656 raidPtr->headSepLimit);
1657 cb = rf_AllocCallbackValueDesc(raidPtr);
1658 /* the minHeadSepCounter value we have to get to before we'll
1659 * wake up. build in 20% hysteresis. */
1660 cb->v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1661 cb->col = col;
1662 cb->next = NULL;
1663
1664 /* insert this callback descriptor into the sorted list of
1665 * pending head-sep callbacks */
1666 p = reconCtrlPtr->headSepCBList;
1667 if (!p)
1668 reconCtrlPtr->headSepCBList = cb;
1669 else
1670 if (cb->v < p->v) {
1671 cb->next = reconCtrlPtr->headSepCBList;
1672 reconCtrlPtr->headSepCBList = cb;
1673 } else {
1674 for (pt = p, p = p->next; p && (p->v < cb->v); pt = p, p = p->next);
1675 cb->next = p;
1676 pt->next = cb;
1677 }
1678 retval = 1;
1679 #if RF_RECON_STATS > 0
1680 ctrl->reconCtrl->reconDesc->hsStallCount++;
1681 #endif /* RF_RECON_STATS > 0 */
1682 }
1683 rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1684 reconCtrlPtr->rb_lock = 0;
1685 rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1686 rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1687
1688 return (retval);
1689 }
1690 /*
1691 * checks to see if reconstruction has been either forced or blocked
1692 * by a user operation. if forced, we skip this RU entirely. else if
1693 * blocked, put ourselves on the wait list. else return 0.
1694 *
1695 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1696 */
1697 static int
1698 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1699 RF_ReconParityStripeStatus_t *pssPtr,
1700 RF_PerDiskReconCtrl_t *ctrl,
1701 RF_RowCol_t col,
1702 RF_StripeNum_t psid,
1703 RF_ReconUnitNum_t which_ru)
1704 {
1705 RF_CallbackValueDesc_t *cb;
1706 int retcode = 0;
1707
1708 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1709 retcode = RF_PSS_FORCED_ON_WRITE;
1710 else
1711 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1712 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1713 cb = rf_AllocCallbackValueDesc(raidPtr); /* append ourselves to
1714 * the blockage-wait
1715 * list */
1716 cb->col = col;
1717 cb->next = pssPtr->blockWaitList;
1718 pssPtr->blockWaitList = cb;
1719 retcode = RF_PSS_RECON_BLOCKED;
1720 }
1721 if (!retcode)
1722 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1723 * reconstruction */
1724
1725 return (retcode);
1726 }
1727 /*
1728 * if reconstruction is currently ongoing for the indicated stripeID,
1729 * reconstruction is forced to completion and we return non-zero to
1730 * indicate that the caller must wait. If not, then reconstruction is
1731 * blocked on the indicated stripe and the routine returns zero. If
1732 * and only if we return non-zero, we'll cause the cbFunc to get
1733 * invoked with the cbArg when the reconstruction has completed.
1734 */
1735 int
1736 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1737 void (*cbFunc)(void *), void *cbArg)
1738 {
1739 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1740 * forcing recon on */
1741 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1742 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1743 * stripe status structure */
1744 RF_StripeNum_t psid; /* parity stripe id */
1745 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1746 * offset */
1747 RF_RowCol_t *diskids;
1748 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1749 RF_RowCol_t fcol, diskno, i;
1750 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1751 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1752 RF_CallbackFuncDesc_t *cb;
1753 int nPromoted;
1754
1755 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1756
1757 /* allocate a new PSS in case we need it */
1758 newpssPtr = rf_AllocPSStatus(raidPtr);
1759
1760 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1761
1762 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1763
1764 if (pssPtr != newpssPtr) {
1765 rf_FreePSStatus(raidPtr, newpssPtr);
1766 }
1767
1768 /* if recon is not ongoing on this PS, just return */
1769 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1770 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1771 return (0);
1772 }
1773 /* otherwise, we have to wait for reconstruction to complete on this
1774 * RU. */
1775 /* In order to avoid waiting for a potentially large number of
1776 * low-priority accesses to complete, we force a normal-priority (i.e.
1777 * not low-priority) reconstruction on this RU. */
1778 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1779 DDprintf1("Forcing recon on psid %ld\n", psid);
1780 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1781 * forced recon */
1782 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1783 * that we just set */
1784 fcol = raidPtr->reconControl->fcol;
1785
1786 /* get a listing of the disks comprising the indicated stripe */
1787 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1788
1789 /* For previously issued reads, elevate them to normal
1790 * priority. If the I/O has already completed, it won't be
1791 * found in the queue, and hence this will be a no-op. For
1792 * unissued reads, allocate buffers and issue new reads. The
1793 * fact that we've set the FORCED bit means that the regular
1794 * recon procs will not re-issue these reqs */
1795 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1796 if ((diskno = diskids[i]) != fcol) {
1797 if (pssPtr->issued[diskno]) {
1798 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1799 if (rf_reconDebug && nPromoted)
1800 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1801 } else {
1802 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1803 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1804 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1805 * location */
1806 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1807 new_rbuf->which_ru = which_ru;
1808 new_rbuf->failedDiskSectorOffset = fd_offset;
1809 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1810
1811 /* use NULL b_proc b/c all addrs
1812 * should be in kernel space */
1813 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1814 psid, which_ru,
1815 ForceReconReadDoneProc,
1816 (void *) new_rbuf,
1817 NULL, (void *) raidPtr, 0, NULL);
1818
1819 new_rbuf->arg = req;
1820 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1821 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1822 }
1823 }
1824 /* if the write is sitting in the disk queue, elevate its
1825 * priority */
1826 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1827 if (rf_reconDebug)
1828 printf("raid%d: promoted write to col %d\n",
1829 raidPtr->raidid, fcol);
1830 }
1831 /* install a callback descriptor to be invoked when recon completes on
1832 * this parity stripe. */
1833 cb = rf_AllocCallbackFuncDesc(raidPtr);
1834 cb->callbackFunc = cbFunc;
1835 cb->callbackArg = cbArg;
1836 cb->next = pssPtr->procWaitList;
1837 pssPtr->procWaitList = cb;
1838 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1839 raidPtr->raidid, psid);
1840
1841 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1842 return (1);
1843 }
1844 /* called upon the completion of a forced reconstruction read.
1845 * all we do is schedule the FORCEDREADONE event.
1846 * called at interrupt context in the kernel, so don't do anything illegal here.
1847 */
1848 static void
1849 ForceReconReadDoneProc(void *arg, int status)
1850 {
1851 RF_ReconBuffer_t *rbuf = arg;
1852
1853 /* Detect that reconControl is no longer valid, and if that
1854 is the case, bail without calling rf_CauseReconEvent().
1855 There won't be anyone listening for this event anyway */
1856
1857 if (rbuf->raidPtr->reconControl == NULL)
1858 return;
1859
1860 if (status) {
1861 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1862 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1863 return;
1864 }
1865 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1866 }
1867 /* releases a block on the reconstruction of the indicated stripe */
1868 int
1869 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1870 {
1871 RF_StripeNum_t stripeID = asmap->stripeID;
1872 RF_ReconParityStripeStatus_t *pssPtr;
1873 RF_ReconUnitNum_t which_ru;
1874 RF_StripeNum_t psid;
1875 RF_CallbackValueDesc_t *cb;
1876
1877 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1878 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1879 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1880
1881 /* When recon is forced, the pss desc can get deleted before we get
1882 * back to unblock recon. But, this can _only_ happen when recon is
1883 * forced. It would be good to put some kind of sanity check here, but
1884 * how to decide if recon was just forced or not? */
1885 if (!pssPtr) {
1886 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1887 * RU %d\n",psid,which_ru); */
1888 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1889 if (rf_reconDebug || rf_pssDebug)
1890 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1891 #endif
1892 goto out;
1893 }
1894 pssPtr->blockCount--;
1895 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1896 raidPtr->raidid, psid, pssPtr->blockCount);
1897 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1898
1899 /* unblock recon before calling CauseReconEvent in case
1900 * CauseReconEvent causes us to try to issue a new read before
1901 * returning here. */
1902 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1903
1904
1905 while (pssPtr->blockWaitList) {
1906 /* spin through the block-wait list and
1907 release all the waiters */
1908 cb = pssPtr->blockWaitList;
1909 pssPtr->blockWaitList = cb->next;
1910 cb->next = NULL;
1911 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1912 rf_FreeCallbackValueDesc(raidPtr, cb);
1913 }
1914 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1915 /* if no recon was requested while recon was blocked */
1916 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1917 }
1918 }
1919 out:
1920 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1921 return (0);
1922 }
1923
1924 void
1925 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1926 {
1927 RF_CallbackValueDesc_t *p;
1928
1929 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1930 while(raidPtr->reconControl->rb_lock) {
1931 rf_wait_cond2(raidPtr->reconControl->rb_cv,
1932 raidPtr->reconControl->rb_mutex);
1933 }
1934
1935 raidPtr->reconControl->rb_lock = 1;
1936 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1937
1938 while (raidPtr->reconControl->headSepCBList) {
1939 p = raidPtr->reconControl->headSepCBList;
1940 raidPtr->reconControl->headSepCBList = p->next;
1941 p->next = NULL;
1942 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1943 rf_FreeCallbackValueDesc(raidPtr, p);
1944 }
1945 rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1946 raidPtr->reconControl->rb_lock = 0;
1947 rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
1948 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1949
1950 }
1951
1952